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Abstract 

Background Epigenetic age acceleration (EAA) and epigenetic gestational age acceleration (EGAA) are biomarkers 
of physiological development and may be affected by the perinatal environment. The aim of this study was to evalu‑
ate performance of epigenetic clocks and to identify biological and sociodemographic correlates of EGAA and EAA at 
birth and in childhood. In the Project Viva pre‑birth cohort, DNA methylation was measured in nucleated cells in cord 
blood (leukocytes and nucleated red blood cells, N = 485) and leukocytes in early (N = 120, median age = 3.2 years) 
and mid‑childhood (N = 460, median age = 7.7 years). We calculated epigenetic gestational age (EGA; Bohlin and 
Knight clocks) and epigenetic age (EA; Horvath and skin & blood clocks), and respective measures of EGAA and EAA. 
We evaluated the performance of clocks relative to chronological age using correlations and median absolute error. 
We tested for associations of maternal‑child characteristics with EGAA and EAA using mutually adjusted linear models 
controlling for estimated cell type proportions. We also tested associations of Horvath EA at birth with childhood EAA.

Results Bohlin EGA was strongly correlated with chronological gestational age (Bohlin EGA r = 0.82, p < 0.001). Hor‑
vath and skin & blood EA were weakly correlated with gestational age, but moderately correlated with chronological 
age in childhood (r = 0.45–0.65). Maternal smoking during pregnancy was associated with higher skin & blood EAA 
at birth [B (95% CI) = 1.17 weeks (− 0.09, 2.42)] and in early childhood [0.34 years (0.03, 0.64)]. Female newborns and 
children had lower Bohlin EGAA [− 0.17 weeks (− 0.30, − 0.04)] and Horvath EAA at birth [B (95% CI) = − 2.88 weeks 
(− 4.41, − 1.35)] and in childhood [early childhood: − 0.3 years (− 0.60, 0.01); mid‑childhood: − 0.48 years (− 0.77, 
− 0.18)] than males. When comparing self‑reported Asian, Black, Hispanic, and more than one race or other racial/eth‑
nic groups to White, we identified significant differences in EGAA and EAA at birth and in mid‑childhood, but associa‑
tions varied across clocks. Horvath EA at birth was positively associated with childhood Horvath and skin & blood EAA.

Conclusions Maternal smoking during pregnancy and child sex were associated with EGAA and EAA at multiple 
timepoints. Further research may provide insight into the relationship between perinatal factors, pediatric epigenetic 
aging, and health and development across the lifespan.

*Correspondence:
Andres Cardenas
andresca@stanford.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-023-01480-2&domain=pdf


Page 2 of 17Bozack et al. Clinical Epigenetics           (2023) 15:62 

Keywords DNA methylation, Epigenetic age, Epigenetic age acceleration, Gestational age acceleration, Epigenetic 
programming

Introduction
Human aging is a complex biological process influenced 
by genetic, environmental, behavioral, and social fac-
tors [1]. Blood-based and molecular biomarkers, includ-
ing inflammatory markers, hormones, telomere length, 
and epigenetic markers, have been identified to predict 
age-related outcomes and biological aging [2, 3]. Of par-
ticular interest, DNA methylation (DNAm) at specific 
cytosine-phosphate-guanine (CpG) dinucleotides pre-
dictably varies with chronological age and gestational 
age (GA) [4–6]. Multiple methods have been developed 
to estimate epigenetic age (EA) in adults and children 
and epigenetic GA (EGA) in newborns based on DNAm 
profiles, referred to as epigenetic clocks. Although the 
development of epigenetic clocks has largely prioritized 
predicting age-related disease risk and mortality in adults 
[7], epigenetic clocks in pediatric populations may serve 
as biomarkers of physiological development or early life 
programming, and may be responsive to the pre- and 
perinatal environment.

Epigenetic clocks can be distinguished by the target tis-
sue (e.g., DNAm extracted from saliva or blood), stage 
of life (e.g., prenatal/birth, childhood/adolescence, or 
adulthood), and the prediction of age-related traits (e.g., 
chronological age, mortality, or health span). Epigenetic 
clocks may be independent of age-related changes in cel-
lular heterogeneity, therefore reflecting intrinsic changes 
in the epigenome, or may measure extrinsic aging pro-
cesses dependent on age-related changes in immune cell 
composition [8]. The weighted average of DNAm at age-
related CpGs can be used to estimate EA in a sample. The 
difference between EA and chronological age, referred to 
as Epigenetic Age Acceleration (EAA), characterizes an 
individual’s biological age relative to chronological age. 
EAA has been shown to be a strong predictor of mortal-
ity risk [9–12] and frailty [13], outperforming telomere 
length [12, 13].

One of the most widely studied epigenetic clocks is 
the Horvath pan-tissue clock, referred to here as the 
Horvath clock, which was developed to estimate age 
across most tissues and cell types [14]. The Horvath 
clock was trained on tissues and cell types spanning 
multiple life stages, including cord blood and samples 
from children and adolescents. Horvath EAA has been 
associated with physical and cognitive function, cancer, 
and life expectancy  in adults [15, 16], and with devel-
opment in children and adolescents [17–19]. Horvath 
et al. additionally developed a clock to estimate age in 

skin and blood samples, which was trained on DNAm 
data including cord blood and child buccal cell samples, 
referred to here as the skin & blood clock [20].

DNAm signatures have also been associated with GA 
[6, 21]. Epigenetic clocks have been developed to esti-
mate EGA from cord blood [22, 23] or placenta sam-
ples [24]. Bohlin et al. leveraged DNAm data measured 
using the Illumina HumanMethylation450 array (450K) 
in the Norwegian Mother and Child Birth Cohort study 
(MoBa) to predict GA, referred to here as the Bohlin 
clock. Similarly, Knight et  al. trained a GA epigenetic 
clock on DNAm measured using the Illumina Human-
Methylation27 (27K) or 450K arrays  from six cohorts 
including multiple ancestries [23], referred to here as 
the Knight clock. Epigenetic GA Acceleration (EGAA) 
has been positively associated with birth weight [23, 25, 
26], indicating that EGAA is related to developmental 
maturity, although associations between EGAA and 
weight may reverse in childhood [26].

Increasing evidence suggests that biological factors 
(e.g., sex and birth weight), conditions affecting the 
intrauterine environment (gestational diabetes, preec-
lampsia), social indicators (socioeconomic status and 
early-life social adversity), and environmental expo-
sures (maternal smoking and air pollution) are associ-
ated with epigenetic aging at birth [23, 25–30] and in 
childhood [31–33]. However, there is limited research 
on factors that affect EAA at different early-life time-
points, which is important for evaluating the persis-
tence of associations across the lifespan and disease 
risk. In this study, we examined performance of two 
clocks developed to estimate EGA (Knight and Boh-
lin  clocks) and two clocks developed to estimate EA 
across the lifespan (Horvath and skin & blood  clocks) 
in cord blood and blood collected in early and mid-
childhood from the Project Viva pre-birth cohort 
(Fig. 1). We also aimed to identify biological and soci-
odemographic correlates that may be involved in early 
life programming and impact epigenetic biomarkers of 
development. In cross-sectional analyses, we investi-
gated associations between maternal-child character-
istics [maternal age, pre-pregnancy body mass index 
(BMI), education, and prenatal smoking and child sex, 
preterm birth, birth weight for GA z-score, and self-
reported race/ethnicity (a proxy for structural dis-
crimination, racism, and socioeconomic inequality)] 
and EGAA and EAA at birth and in childhood. We 
also evaluated associations of Horvath EA at birth with 
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Fig. 1 Schematic diagram of study objectives
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childhood EAA to test the hypothesis that epigenetic 
age at birth influences biomarkers of development in 
early life.

Results
Study population
Characteristics of mother–child pairs are summarized in 
Table 1. Data were available for 485 cord blood samples, 
120 early childhood blood samples, and 460 mid-child-
hood blood samples. Mean maternal age at enrollment 
was approximately 32 years for mother–child pairs with 
data at birth [mean (standard deviation, SD) = 32.1 (5.3) 

years], early childhood [mean (SD) = 32.3 (5.0) years], 
and mid-childhood [mean (SD) = 32.0 (5.6) years]. The 
majority of mothers had a college or graduate degree 
(data at birth: 66.4%; early childhood: 71.7%; mid-child-
hood: 69.5%) and annual household income > $70,000 
(data at birth: 60.0%; early childhood: 64.6%; mid-child-
hood: 64.8%). Approximately 20% of mothers were for-
mer smokers (data at birth: 21.0%; early childhood: 
23.3%; mid-childhood: 19.1%), and 11–15% reported 
smoking during pregnancy (data at birth: 11.1%; early 
childhood: 15.0%; mid-childhood: 11.5%). Approximately 
half of children were female (data at birth: 47.6%; early 

Table 1 Characteristics of mother–child pairs included in analyses of cord blood, early‑childhood, and mid‑childhood samples

a BMI ≥ 30 kg/m2

b  < 37 weeks gestation

EGA, epigenetic gestational age; EGAA , epigenetic age acceleration. EA, epigenetic age; EAA, epigenetic age acceleration

Cord blood (N = 485) Early childhood (N = 120) Mid-childhood (N = 460)

n (%) Missing (n) n (%) Missing (n) n (%) Missing (n)

Maternal characteristics

  Age at enrollment, years, mean (SD) 32.1 (5.3) 0 32.3 (5.0) 0 32.0 (5.6) 0

  Pre‑pregnancy BMI, kg/m2, mean (SD) 24.8 (5.3) 1 25.9 (6.3) 1 24.9 (5.3) 4

  Pre‑pregnancy  obesitya 71 (14.6%) 1 22 (18.3%) 1 70 (15.2%) 4

  College graduate 322 (66.4) 0 86 (71.7%) 298 (65.1) 2

  Annual household income > $70,000 269 (59.9%) 36 71 (64.6%) 20 254 (60.8%) 42

  Smoking status 0 0 0

    Former smoker 102 (21.0%) – 28 (23.3%) – 88 (19.1%) –

    Smoking during pregnancy 54 (11.1%) – 18 (15.0%) – 53 (11.5%) –

    Never smoker 329 (67.8%) – 74 (61.7%) – 319 (69.4%) –

Child characteristics

  Female 231 (47.6%) 0 58 (48.3%) 0 218 (47.4%) 0

  Gestational age, weeks, mean (SD) 39.7 (1.6) 0 39.6 (1.6) 0 39.6 (1.6) 0

   Pretermb 23 (4.7%) 0 7 (5.8%) 0 25 (5.4%) 0

  Birth weight for GA z‑score, mean (SD) 0.3 (1.0) 0 0.2 (0.9) 0 0.3 (1.0) 1

  Race/ethnicity 0 0 1

    Asian 16 (3.3%) – 6 (5.0%) – 14 (3.0%) –

    Black 62 (12.8%) – 10 (8.3%) – 90 (19.6%) –

    Hispanic 26 (5.4%) – 4 (3.3%) – 25 (5.4%) –

    More than one race or other 56 (11.6%) – 16 (13.3%) – 49 (11.1%) –

    White 325 (67.0%) – 84 (70.0%) – 279 (60.7%) –

  Age at sample collection, years, mean (SD) – – 3.4 (0.5) 0 7.9 (0.8) 0

  Epigenetic age measures

    Bohlin EGA, weeks, mean (SD) 40.3 (1.2) 0 – – 0

    Bohlin EGAA, weeks, mean (SD) 0.0 (0.7) 0 – – 0

    Knight EGA, weeks, mean (SD) 38.8 (1.7) 0 – – 0

    Knight EGAA, weeks, mean (SD) 0.0 (1.4) 0 – – 0

    Horvath EA, years, mean (SD) 0.1 (0.2) 0 4.2 (1.0) 0 9.0 (2.0) 0

    Horvath EAA, years, mean (SD) 0.0 (0.2) 0 0.0 (0.8) 0 0.0 (1.8) 0

    Skin & blood EA, years, mean (SD) − 0.3 (0.1) 0 2.6 (0.7) 0 6.5 (1.3) 0

    Skin & blood EAA, years, mean (SD) 0.0 (0.1) 0 0.0 (0.5) 0 0.0 (1.1) 0



Page 5 of 17Bozack et al. Clinical Epigenetics           (2023) 15:62  

childhood: 48.3%; mid-childhood: 47.4%). Child race/
ethnicity was reported by mothers. In this analysis, we 
viewed race and ethnicity as socio-cultural constructs 
that capture experiences of racism, discrimination, and 
socioeconomic inequities [34, 35]. Children were classi-
fied as Asian (data at birth: 3.3%; early childhood: 5.0%; 
mid-childhood: 3.0%), Black (data at birth: 12.8%; early 
childhood: 8.3%; mid-childhood: 19.6%), Hispanic (data 
at birth: 5.4%; early childhood: 3.3%; mid-childhood: 
5.4%), more than one race or other (data at birth: 11.6%; 
early childhood: 13.3%; mid-childhood: 11.1%), or White 
(data at birth: 67.0%; early childhood: 70.0%; mid-child-
hood: 67.8%). For each measure of EA and EAA, means 
and SDs are included in Table  1. Mean Bohlin EGAA, 
Knight EGAA, Horvath EAA, and skin & blood EAA was 
0.0 for all timepoints.

Data were available at all three timepoints for 59 
mother–child pairs, described in Additional File 1: 
Table S1. There were not significant differences in char-
acteristics of groups with data available at all three time-
points and those with data available at birth (p > 0.05, 
Additional File 1: Table  S1). Bohlin EGA was signifi-
cantly different between newborns with data available at 
all timepoints and newborns with data available at birth 
(Mann–Whitney test p = 0.020); however, Bohlin EGAA 
was not significantly different (p > 0.05). No other meas-
ures of EA or EAA differed significantly between children 
with data available at all timepoints and children with 
data available at individual timepoints (Additional File 1: 
Table S1).

Performance of epigenetic clocks
EGA and EA at birth: Scatter plots of chronological GA, 
EGA, and EA (N = 485) are shown in Fig. 2. The Bohlin 
clock outperformed the Knight clock in accuracy  rela-
tive to chronological GA as measured by the Pearson 
correlation coefficient (Bohlin r = 0.82; Knight r = 0.58; 
p < 0.001) and Median Absolute Error (MAE) (Bohlin 
MAE = 0.70  weeks; Knight MAE = 1.07  weeks). Skin & 
blood EA was weakly but significantly correlated with 
chronological GA (r = 0.11; p < 0.016). Although Hor-
vath EA was not significantly correlated with chrono-
logical GA (p > 0.05), it had a smaller MAE than skin & 
blood EA (Horvath MAE = 7.12  weeks; skin & blood 
MAE = 19.18  weeks). The majority (80.4%) of estimates 
for Horvath EA at birth were positive (> 0 years) whereas 
skin & blood EA was negative for all but one sample.

EA in early and mid-childhood: Performance of the 
Horvath and skin & blood clocks in early (N = 120) 
and mid-childhood (N = 460) is shown in Fig.  3. Hor-
vath EA had a lower MAE in both early (Horvath 
MAE = 0.71  years; skin & blood MAE = 0.82  years) 
and mid-childhood (Horvath MAE = 1.21  years; skin 

& blood MAE = 1.46  years), whereas skin & blood EA 
had a higher correlation with chronological age in early 
(Horvath r = 0.54; skin & blood r = 0.82; p < 0.001) and 
mid-childhood (Horvath r = 0.45; skin & blood r = 0.59; 
p < 0.001). Both clocks were significantly correlated with 
each other across timepoints (early childhood: r = 0.57; 
mid-childhood: r = 0.57; p < 0.001).

We observed that Horvath EA consistently overes-
timated chronological age in childhood (Fig.  3). After 
adjusting chronological age for GA (i.e., adding GA in 
years to chronological age in childhood), the MAE of 
the Horvath clock significantly decreased from 0.71 to 
0.53 years and from 1.21 to 1.03 years in early and mid-
childhood, respectively (paired samples Wilcoxon test 
p < 0.001) (Additional File 1: Figure S1).

Both Bohlin and Knight EGA were positively correlated 
with Horvath and skin & blood EA at birth (N = 485; 
p < 0.001; Fig.  2), and, consequently, Bohlin and Knight 
EGAA were correlated with Horvath and skin & blood 
EAA birth (p < 0.05; Additional File 1: Table S2). However, 
Bohlin and Knight EGAA were not significant correlated 
with Horvath or skin & blood EAA in mid-childhood 
(N = 238; p > 0.05; Additional File 1: Table S2).

Associations with cell type composition
Although variation in cell type proportions may confound 
associations between maternal-child characteristics and 
epigenetic aging, EAA may reflect developmental-related 
changes in immune cell proportions. We therefore evalu-
ated correlations of cell type proportions estimated from 
DNAm data with chronological age, EGAA, and EAA, 
separately.

Associations at birth: Chronological GA was negatively 
correlated with % B cells, % CD4+ T cells, and % natural 
killer (NK) cells, and positively correlated with % nucle-
ated red blood cells (nRBCs) (N = 485; Spearman correla-
tion p < 0.05) (Fig. 4). Among the measures of EGAA and 
EAA at birth, Knight EGAA appeared to be most influ-
enced by cell type, and was negatively correlated with % 
B cells, % CD8+ T cells, % NK cells, and % nRBCs, but 
positively correlated with % granulocytes (p < 0.05). Cor-
relations between Bohlin EGAA and % B cells, % CD8+ T 
cells, and % granulocytes were significant and in the same 
direction, but smaller. Horvath EAA was negatively cor-
related with % B cells, % CD8+ T cells and % nRBCs and 
positively correlated with % CD4+ T cells, whereas skin 
& blood EAA was negatively correlated with % B cells 
(p < 0.05).

Associations in early and mid-childhood: Chronologi-
cal age was negatively correlated with % B cells in early 
childhood (N = 120; p < 0.05); correlations between 
chronological age and cell type proportions were not 
significant in mid-childhood (N = 460; Fig. 4). Horvath 
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EAA was negatively correlated with % CD4+ T cells at 
both childhood timepoints, and positively correlated 
with % CD8+ T cells in mid-childhood (p < 0.05). Skin 
& blood EAA appeared to better reflect cellular heter-
ogeneity, and was negatively correlated with % B cells, 
% CD4+ T cells, and % CD8+ T cells, and positively 

correlated with % neutrophils in early and mid-child-
hood (p < 0.05).

Associations of maternal-child characteristics 
with epigenetic age acceleration
Associations at birth: Associations of a priori selected 
variables of maternal age, pre-pregnancy BMI, education, 

Fig. 2 Pairwise relationships between chronological gestational age (GA), epigenetic gestational age (EGA), and epigenetic age (EA) at birth. EGA 
was estimated using the Bohlin and Knight clocks, and EA was estimated using the Horvath and skin & blood clocks in cord blood (N = 485). The 
upper panels show the Pearson’s correlation coefficient (r), p‑value (p), and median absolute error (MAE) between each pair of variables. The panels 
on the diagonal show the distributions of each variable. The lower panels show scatter plots of each pair of variables, with the linear trendline and 
95% CI plotted as a solid line and shaded area and the identity line plotted as a dashed line
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Fig. 3 Pairwise relationships between chronological age and epigenetic age (EA) in early mid‑childhood. EA was estimated using the Horvath and 
skin & blood clocks in early (N = 120) and mid‑childhood blood (N = 460). The upper panels show the Pearson’s correlation coefficient (r), p‑value 
(p), and median absolute error (MAE) between each pair of variables. The panels on the diagonal show the distributions of each variable. The lower 
panels show scatter plots of each pair of variables, with the linear trendline and 95% CI plotted as a solid line and shaded area and the identity line 
plotted as a dashed line

Fig. 4 Spearman correlations between cell type proportions estimated from DNAm data, chronological age, and epigenetic age acceleration. 
GA = gestational age; EGAA = epigenetic gestational age acceleration; EAA = epigenetic age acceleration; NK = natural killer; RBCs = red blood cells
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and prenatal smoking and newborn sex, preterm birth, 
birth weight for GA z-score, and self-reported race/eth-
nicity with EGAA and EAA at birth were tested using 
mutually adjusted robust linear models controlling for 
estimated cell type proportions (N = 484; Fig. 5 and Addi-
tional File 1: Table S3). Newborns born to mothers who 
reported smoking during pregnancy (vs. never smok-
ers) had higher but marginally significant skin & blood 
EAA [B (95% CI) = 1.17  weeks (−  0.09, 2.42)]. Female 
newborns had lower Bohlin EGAA [B (95% confidence 
interval,  CI) = −  0.17  weeks (−  0.30, −  0.04)] and Hor-
vath EAA [B (95% CI) = − 2.88 weeks (− 4.41, − 1.35)] 
compared to male newborns. Asian newborns had lower 
Knight EGAA [B (95% CI) = −  0.93  weeks (−  1.66, 
− 0.20)]; Black newborns had higher skin & blood EAA 
[B (95% CI) = 1.96  weeks (0.62, 3.30)]; and newborns in 
the mixed race/ethnicity group had higher Bohlin EGAA 
[B (95% CI) = 0.25 weeks (0.01, 0.49)] compared to White 
newborns.

Sensitivity analyses were performed without adjust-
ing for cell type proportions to evaluate if observed 
associations were influenced to variations in immune 
cell types that may be related to development. Overall, 
the directions of associations of maternal-child char-
acteristics with EGAA and EAA at birth remained con-
sistent (Additional File 1: Table  S3). However, female 
newborns had higher Knight EGAA than males [B 
(95% CI) = 0.27  weeks (0.03, 0.51)]. In addition, pre-
term newborns had significantly lower Bohlin [B (95% 
CI) = −  0.42  weeks (−  0.75, −  0.09)], Knight EGAA [B 
(95% CI) = −  0.54  weeks (−  1.02, −  0.07)], and skin & 
blood EAA [B (95% CI) = − 1.94 weeks (− 3.56, − 0.31)].

Results of sex-stratified analyses are in shown Addi-
tional File 1: Tables S4 and S5. Maternal pre-pregnancy 
BMI was associated with higher Bohlin EGAA among 
female newborns [N = 254; B (95% CI) = 0.20  weeks 
per 2 SD increase in BMI (0.02, 0.37)] but lower 

Knight EGAA among male newborns [N = 230; B (95% 
CI) = −  0.46  weeks (−  0.83, −  0.09)]. Models includ-
ing a sex × BMI interaction term suggest significant 
effect modification for Knight EGAA (Bohlin EGAA 
pinteraction = 0.46; Knight EGAA pinteraction = 0.024). Birth 
weight for GA z-score was positively associated with 
Horvath EAA only among male newborns [B (95% 
CI) = 1.16  weeks per 1 unit increase (0.10, 2.21)], but 
the interaction term was not statistically significant 
(pinteraction > 0.05). Sex-specific associations with mater-
nal smoking were also observed. Female newborns 
born to mothers who were former smokers (vs. never) 
had lower Bohlin EGAA [B (95% CI) = −  0.22  weeks 
(−  0.44, 0.00)], although there was not a significant 
sex × smoking interaction (pinteraction > 0.05). Male new-
borns born to mothers who reported smoking dur-
ing pregnancy (vs. never) had higher Knight EGAA [B 
(95% CI) = 0.67  weeks (0.24, 1.10)] with a significant 
sex × smoking interaction (pinteraction = 0.049).

Associations in early and mid-childhood: Associa-
tions of maternal-child characteristics with EAA in 
early (N = 119) and mid-childhood (N = 455) from 
mutually adjusted models controlling for cell type 
proportions are shown in Fig.  6 and Additional File 
1: Table  S6. Greater maternal educational attainment 
(college graduate vs. not) was associated with higher 
Horvath EAA [B (95% CI) = 0.34  years (0.04, 0.63)] 
and maternal smoking during pregnancy (vs. never) 
was associated with higher skin & blood EAA [B 
(95% CI) = 0.34  years (0.03, 0.43)] in early childhood. 
Children’s characteristics (sex, preterm birth, birth 
weight for GA z-score, and race/ethnicity) were not 
significantly associated with EAA in early childhood 
(p > 0.05). In mid-childhood, females had lower Hor-
vath EAA [B (95% CI) = − 0.48 years (− 0.77, − 0.18)] 
and children who were born preterm had lower skin & 
blood EAA [B (95% CI) = − 0.62 years (− 0.96, − 0.28)]. 

Fig. 5 Multivariable associations of maternal‑child characteristics with epigenetic gestational age acceleration (EGAA) and epigenetic age 
acceleration (EAAA) at birth. EGAA was estimated using the Bohlin and Knight clocks, and EAA was estimated using the Horvath and skin & blood 
clocks in cord blood (N = 484). Associations were evaluated using mutually adjusted robust linear regression controlling for estimated cell type 
proportions and reported in weeks
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In addition, Hispanic children had higher skin & blood 
EAA compared to White children in mid-childhood [B 
(95% CI) = 0.83 years (0.37, 1.30)].

Without cell type adjustment, associations of maternal-
child characteristics with EAA in childhood remained 
consistent overall (Additional File 1: Table S6). Associa-
tions of maternal education with Horvath EAA [B (95% 
CI) = 0.31  years (−  0.03, 0.65)] and maternal smok-
ing during pregnancy with skin & blood EAA [B (95% 
CI) = 0.26  years (−  0.01, 0.54)] in early childhood were 
attenuated.

In sex-stratified analyses, maternal smoking during 
pregnancy (vs. never) was associated with significantly 
higher early childhood skin & blood EAA only among 
female children [N = 58; B (95% CI) = 0.53  years (0.17, 
0.88)] (Additional File 1: Tables S7 and S8), although 
there was not a significant sex × smoking interaction 
(pinteraction > 0.05). In addition, preterm birth was associ-
ated lower Horvath EAA among female children in early 
childhood [B (95% CI) = −  0.59  years (−  1.14, −  0.04)] 
and among male children in mid-childhood [N = 237; B 
(95% CI) = −  0.63 (−  1.25, −  0.01)]. Interaction terms 
were not significant at either timepoint (pinteraction > 0.05).

Horvath epigenetic age at birth is associated 
with epigenetic age acceleration in childhood
Observing that Horvath EA was significantly associated 
with the other clocks at birth, although not with chrono-
logical GA, we hypothesized that Horvath EA captures 
aspects of biological age independent of chronological 
age. Horvath EA and EAA in at birth were highly cor-
related (N = 485; rPearson = 0.99; p < 0.001) due to the 
narrow range of chronological GA; therefore, we evalu-
ated associations of Horvath EA at birth with childhood 
EAA. In unadjusted robust linear models, higher Hor-
vath EA at birth was consistently associated with higher 
Horvath EAA and skin & blood EAA in early (N = 113) 
and mid-childhood (N = 238) (Fig.  7 and Additional 

File 1: Table  S9). Associations between Horvath EA at 
birth and Horvath EAA were similar in early [B (95% 
CI) = 0.03  years per week of Horvath EA at birth (0.02, 
0.05)] and mid-childhood [B (95% CI) = 0.04 years (0.02, 
0.07)]. On average, compared to a child at the 25th per-
centile of Horvath EA at birth, a child at the 75th per-
centile had 0.44 years higher EAA in early childhood and 
0.54  years higher EAA in mid-childhood. Associations 
between Horvath EA at birth and skin & blood EAA 
in childhood were positive but had a smaller effect size 
[early childhood B (95% CI) = 0.02 years (0.01, 0.03); mid-
childhood B (95% CI) = 0.01  years (0.00, 0.03)]. In fully 
adjusted models, we observed similar effect sizes (early 
childhood: N = 112; mid-childhood: N = 238; Additional 
File 1: Table S9).

Discussion
This study aimed to evaluate the performance and iden-
tify biological and sociodemographic correlates of two 
EGA clocks and two pan- or multi-tissue EA clocks at 
birth and during follow-up at two timepoints in child-
hood in the Project Viva pre-birth cohort. Estimates 
of Horvath and skin & blood EA were close to 0  years 
at birth, but weakly correlated with chronological GA. 
However, Horvath and skin & blood EA were moder-
ately correlated with chronological age in early and mid-
childhood. We observed significant associations between 
maternal-child characteristics and EAA, although rela-
tionships varied across clocks and ages. Maternal smok-
ing during pregnancy was associated with higher skin 
& blood EAA at birth and in early childhood. Child sex 
was most consistently associated with differential EGAA 
(female newborns having lower Bohlin EGAA) and EAA 
(female newborns and children having lower Horvath 
EAA). Associations of child race/ethnicity with EAA 
were also identified across clocks.

Bohlin and Knight EGA were significantly correlated 
with chronological GA at birth; however, Bohlin EGA 

Fig. 6 Multivariable associations of maternal‑child characteristics with epigenetic age acceleration (EAA) in early and mid‑childhood. EAA was 
estimated using the Horvath and skin & blood clocks in early (N = 119) and mid‑childhood blood (N = 455). Associations were evaluated using 
mutually adjusted robust linear regression controlling for estimated cell type proportions and reported in years
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had notably higher correlation (N = 485; Bohlin  rPear-

son = 0.82 vs. Knight rPearson = 0.58) and lower MAE (Boh-
lin MAE = 0.70 vs. Knight MAE = 1.07 weeks) relative 
to chronological GA. This observation is consistent with 
previous studies demonstrating better prediction of GA 
at birth using Bohlin EGA compared to Knight EGA 
[25–27, 29, 36]. Several factors in the development of the 
Knight clock may contribute to its lower performance, 
including training on GA determined by a combination 
of LMP, ultrasound, and clinician report [23] and poten-
tial overfitting due to the high ratio of CpGs included 
in this clock to training samples [37]. It should also be 
noted that although the development of the Knight clock 
included newborns of multiple ancestries, the training 
datasets included in both the Bohlin and Knight clocks 
were from predominantly White populations [22, 23], 
which may have affected performance among newborns 
in other race/ethnicity groups in our study.

Although the Horvath and skin & blood clocks were 
developed to estimate chronological age in a range of 

tissue types across the life course and included cord 
blood in training sets, these clocks were not optimized 
to estimate GA. For example, the training age for cord 
blood samples was set to 0  years for the Horvath clock 
[14]. However, it has previously been demonstrated that 
these clocks are correlated with GA in cord blood and 
blood spot samples (r = 0.15–0.65 for the Horvath clock 
and r = 0.18–67 for the skin & blood clock) [20]. In our 
study, the Horvath and skin & blood EA were positively 
but weakly correlated with GA. Performance of both 
clocks was similar at early- and mid-childhood, although 
Horvath EA had a lower MAE and skin & blood EA had a 
higher correlation with chronological age.

Children born prematurely (< 37 weeks gestation) had 
significantly lower EAA in childhood. Preterm birth 
was associated with lower skin & blood EAA among 
children overall in mid-childhood [N = 455; B (95% 
CI) = −  0.62  years (−  0.96, −  0.28)], Horvath EAA 
among female children in early childhood [N = 58; B 
(95% CI) = −  0.59  years (−  1.14, −  0.04)], and Horvath 

Fig. 7 Associations between Horvath epigenetic age (EA) at birth and epigenetic age acceleration (EAA) in early and mid‑childhood. Horvath 
EA was estimated using the Horvath clock in cord blood, and Horvath EAA was estimated using the Horvath clock in early (N = 113) and 
mid‑childhood blood (N = 238). Effect estimates and 95% Cis from robust linear regression evaluating associations between Horvath EA in cord 
blood and Horvath and skin & blood EAA shown in the top left and right panels (A–B), respectively. Scatter plots of Horvath EA in cord blood and 
Horvath and skin & blood EAA shown in the bottom left and right panels, respectively (C–D)
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EAA among male children in mid-childhood [N = 237; B 
(95% CI) = − 0.63 (− 1.25, − 0.01)]. In agreement with a 
previous study of EGAA [27], we also found that preterm 
birth was negatively associated with EGAA and EAA at 
birth without adjusting for estimated cell type propor-
tions. Preterm birth has previous been associated with 
lower height and weight in childhood, adolescence, and 
early adulthood [38–41], which may be reflected in epi-
genetic age biomarkers. In addition, greater variation in 
height, weight, and head circumference has been found 
among male children born prematurely compared to 
female children [39]. Although sex × preterm birth inter-
action terms were not statistically significant in our study, 
larger sample sizes are needed to determine if sex modi-
fies the effect of preterm birth on EAA in childhood.

We found evidence of associations between mater-
nal smoking during pregnancy and higher skin & blood 
EAA at birth [N = 484; B (95% CI) = 1.17 weeks (− 0.09, 
2.42) for smoking during pregnancy vs. never] and 
early-childhood [N = 119; B (95% CI) = 0.34  years (0.03, 
0.64)]. Prenatal maternal smoking has previously been 
associated with accelerated skin & blood aging in chil-
dren 6–11  years old in the Human Early-Life Expo-
some project, which found a similar effect size [B (95% 
CI) = 0.15  years for maternal prenatal smoking vs. not 
(0.02, 0.28)] [31]. Other studies have reported that mater-
nal smoking during pregnancy increases EGAA in pla-
centa [28], cord blood, and chorionic villus samples [29]; 
although, concordant with our results, null results have 
also been reported with Bohlin and Knight EGAA [27].

We observed evidence of sex-specific effects of mater-
nal pre-pregnancy BMI and smoking during pregnancy 
on EGAA, as well as significant associations of child sex 
with multiple EAA biomarkers. For measures of EGAA, 
females had lower Bohlin EGAA in models adjusted for 
cell type [N = 484; B (95% CI) = −  0.17  weeks (−  0.30, 
−  0.04)] but higher Knight EGAA in models with-
out cell type adjustment [B (95% confidence interval 
[CI]) = 0.27  weeks (0.03, 0.51)]. These effect estimates 
are small and the discrepancy in results may be due in 
part to the treatment of sex in the development of EGA 
clocks. Knight et  al. did not include sex as a covariate 
but reported EGA to be independent of sex [23], and 
Bohlin et  al. adjusted for sex in EWAS to select CpGs 
for inclusion in elastic net prediction models [22]. Our 
results may also indicate that sex-related Knight EGAA 
is influenced by extrinsic processes (i.e., dependent on 
developmental-related changes in immune cells) whereas 
Bohlin EGAA is more reflective of intrinsic processes 
(i.e., independent of cell type proportions). Female sex 
has been previously associated with higher Knight EGAA 
with similar effect sizes in adjusted analyses of two sepa-
rate birth cohorts as reported by Daredia et  al. [B (95% 

CI) = 0.45 weeks (0.15, 0.75)] [27] and Girchenko et al. [B 
(95% CI) = 0.30  weeks (0.05, 0.55) for EGAA calculated 
as epigenetic GA – chronological GA] [30]. Also consist-
ent with our analyses, Khouja et al. reported lower Bohlin 
EGAA among female newborns [25]. Additionally, among 
females, we found lower Horvath EAA at birth [N = 484; 
B (95% CI) = − 2.88 weeks (− 4.41, − 1.35)] and in mid-
childhood [N = 455; B (95% CI) = −  0.48  years (−  0.77, 
−  0.18)]. A previous study found no sex differences in 
Horvath EAA in children calculated from buccal DNAm 
[42]. However, analyses of cord and peripheral blood 
in the Avon Longitudinal Study of Parents and Chil-
dren (ALSPAC) cohort identified a negative correlation 
between female sex and Horvath EAA, which increased 
with age [43]. Similarly, in cord blood samples from the 
GOYA study, females had lower Horvath EAA at birth 
[B (95% CI) = − 3.12 weeks (− 4.68, − 1.56)] [43]. Lower 
Horvath EAA among females has also been found in 
adult populations [8], consistent with our findings.

Our study identified associations of child race/eth-
nicity with EGAA and EAA. Children’s race/ethnicity 
was reported by mothers and classified based on com-
monly used categories in epidemiology, which reflect 
aspects of cultural and social factors, racism, discrimina-
tion, and socioeconomic inequities [34]. In adults, racial 
and ethnic differences in EAA have also been observed, 
although associations differed in significance and direc-
tion between intrinsic and extrinsic measures [8]. As a 
socially defined construct, self-reported race/ethnicity is 
most likely a risk marker, rather than a risk factor [34], 
of differential EAA. Associations observed in our study 
may reflect upstream determinants of health and child 
development, including socioeconomic inequities and 
maternal or child experiences of structural racism and 
discrimination. Although we found limited evidence of 
associations of maternal age and education with EAA 
at birth or in childhood, prenatal socioeconomic status 
has been associated with DNAm levels at individual loci 
in Project Viva [44], and previous studies have reported 
accelerated epigenetic aging among adults with lower 
socioeconomic indicators [45, 46], neighborhood dep-
rivation [47], and social class in childhood [48, 49]. It 
should also be noted that interpretation of associations 
with race/ethnicity is limited in this study due to a popu-
lation with relatively high socioeconomic status (i.e., all 
mother–child pairs had health insurance), which may not 
be generalizable to other populations; a small number of 
children in the Hispanic and Asian categories, increasing 
the risk of bias; and inclusion of a “more than one race 
or other” category, which may mask variation within this 
group.

The clocks included in this study may capture aspects 
of both intrinsic and extrinsic developmental and aging 



Page 12 of 17Bozack et al. Clinical Epigenetics           (2023) 15:62 

processes. Intrinsic age is understood as being inde-
pendent of variation in cell type composition, par-
ticularly cellular subtypes known to change with age, 
whereas extrinsic age reflects processes related to the 
immune system and blood cell heterogeneity [50]. We 
observed correlations between estimated cell type pro-
portions and all EAA biomarkers, although associa-
tions were not consistent across clocks or timepoints. 
Although both Bohlin et al. and Knight et al. reported 
negligible effects on the performance of GA clocks with 
adjustment for cell type [22, 23], in our study, Knight 
EGAA was most strongly correlated with cell type and 
therefore may indeed capture immune cell changes 
related to fetal development. In addition, we found 
associations between cell type proportions and Hor-
vath EAA, a biomarker that performs well across tissue 
types and is considered to primarily measure intrinsic 
aging. As suggested by Horvath, our observed associa-
tions may be due to confounding by cell types that vary 
with age [14].

Overall, Horvath EA overestimated chronological GA 
and age in early and mid-childhood. Adding GA to child-
hood chronological age significantly reduced the MAE, 
suggesting that the Horvath clock begins “ticking” at con-
ception rather than at birth. Although the Horvath clock 
is trained on a transformed version of chronological age 
to account for more rapid changes in DNAm early in life 
[51] and is a robust tool to estimate age across the life 
course, it may be less precise in newborn and pediatric 
populations [52]. However, our observation also suggests 
that the Horvath clock may be capturing intrinsic age-
related changes to the methylome that begin with epi-
genetic reprogramming during embryogenesis. In fact, 
Ingenuity Pathway Analysis (IPA) of the CpGs included 
in the Horvath clock indicated enrichment for cellular 
growth and proliferation and organism, embryo, and tis-
sue development [14]. We also identified Horvath EA 
at birth as the most significant variable associated with 
Horvath EAA in childhood, suggesting that EA at birth 
strongly influences the rate of epigenetic aging or devel-
opment in early life. This apparent programming of epi-
genetic aging may be due in part to genetic factors, which 
have been shown to influence age-related changes in the 
methylome [53], while other factors (e.g., environmental 
exposures, lifestyle factors, epigenetic drift) may have an 
increasing effect on EAA over the life course. Horvath 
investigated heritability of aging in twin datasets from 
newborns and adults, finding 100% heritability of EAA at 
birth measured by Falconer’s formula in contrast to 39% 
heritability in older adults [14]. In our study, although 
associations were weaker, Horvath EA at birth was also 
significantly associated with skin & blood EAA in early 
and mid-childhood, despite minimal overlap in CpGs 

used to predict age between the clocks. These results 
provide evidence that common pleiotropic genetic vari-
ants are related to these biomarkers. A GWAS of intrinsic 
Horvath EAA found minimal co-localization of aging-
related SNPs and CpGs used to derive Horvath EA [54].

In adult populations, higher EAA is a predictor of 
a broad spectrum of aging-related outcomes includ-
ing frailty, cancer incidence, cancer and cardiovascu-
lar mortality, and all-cause mortality [9, 13, 16, 55–58]; 
whereas lower EA may be associated with longevity [59]. 
Our study focused on first-generation epigenetic clocks, 
which have been trained to predict chronological age. 
Second-generation clocks, i.e., clocks trained to pre-
dict aging-related physiological outcomes or risk scores, 
such as PhenoAge [56] and GrimAge [60], outperform 
first-generation clocks as predictors of mortality, health 
span, and morbidity [15, 56, 61, 62], However, these 
clocks were trained on adult samples [56, 60] and their 
training phenotypes may be less relevant for pediatric 
populations. There is some evidence that early life EAA 
from first-generation clocks is positively associated with 
developmental markers, which may have health implica-
tions later in life. In ALSPAC, Horvath EAA at birth was 
positively associated with fat mass throughout childhood 
and adolescence [B (95% CI) = 1321  g per year of EAA 
(386, 2256)] and EAA at 7 years was positively associated 
with height [B (95% CI) = 0.23 cm per year of EA (0.04, 
0.41)] [17]. In adolescents, greater Horvath EAA has also 
been associated with earlier pubertal development [18, 
19]. Epigenetic clocks developed to predict age across the 
lifespan and those developed to predict GA may be dis-
tinct biomarkers relative to fetal development and devel-
opmental trajectories. Although EGAA has also been 
positively associated with measures of developmental 
maturity in newborns, including birth weight, length, and 
head circumference [25, 26, 29], the association between 
EGAA and development may reverse in childhood, as 
suggested by a longitudinal analysis in ALSPAC finding 
a negative association between EGAA and weight after 
age 5 [26]. Other studies, however, have found a null [27] 
or inverse association [30] between EGAA and devel-
opmental indices at birth, although comparison across 
studies may be impacted by methodological differences 
including adjustment for cell type proportions and use of 
raw differences, rather than residuals, to calculate EGAA. 
These results highlight that study of the early life EAA/
EGAA and development is a relatively nascent area of 
research, and further studies are needed to fully under-
stand the relationship between epigenetic clocks and 
health in pediatric populations.

Strengths of this study include our ability to lever-
age DNAm data collected at multiple ages from a well-
established pre-birth cohort. Cord blood and blood 
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collected at early and mid-childhood represent impor-
tant developmental stages that may be differentially 
responsive to prenatal biological, socioeconomic, and 
environmental factors. To our knowledge, few studies 
have examined EAA across multiple early-life stages 
[36]. Although our analyses were cross-sectional and 
a limited number of mother–child pairs had data at all 
three timepoints (N = 59), there were not significant 
differences between mother–child pairs with data at all 
three timepoints and pairs with data at birth. Our study 
was also strengthened by calculating EA using multiple 
clocks developed to estimate GA in cord blood (Boh-
lin and Knight clocks) and chronological age across 
the lifespan (Horvath and skin & blood clocks), which 
allowed us to compare characteristics associated with 
early life epigenetic aging across multiple biomarkers.

Our study had several limitations. Chronological GA 
was calculated using LMP or ultrasound if data were 
available and if ultrasound estimates differed from LMP 
GA estimates by > 10  days. Although we do not expect 
this method to introduce systematic bias, it may decrease 
precision relative to the gold standard of GA determined 
by ultrasound [63]. DNAm was not measured in all Pro-
ject Viva participants and was restricted to participants 
with proper consent for genetic and epigenetic analyses 
and available samples with sufficient quantity. Although 
this limited our samples size, we do not believe that avail-
able data would bias results. Our relatively small sample 
size reduced our power to detect small effect sizes and 
sex-specific effects. Given the discovery nature of this 
study, we chose not to adjust for multiple comparisons 
(i.e., multiple EGAA or EAA outcomes) to allow us to 
identify associations that may be validated in larger stud-
ies. Analyses of early and mid-childhood EAA were lim-
ited to associations with prenatal factors; environmental 
exposures and socioeconomic status during childhood 
may act to amplify or reverse the effects of prenatal fac-
tors, a topic that should be further explored. Further-
more, our interpretation of findings was impacted by 
the limitations of available epigenetic clocks. Although 
the Bohlin, Knight, Horvath, and skin & blood clocks 
are commonly used in epidemiological studies including 
ethnically diverse and pediatric populations [52], racial/
ethnic differences in epigenetic aging are not fully under-
stood [8], and these clocks may introduce bias when 
applied to multi-ethnic cohorts. In addition, few clocks 
have been developed specifically for the pediatric popula-
tion [52], and existing clocks are trained on chronological 
age, making it difficult to interpret the biological or clini-
cal significance of variation in EAA. Integrating age with 
age and disease-related biomarkers has produced clocks 
that are highly predictive of health outcomes in adults 
[15]; similar approaches may advance the development 

of epigenetic biomarkers of development in the pediatric 
population.

Conclusion
This study provides evidence that sex, self-reported race/
ethnicity, and factors impacting the intrauterine environ-
ment, particularly maternal smoking during pregnancy, 
may be associated with EAA at birth and in childhood. 
However, the limited consistency of findings across bio-
markers suggests that each clock captures unique aspects 
of biological development and aging. By examining the 
Horvath clock at multiple timepoints, we observed that 
this clock may start “ticking” prior to birth, and that that 
Horvath EA at birth is strongly associated with EAA in 
childhood, which may be driven by genetic factors and 
fetal programming. Further research is needed to fully 
understand the complex relationship between the bio-
logical and sociodemographic correlates of these epige-
netic biomarkers and health across the lifespan, as well as 
to develop pediatric epigenetic clocks suitable for diverse 
populations.

Methods
Study design
We leveraged data from Project Viva, a longitudinal pre-
birth cohort designed to examine associations between 
maternal diet, environmental factors, and maternal and 
child health [64]. In brief, between 1999 and 2002, we 
recruited pregnant women from Atrius Harvard Van-
guard Medical Associates, a group practice in Eastern 
Massachusetts, US. At their initial obstetric visit (median 
gestation: 9.9  weeks), participants were screened by 
research staff. Participants were excluded if they had a 
multiple gestation, were ≥ 22  weeks gestation, were not 
English speaking, or planned to move out of the study 
area prior to delivery. A total of 2670 pregnancies (64% 
of those screened) were enrolled, and 2128 live births 
remained in the cohort at the time of delivery.

Study visits were conducted by research assistants at 
enrollment in early pregnancy, mid-pregnancy, hospital 
birth admission, infancy, and early and mid-childhood 
(median child age = 3.2 years and 7.7 years, respectively). 
All mothers provided written informed consent at enroll-
ment and at childhood visits. Biospecimen collection 
protocols were designed to minimize discomfort and 
inconvenience for children and mothers. All study pro-
tocols were approved by the Institutional Review Board 
(IRB) at Harvard Pilgrim Health Care (IRB reference # 
235,301).
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Biospecimen sample collection, processing, and DNA 
methylation analysis
At delivery, clinical staff were prompted to collect cord 
blood samples using paper or electronic “flags” on moth-
ers’ charts. Clinicians collected cord blood from the 
umbilical vein using a syringe and needle. Blood samples 
were collected from children at the early and mid-child-
hood visits. Within 24  h of collection, cord blood and 
childhood blood samples were centrifuged at 1700 × g for 
10 min at 4 °C to separate plasma, red blood cells (RBCs), 
and  nucleated cells used for measurement of DNAm 
(leukocytes and nRBCs in cord blood, and leukocytes in 
childhood blood).

DNAm was measured in all participants with proper 
consent for genetic and epigenetic analyses and suffi-
cient sample quantity. Quantification of DNAm has been 
detailed previously [65]. Research staff extracted genomic 
DNA from nucleated cells using the PureGene kit (Qia-
gen, Valencia, CA) and stored sample aliquots at – 80 °C 
until analysis. DNA was bisulfite converted with the 
Zymo DNA Methylation kit (Zymo Resarch, Irvine, CA). 
DNAm was analyzed at Illumina, Inc. with the Illumina 
450K Beadchip (Illumina, San Diego, CA), which inter-
rogates > 485,000 methylation sites. To minimize batch 
effects, 1 μg of DNA from each sample was randomized 
across plates and BeadChips.

Data processing
We processed DNAm data using the R package minfi 
[66]. We excluded samples based on the following crite-
ria: duplicate samples, low individual call rates (< 0.98), 
and genotyping or sex mismatch. Background correc-
tion and dye-bias equalization was performed using the 
normal-exponential out-of-band method (noob) [67], 
and probe-type normalization was performed using the 
beta-mixture quantile method (BMIQ) [68]. Combat in 
the sva package [69] was applied to adjust for variability 
associated with plate and scanner. We estimated cell type 
proportions using Houseman’s method based on regres-
sion calibration [70] implemented in minfi with reference 
panels derived from nucleated cord blood cells [71] (to 
estimate B cell, CD4+ T cell, CB8+ T cell, granulocyte, 
monocyte, NK cell, and nRBC proportions) or adult leu-
kocytes [72] (to estimate B cell, CD4+ T cell, CB8+ T 
cell, neutrophil, monocyte, and NK cell proportions).

Covariates
We collected maternal sociodemographics, smoking 
habits before and during pregnancy, and self-reported 
pre-pregnancy weight and height using self-adminis-
tered questionnaires and interviews. We asked moth-
ers to report their child’s race/ethnicity, and classified 
responses as “White”, “Black”, “Hispanic”, “Asian”, “more 

than one race”, and “other”. For the current analyses, 
“more than one race” and “other” were combined due 
to low sample sizes in these categories. Pre-pregnancy 
BMI in kg/m2 was calculated from self-reported weight 
and height. We estimated chronological GA using moth-
ers’ last menstrual period (LMP) reported at enrollment. 
If GA assessed by ultrasound was available and differed 
from LMP estimates by more than 10  days, the value 
derived from ultrasound was used [64]. We calculated 
sex-specific birth weight for GA z-scores using a US 
national reference [73].

Data analysis
For cord blood samples, we estimated Bohlin EGA using 
the Gaprediction package [22], which is based on a model 
trained on GA estimated with ultrasound. We set the 
Lasso penalty parameter to be the minimum lambda, 
which uses 251 CpGs, as this method minimized the 
MAE between estimated and chronological GA in our 
data. We also estimated EGA using Knight et al.’s method 
implemented with normalization using R code provided 
with the publication [23]. For both clocks, EGAA was 
calculated as the residuals of regressing EGA on chrono-
logical GA. For cord blood and early and mid-childhood 
blood samples, we calculated EA with the Horvath clock 
[14] and the skin & blood clock [20] using Horvath’s new 
online calculator with normalization (http:// dnama ge. 
genet ics. ucla. edu/). The online calculator also provides 
calculations of EAA using the residual method for each 
clock. A summary of the clocks used in these analy-
ses, including the training sets and number of CpGs, is 
included in Additional File 1: Table S10. The number of 
CpGs common overlapping between the clocks were: 
Horvath and skin & blood: 60 CpGs; Knight and Hor-
vath: 6; Bohlin and Knight: 2; Bohlin and skin & blood: 1 
(Additional File 1: Figure S2).

We evaluated the performance of each DNAm clock 
by calculating Pearson correlations and MAE between 
estimated and chronological age. To evaluate perfor-
mance of the Horvath clock and skin & blood clock at 
birth, we converted GA in weeks to years [(gestational 
week – 39)/52], as previously applied by Horvath et  al. 
[20]. We also calculated Spearman correlations between 
EGAA and EAA at birth and mid-childhood using Spear-
man correlations. Descriptive statistics of covariates were 
calculated as the mean and SD for continuous variables, 
and frequency and proportion for categorical variables. 
We evaluated differences between mother–child pairs 
with data at all three timepoints (birth, early childhood, 
and mid-childhood, N = 59) and pairs with data at birth 
(N = 485) using the Mann–Whitney test for continuous 
variables and the Chi-squared test or Fisher’s exact test 
for categorical variables.

http://dnamage.genetics.ucla.edu/
http://dnamage.genetics.ucla.edu/
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Spearman correlations were calculated between esti-
mated blood cell type proportions and chronological age, 
EGAA, and EAA. Associations of maternal-child charac-
teristics and EGAA or EAA were analyzed using robust 
linear models to reduce the influence of extreme values. 
Models were evaluated using the rlm function in the 
MASS package [74] in R with the M estimator. We cal-
culated p-values and 95% CIs using the lmtest package 
[75] implemented with the vcovHC covariance matrix 
estimation function with White’s estimator [76] from 
the sandwich package [77, 78]. In cord blood samples, 
associations with Bohlin EGAA, Knight EGAA, Horvath 
EAA, and skin & blood EAA were tested; in early and 
mid-childhood blood samples, associations with Horvath 
EAA and skin & blood EAA were tested. The following 
maternal-child characteristics were selected a priori and 
evaluated as independent variables in mutually adjusted 
models: maternal age at enrollment, pre-pregnancy BMI, 
education (college graduate vs. not), and self-reported 
maternal smoking (former smoker or smoking during 
pregnancy vs. never smoker) and child sex, preterm birth, 
birth weight for GA z-score, and self-reported race/eth-
nicity (Black, Hispanic, Asian, more than one race/other 
vs. White). For interpretation of effect estimates, mater-
nal age and pre-pregnancy BMI were mean centered and 
scaled by dividing by 2 × the standard deviation [79]. 
Variation in cell type proportions may be a confounder 
of the association between maternal-child characteristics 
and EAA, or EAA may capture age-related changes in 
immune cell proportions. Therefore, models were evalu-
ated with and without including estimated blood cell 
type proportions as potential confounders. We evaluated 
effect modification by child sex using stratified analy-
ses and interaction terms in mutually adjusted models 
including cell type estimates. In addition, associations 
between Horvath EA at birth and EAA in early and mid-
childhood were evaluated in robust linear models.

Statistical significance was evaluated using an unad-
justed p-value with an alpha threshold of < 0.05. We con-
ducted analysis using R version 4.1.2 [80].
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