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Epigenetically regulated gene expression 
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with prognostic and therapeutic implications 
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Abstract 

Background Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract which seriously 
endangers the health of human beings worldwide. Transcriptomic deregulation by epigenetic mechanisms plays 
a crucial role in the heterogeneous progression of GC. This study aimed to investigate the impact of epigenetically 
regulated genes on the prognosis, immune microenvironment, and potential treatment of GC.

Results Under the premise of verifying significant co-regulation of the aberrant frequencies of microRNA (miRNA) 
correlated (MIRcor) genes and DNA methylation-correlated (METcor) genes. Four GC molecular subtypes were identi-
fied and validated by comprehensive clustering of MIRcor and METcor GEPs in 1521 samples from five independent 
multicenter GC cohorts: cluster 1 was characterized by up-regulated cell proliferation and transformation pathways, 
with good prognosis outcomes, driven by mutations, and was sensitive to 5-fluorouracil and paclitaxel; cluster 2 
performed moderate prognosis and benefited more from apatinib and cisplatin; cluster 3 was featured by an up-
regulated ligand–receptor formation-related pathways, poor prognosis, an immunosuppression phenotype with 
low tumor purity, resistant to chemotherapy (e.g., 5-fluorouracil, paclitaxel, and cisplatin), and targeted therapy drug 
(apatinib) and sensitive to dasatinib; cluster 4 was characterized as an immune-activating phenotype, with advanced 
tumor stages, benefit more from immunotherapy and displayed worst prognosis.

Conclusions According to the epigenetically regulated GEPs, we developed four robust GC molecular subtypes, 
which facilitated the understanding of the epigenetic mechanisms underlying GC heterogeneity, offering an opti-
mized decision-making and surveillance platform for GC patients.
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Background
As a common malignant tumor with a poor progno-
sis, gastric cancer (GC) ranks fifth in morbidity and 
fourth in mortality among all cancers [1]. Despite the 
continuous innovation of precision medicine and indi-
vidualized diagnosis and treatment of GC, the long-
term survival rate of GC patients is still not optimistic 
[2]. Over the past few decades, the treatment of GC 
based on TNM staging and histological phenotype has 
significantly improved the survival of GC patients [3]. 
However, under the same treatment regimen, patients 
with the same histopathology type and stage tend to 
exhibit significantly different prognoses and treatment 
responses, indicating the limitations of current classi-
fication systems in addressing individual heterogene-
ity. The emergence of molecular classification based on 
gene expression holds promise for the individualized 
treatment of GC patients. Based on intrinsic genetic 
alterations, several classic molecular subtypes such as 
TCGA and Asian Cancer Research Group classifica-
tions were developed [4], demonstrating that based on 
GEPs, the dramatic potential of novel molecular classi-
fication is an effective tool for GC stratification.

Epigenetic alterations such as DNA methylation and 
miRNA regulation have been widely demonstrated to 
play critical roles in regulating gene expression and 
histological phenotypic variation [5, 6]. Aberrant DNA 
methylation as well as miRNAs had been shown to 
contribute to GC development, especially promoter 
hypermethylation and abnormal expression of miRNA, 
which could silence antioncogenes and thus contribute 
to tumorigenesis [7, 8]. Currently, molecular subtypes 
of GC based on DNA methylation regulation have been 
developed, and the potential of miRNA expression pro-
files for GC classification has been also demonstrated 
[9, 10]. However, it is still unclear whether epigenetic 
regulation of miRNAs and DNA methylation play a 
synergistic role in GC development, and if so, whether 
this role contributes to the classification of GC.

This study demonstrated the co-regulatory mecha-
nism of miRNA expression and DNA methylation. 
Based on the integrated miRNA expression and DNA 
methylation profiles, we developed four molecular sub-
types with significant differences in clinical traits and 
molecular features via an integrated clustering algo-
rithm. Further validation in four independent multi-
center cohorts demonstrated the stability of these four 
epigenetic-driven GC molecular subtypes. In addi-
tion, the correlations between our classifications and 
clinical traits, published classifications, epigenetic and 
genomic features, immune landscape and immuno-
therapy response, and potential therapeutics were also 
investigated.

Materials and methods
Data collection
Figure 1 summarizes the workflow of our study. A total 
of 1521 GC samples in five independent datasets, includ-
ing GSE84433 (n = 357), GSE84437 (n = 433), GSE26901 
(n = 109), GSE62254 (n = 300), and TCGA-STAD 
(n = 322), were systematically retrieved from the Gene 
Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. 
gov/) and TCGA (http:// cance rgeno me. nih. gov/) data-
bases, respectively. From the TCGA GDC database, 
DNA methylation (HumanMethylation 450), miRNA 
expression, and somatic mutation data were downloaded. 
Copy number variations (CNVs) were retrieved from 
FireBrowse (http:// fireb rowse. org/) using the Genomic 
Identification of Significant Targets in Cancer 2.0 (GIS-
TIC2.0) algorithm [11]. Genes with deletion values above 
20% were removed from the mRNA expression matrix 
and the normalized data of FPKM was further processed 
in the form of log2 (TPM + 1). Additional file 2: Table S1 
contains the baseline data for the five cohorts. In addi-
tion, six immunotherapy cohorts including GSE67501, 
GSE100797, GSE136961, GSE111636, GSE140901, 
and GSE91061 were collected to predict the immune 
response capabilities of distinct GC subtypes.

Screening and extraction of METcor and MIRcor genes
DNA methylation-correlated (METcor) and microRNA-
correlated (MIRcor) genes were screened as follows: for 
METcor genes, based on 396,065 methylated CpG sites 
and 16,878 expressed mRNAs in TCGA-STAD dataset, 
76,710 CpG sites were paired with 11,475 mRNAs, and 
a total of 76,710 CpG-mRNA pairs were obtained. For 
MIRcor genes, 938,564, 322,135, and 21,265,143 inter-
acting miRNA-mRNA pairs in three databases includ-
ing miRDB, miRTarBase, and TargetScan were screened, 
respectively [12–14]. 36,398 pairs of interacting miRNAs 
(n = 1871) and mRNAs (n = 6556) were further acquired 
after taking the intersection with the TCGA cohort.

(1) Next, the Pearson correlation coefficients of CpG 
sites and miRNAs with the corresponding regula-
tory genes were calculated and the coefficients were 
further transformed by the Fisher Z-transformation 
method to stabilize the variance.

(2) Although we did not observe a significant negative 
correlation phenomenon similar to CpG-mRNA 
among miRNA-mRNA pairs (Additional file 1: Fig. 
S1A), the negatively correlated miRNA-mRNA 
pairs were only retained for the following reasons: 
(i) generally, miRNAs negatively regulate down-
stream gene expression. In the process of cancer 
development and progression, microRNAs can pro-

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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http://firebrowse.org/
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mote cancer development by repressing the expres-
sion of tumor suppressor genes and halt the growth 
of cancer by inhibiting the translation of mRNAs 
produced by oncogenes [8]. (ii) In vitro experiments 
have revealed that miRNAs can promote gene 
expression [15], but this phenomenon has not been 
widely verified in  vivo experiments. (iii) A major-
ity of databases available for predicting miRNA-
mRNA interactions have been created based on 
the fact that miRNAs may combine with genetic 
elements targeting mRNAs (usually in the 3! UTR) 
to regulate gene expression. Apparently, accurately 
predicting positive miRNA-mRNA pairs is pres-
ently challenging. Finally, with reference to previ-
ous studies, based on Fisher Z-transformed correla-

tion coefficients with 95% confidence interval lower 
bounds, 803 METcor genes and 669 MIRcor genes 
were identified (< − 1.96, P < 0.05) [16].

Identification of GC epigenetic regulatory subtypes 
and screening for signature genes
Based on 803 METcor and 669 MIRcor gene expres-
sion matrix, integrated clustering was performed using 
the iClusterBayes method to identify GC subtypes, 
which was implemented via the iClusterPlus R package. 
The optimal number of clusters driven by GC epige-
netic genes was determined to be 4 according to Bayes-
ian information criterion (BIC) and deviation ratio plot 
(Additional file 1: Fig. S1B). Subsequently, to screen the 

Fig. 1 The flowchart of this study (Created with BioRender.com). The construction of molecular subtypes of GC driven by epigenetic 
regulation-related genes and the analysis of GC subtypes in terms of prognosis, functional analysis, clinical features, correlation with previously 
published subtypes, and further exploration of the immune landscape, immunotherapeutic potential, multi-omics alterations, and drug treatment 
differences of GC subtypes
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characteristic genes of distinct subtypes, with the help of 
the limma package, gene expression differential analysis 
was carried out [17]. Genes were arranged in descending 
order of log2 fold change. Considering that overfitting 
and underfitting may lead to the instability of GC sub-
types, the top 500 differential genes of each subtype were 
selected as subtype characteristic genes.

Validating the robustness of GC epigenetic subtypes
To evaluate the robustness of our epigenetic subtypes, 
nearest template prediction (NTP), an algorithm that 
predicts sample type based on characteristic genes was 
employed in four independent GEO cohorts (including 
GSE84433, GSE84437, GSE26901, GSE62254) to identify 
GC subtypes [18]. Besides, the subclass mapping (Sub-
Map) algorithm was utilized to investigate the similar-
ity of classifications in distinct gene expression profiles 
(GEPs) [19], further confirming the accuracy of our sub-
types. Notably, both P-value and adjusted P-value < 0.05 
were regarded as significant for subtypes similarity.

Gene functional enrichment analysis
Functional enrichment analysis based on the clusterPro-
filer package was carried out to investigate the underlying 
biological mechanisms of the GC subtypes. The MSigDB 
database was used to source the gene sets used for anno-
tation, which included 9997 gene sets (186 KEGG gene 
sets, 292 Biocarta gene sets, 7658 GO biological process 
gene sets, 196 PID gene sets, 1615 Reactome gene sets, 
and 50 cancer hallmark gene sets).

Collection of published molecular subtypes of GC
To assess potential links between our epigenetic subtypes 
and traditional classifications, four conventional molecu-
lar subtypes of GC were systematically retrieved, includ-
ing Chen et  al. long-noncoding RNA (lncRNA)-based 
subtype (a method to classify GC by integrating tumor-
specific lncRNA expression profiles, including three sub-
types lncSubtype1, lncSubtype2, and lncSubtype3, which 
have different clinical and multi-omic features) [20], 
microsatellite status including microsatellite instability 
(MSI)- high (H), MSI- low (L), and microsatellite stabil-
ity (MSS), CpG island methylation phenotype (CIMP) 
including CIMP-H, CIMP-Epstein–Barr Virus (EBV), 
colorectal cancer (CRC) CIMP-L, gastroesophageal 
adenocarcinomas (GEA) CIMP-L, and non-CIMP and 
molecular subtypes from TCGA study including chro-
mosomal instability (CIN), EBV, genomic stability (GS), 
hypermutated single nucleotide variants (HM-SNV), and 
MSI [21, 22].

Immune landscape of GC epigenetic subtypes
The single-sample gene-set enrichment analysis 
(ssGSEA) algorithm developed in the GSVA package 
was utilized to analyze the infiltration abundance of 28 
immune cells to define the immunological landscape of 
the four subtypes [23]. In addition, to confirm the stabil-
ity of the ssGSEA results, the remaining six immune cell 
infiltration assessment methods (including EPIC, ESTI-
MATE, MCPcounter, Quantiseq, TIMER, and xCell) 
were further performed [24]. Apart from that, to explore 
the expression differences of immune checkpoints (ICPs) 
for different subtypes, the expression of 27 ICPs includ-
ing TNF family, B7 family, and other molecules for each 
sample were extracted from the TCGA cohort [25–27].

Assessment of immunotherapy response in GC subtypes
To explore immunotherapy responses in patients with 
different subtypes, six immunotherapy cohorts includ-
ing GSE67501, GSE100797, GSE136961, GSE111636, 
GSE140901, and GSE91061 were collected. SubMap algo-
rithm was utilized to analyze the resemblance between 
the TCGA cohort and the GEO immunotherapy datasets 
to distinguish subtypes with a better immunotherapeutic 
response. In addition, some immune-related indicators 
were systematically collected and calculated, including 
tumor immune dysfunction and exclusion (TIDE) [28, 
29], and cancer immunity cycle (CIC) [30].

Mutation landscape and CNVs in each subtype
To explore differences in the multi-omics landscape 
between epigenetic subtypes, we further mined the rep-
resentation of different subtypes in mutations and CNVs, 
as well as the associations between specific mutational 
signatures and our subtypes [31]. TMB was employed to 
assess DNA mutations per mega-byte (Mut/Mb) in GC 
via Maftools package. A waterfall plot of the top 20 most 
frequently mutated genes was visualized by Maftools and 
ComplexHeatmap packages. The top 20 amplified (AMP) 
and homozygous deletion (HOMDEL) chromosomal 
regions were visualized using the ComplexHeatmap 
package to reveal chromosomal alterations across differ-
ent subtypes.

Drug susceptibility analysis for each subtype
With reference to the study methodology of Yang et  al. 
[32], we developed potentially sensitive drugs for each 
subtype. Drug susceptibility information for GC was 
downloaded from the Cancer Treatment Response Por-
tal (CTRP) (https:// porta ls. broad insti tute. org/ ctrp. 
v2.1/) and PRISM (https:// depmap. org/ portal/) websites. 
Hematopoietic and lymphoid tissue cell lines were elimi-
nated and 266 therapeutic agents in 658 cell lines from 

https://portals.broadinstitute.org/ctrp.v2.1/
https://portals.broadinstitute.org/ctrp.v2.1/
https://depmap.org/portal/
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CTRP, as well as 1285 therapeutic agents in 474 cell lines 
from PRISM, were further obtained. Subsequently, based 
on the pRRophetic package, a ridge regression model was 
employed to evaluate the drug sensitivity for each sample, 
and the AUC (area under the dose–response curve) value 
was used as an indicator of the sensitivity. Greater drug 
sensitivity is reflected by a lower AUC value. K-nearest 
neighbor (k-NN) algorithm was conducted to fill in the 
missing values of the AUC matrix (drugs with more than 
20% missing values were removed before processing).

Subtype-specific drugs were screened based on the 
following criteria: the average AUC of each subtype of 
compounds was defined as a (corresponding to C1), b 
(corresponding to C2), c (corresponding to C3), and d 
(corresponding to C4), respectively, and when log2 (b/a), 
log2 (c/a), and log2 (d/a) were all > 0.05, this drug was 
considered as a potential drug for C1. Furthermore, some 
chemotherapy and targeted therapy drugs commonly 
used in clinical practice including 5-fluorouracil (5-FU), 
cisplatin, paclitaxel, and apatinib were collected to inves-
tigate the variations in sensitivity of distinct subtypes.

Statistical analysis
In this study, the statistical analyses were completed 
based on R software (version 4.1.1). Pearson’s Chi-square 
test or Fisher’s exact test was employed to analyze cat-
egorical variables, while the Kruskal–Wallis rank-sum 
test or t test was performed to evaluate the variations 
between continuous variables and prior to testing, the 
Shapiro–Wilk method was utilized to check the normal-
ity of the variables. The survival differences among sub-
types were assessed by Kaplan–Meier analysis with the 
log-rank test and multivariate Cox regression analyses 
in the survival and survminer packages. Pearson corre-
lation was used to assess the strength of the linear rela-
tionship between two variables. A two-tailed P < 0.05 was 
regarded as statistically significant.

Results
Identification and comprehensive analysis of METcor 
and MIRcor genes
803 METcor (Additional file  2: Table  S2) and 669 MIR-
cor genes (Additional file  2: Table  S3) were screened 
out according to the above steps. Notably, only 32 genes 
(Additional file  2: Table  S4) overlapped in METcor and 
MIRcor genes (Fig.  2A), suggesting unique mechanisms 
of DNA methylation and miRNAs in regulating gene 
expression. In addition, DNA methylation occurred 
more frequently in islands and transcription start site 
200 (TSS200) compared to all probes, suggesting that 
it is more probable that methylation in these regions 
will contribute to the regulation of mRNAs (Fig. 2B, C). 
Functional enrichment analysis revealed that METcor 

genes were significantly involved in organ development, 
metabolism of sulfur-containing compounds and fatty 
acids, and glutathione conjugation reactions (P < 0.05, 
Fig.  2D). While MIRcor genes were overrepresented in 
cancer-related pathways, epithelial–mesenchymal tran-
sition, cell proliferation–adhesion–migration, and tissue 
development (P < 0.05, Fig.  2E). The distinct functional 
enrichment results revealed that they were involved in 
regulating dramatically different biological processes.

To investigate the correlation between the METcor 
and MIRcor genes aberrations, we ranked the expres-
sion of METcor and MIRcor genes in each sample from 
low to high, with genes located in the top 25% defined 
as low expression and those located in the bottom 25% 
defined as high expression. Notably, frequently abnormal 
MIRcor gene patients tend to exhibit frequent aberration 
of the METcor genes. (Cor = 0.610, P < 0.001, Fig.  2F). 
Meanwhile, in the pairwise comparison of METcor and 
MIRcor genes, it was found that there was a substantial 
correlation between the expressions of the METcor and 
MIRcor genes at high and low levels (Fig. 2G), implying 
that DNA methylation and miRNA expressions co-regu-
lated the expressions of downstream genes in GC.

Integrative clustering identified four GC subtypes
Under the premise of verifying the cooperative regula-
tion of METcor and MIRcor genes, we performed the 
iClusterBayes algorithm to integrate METcor and MIR-
cor GEPs for cluster analysis. Ultimately, four subtypes 
were identified with cluster 3 (C3, n = 48) and cluster 4 
(C4, n = 103) displaying higher METcor and MIRcor gene 
expression preferences compared to cluster 1 (C1, n = 98) 
and cluster 2 (C2, n = 73) (Fig.  3A). In addition, among 
four subtypes, C4 showed the worst prognostic outcome 
while C1 was the best (P = 0.0158, Fig. 3B). Subsequently, 
we explored the different expression patterns of METcor 
and MIRcor genes in distinct subtypes and found that in 
terms of frequency of occurrence, they appeared with 
the highest frequency in C3 subtype, while C4 displayed 
the lowest overall frequency among the GC subtypes 
(P < 0.05, Additional file  1: Fig. S1C). The frequencies 
of METcor_high and MIRcor_high genes in subtype C3 
were the highest while the frequencies of METcor_low 
and MIRcor_low genes were the lowest among the four 
subtypes. (P < 0.0001, Additional file 1: Fig. S1D, E).

Comprehensive validation of GC subtypes
To assess the accuracy and robustness of our classifica-
tions, the NTP algorithm was employed to forecast the 
clusters of GC samples in four independent GEO cohorts 
based on the feature genes of each subtype which were 
summarized in Additional file 2: Table S5. Highly similar 
to the categorization results of the TCGA-STAD cohort, 
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all cohorts were precisely classified into four subtypes 
(Additional file  1: Fig. S2A–D). Consistently, survival 
differences among GC subtypes were verified in four 

GEO cohorts, with C4 performing the worst prognosis. 
(Fig. 3C–F). SubMap analysis displayed that the subtypes 
in four GEO cohorts were in significant concordance 

Fig. 2 Screening of METcor and MIRcor genes in TCGA-STAD. A Overlap of the METcor and MIRcor genes. B, C Proportional frequency of promoter 
CpG sites based on their distance relative to CpG islands and genomic positions, respectively. Shore, 0–2 kb upstream or downstream from CpG 
island; Shelf, 2–4 kbp upstream or downstream from CpG island; Opensea, other regions of the genome. D, E Functional enrichment analysis of 
the METcor and MIRcor genes. F Correlation between the frequencies of aberrant METcor and MIRcor genes in each sample of the TCGA dataset. G 
Pairwise correlations among the frequencies of METcor_high, METcor_low, MIRcor_high and MIRcor_low genes, respectively
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Fig. 3 Identification and validation of GC subtypes by integrated clustering using METcor and MIRcor genes. A Heatmap shows the expression 
patterns of METcor and MIRcor genes of GC subtypes identified by integrated clustering. B Kaplan–Meier (K–M) survival curves for the GC subtypes 
of the TCGA cohort are shown for overall survival (OS). C–F K–M survival curves for the GC subtypes of the GEO cohorts (GSE84433, GSE84437, 
GSE26901, GSE62254) are shown for OS, respectively. G SubMap analysis reveals a significant correlation of gene expression profiles between GC 
subtypes of TCGA and GEO datasets
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with those in the TCGA-STAD cohort (Fig.  3G). These 
aforementioned findings validated the stable perfor-
mance of our epigenetically driven GC subtypes.

Molecular characteristics of GC subtypes
To decipher the distinct biological characterization of 
GC subtypes, enrichment analysis was performed in 
TCGA-STAD cohort and revealed remarkable functional 
differences among the four molecular subtypes (P < 0.05, 
Fig. 4A–D). Specifically, C1 was mainly involved in DNA 
replication, cell cycle regulation, and cell division, which 
suggested that C1 might possess a tight association with 
cell proliferation and differentiation (Fig.  4A). Histone 

and DNA modifications and activated PKN1-stimulated 
processes such as transcription of the AR (androgen 
receptor) regulatory genes KLK2 and KLK3 were over-
represented in C2 (Fig. 4B), which exhibited active intra-
cellular signaling. The C3 subtype was more involved in 
ligand–receptor binding and formation-related pathways 
(Fig. 4C), while the C4 subtype was significantly associ-
ated with immune-related functional pathways (Fig. 4D).

Correlation between GC subtypes and clinical features
Further, the commonly shared clinical features of the 
GC subtypes were compared. It was observed that C3 
and C4 were associated with advanced stage (T3 and T4, 

Fig. 4 Molecular and clinical characterization of GC subtypes in TCGA dataset. A–D Functional enrichment analysis based on 2000 subtype-specific 
genes (500 specific genes per subtype). E Correlations of GC subtypes with clinical features and previous GC classifications. White denotes missing 
values. ‘ns’ represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001,  ****P < 0.0001
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P < 0.001) and grade (G3, P < 0.001), validating the poorer 
prognostic outcome of C3/C4 patients. Subtype C1 pos-
sesses the largest number of older individuals (age > 65). 
Besides, significant correlations were observed among 
the GC subtypes and the four published subtypes. Spe-
cifically, C1 and C2 that performed a better prognosis 
were associated with MSI-H. C3 was remarkably related 
to MSS, Chen et  al.’s lncSubtype2 (associated with dif-
fuse-type and genomic stability GC with a moderate 
prognosis), and genomic stability (GS) subtype. C4 was 
correlated with MSS, Chen et al.’s lncSubtype3, chromo-
somal-instable (CIN) tumors, and non-CIMP (P < 0.001, 
Fig.  4E). Interestingly, the worst prognosis lncSubtype3 
was characterized by pervasive TP53 mutations, chro-
matin instability, hypomethylation, and over-expression 
of oncogenic lncRNAs, which is strikingly similar to the 
performance of C4. These observations matched the dis-
tinctive aggression characteristics of our classifications.

The immune landscape of four GC subtypes
A deeper investigation of the immunological landscape 
of four GC subtypes was conducted in order to under-
stand the underlying relationships between our subtypes 
and immunity. The infiltration abundance of 28 immune 
cells in distinct GC subtypes was evaluated via the 
ssGSEA algorithm. Particularly, both C3 and C4 patients 
displayed a richer level of immune cell infiltration  and 
higher immune scores (Fig. 5A, D; Additional file 1: Fig. 
S3A), whereas C3 exhibited a lower tumor purity and the 
highest stromal score (Fig. 5B; Additional file 1: Fig. S3B). 
In parallel, according to ICP comparative analysis results, 
the majority of the ICPs were noticeably up-regulated 
in C3 and C4 subtypes (Fig.  5C). However, the expres-
sion of several immune-related co-suppressor genes 
including PDCD1LG2, BTLA, TNFRSF14, ENTPD1, and 
NTE5 were significantly higher in C3  while CTLA-4, 
PDCD1, and HAVCR2 were higher in C4, whereas several 
immune-related co-stimulatory genes (HHLA2, ICOS, 
ICOSLG, CD274, CD70, CD40, TNFRSF18, TNFRSF4, 
and TNFRSF9) were dramatically up-regulated in C4 [11, 
33] (P < 0.05, Fig. 5E).

Notably, to ensure the specific analytical algorithms 
did not bias the results, six additional immune infiltra-
tion assessment algorithms, including EPIC, ESTIMATE, 
MCPcounter, Quantiseq, TIMER, and xCell, were con-
ducted to confirm the accuracy of the above results. As 
expected, similar results were observed with the C3 and 
C4 subtypes exhibiting higher infiltration abundance of 
immune cells (Fig.  6A). In addition, comparative analy-
sis demonstrated significant differences among the four 
subtypes in distinct CIC steps. Specifically, C3 exhibited 
negative performance in both immune cell infiltration 

into the tumor and T cell recognition of cancer cells, 
indicating that patients with the C3 subtype are likely to 
be in T cell exhaustion (P < 0.05, Fig. 6B).

According to the research exists, immune evasion and 
immunological activation were likely to be intimately 
associated with the C3 and C4 subtypes, respectively. For 
further verification, the single nucleotide variants (SNV) 
derived neoantigens scores and pan-fibroblast transform-
ing growth factor b (TGF-β) response signature scores 
were calculated. In general, higher SNV neoantigen 
scores indicated greater immunogenicity, while higher 
TGF-β scores revealed greater immunotherapy resist-
ance and immune evasion mediated by the TGF pathway 
[34–36]. Consistently, C3 exhibited the lowest SNV-
derived neoantigens score (P < 0.05, Additional file 1: Fig. 
S3C), and the highest TGF-β response signature score 
(P < 0.001, Additional file  1: Fig. S3D), validating the 
immunosuppressive and immune evasion properties of 
C3 patients.

Immunotherapy response assessment of four GC subtypes
Taking into account the significant differences in the 
immunological landscape in four epigenetic subtypes, 
several immune-related indicators were systemati-
cally collected and calculated. TIDE analysis suggested 
that patients in C4 subtype exhibited a higher immune 
response rate than other subtypes (P < 0.001, Fig. 6C). Fur-
thermore, based on SubMap algorithm, we assessed the 
resemblance of GEPs among the identified GC subtypes 
and six immunotherapy cohorts, the results indicating 
that patients with subtype C4 all exhibited better immune 
responses across six immunotherapy cohorts (Fig. 6D).

Correlation of GC subtypes with mutations landscape 
and CNVs
To decipher the genomic alterations in GC subtypes, 
the characteristic mutations and CNVs of the four sub-
types were further explored. Specifically, the mutation 
frequency of TTN, ARID1A, FAT4, PIK3CA, SPTA1, 
KMT2D, and ZFHX4 was significantly higher in C1 sub-
type; CSMD1 performed higher mutation frequencies in 
C2 subtype. In parallel, the deletion frequency of 9p21.3 
was dramatically higher in C4 subtype (Fig. 7). Moreover, 
mutation signature analysis displayed that signature 1A 
and signature 15 accounted for a greater percentage than 
the other GC-related signatures, offering fresh informa-
tion for a more thorough investigation of the pathogenic 
mechanism of GC [31].

Potential therapeutic agents for specific subtypes
Differential drug response analysis was conducted to 
find agents with the lowest AUCs in comparison with 
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the other three subtypes to find prospective treatment 
agents for certain GC subtypes. The widely used GC 
chemotherapy chemical 5-fluorouracil was utilized to 
investigate if the projected drug sensitivity was consistent 
with its clinical efficacy to ensure that the drug sensitivity 

information obtained was reliable. Studies have demon-
strated that decreased STAT3 expression or malfunction 
forecasts increased 5-FU sensitivity in GC [37]. Thus, 
depending on the median levels of STAT3 expression, 
the TCGA cohort of patients was split into high- and 

Fig. 5 The immune landscape of GC subtypes in TCGA cohort. A Mean infiltration abundance of 28 immune cell types in GC subtypes. B Tumor 
purity of GC subtypes. C Heatmap of expression profiles for 27 immune checkpoint-related genes of GC subtypes. D Boxplot between GC subtypes 
and 28 immune cells infiltration abundance. E Boxplot of 27 immune checkpoint profiles for GC subtypes. ‘ns’ represents no significance, *P < 0.05, 
**P < 0.01, ***P < 0.001,  ****P < 0.0001

Fig. 6 The further decipherment of immune landscape for GC subtypes of the TCGA dataset. A Heatmap of the remaining six immune cell 
infiltration assessment algorithms (EPIC, ESTIMATE, MCPcounter, Quantiseq, TIMER, and xCell) for our subtypes. B The performances of GC subtypes 
during the cancer immunity cycle. C The performance of GC subtypes in tumor immune dysfunction and exclusion (TIDE) of the TCGA cohort. D 
SubMap analysis reveals the similarity of GEPs between GC subtypes of TCGA and 6 GEO immunotherapy cohorts. ‘R’ represents responders, and ‘NR’ 
represents non-responders. ‘ns’ represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001,  ****P < 0.0001

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Fig. 7 Multi-omics alterations of GC subtypes in TCGA cohort. The somatic mutational landscape of the top 20 frequently mutated genes and the 
CNVs landscape of the top 20 AMP and Homdel chromosome fragments for GC subtypes. The proportion of these variants in the GC subtypes is 
denoted on the right. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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low-STAT3 expression subgroups. In line with the pub-
lished research, patients with reduced STAT3 expression 
exhibited lower 5-FU AUCs in the CTRP and PRISM 
databases. (P < 0.05, Fig. 8A, B), illustrating the significant 
accuracy of the predicted compounds reaction. Subse-
quently, the potential therapeutic drugs for specific sub-
types were screened, respectively. Specifically, patients 
of C1 were sensitive to methotrexate; C2 was probably 
sensitive to warfarin; the sensitivity of dasatinib was sig-
nificantly higher in C3 subtype; and LY2606368 (Prexa-
sertib) probably be a potential therapeutic agent for C4 
GC patients (P < 0.001, Fig. 8C–F).

According to the current practice guidelines for the treat-
ment of GC, we further explored the sensitivity of com-
monly used drugs including 5-fluorouracil, paclitaxel, 
apatinib, and cisplatin in patients with different subtypes 
[38]. In particular, C1 subtype was sensitive to 5-FU and 
paclitaxel, while C2 patients benefit more from apatinib 
and cisplatin (P < 0.001, Fig.  8G–J). Notably, C3 displayed 
the highest AUCs to these drugs, indicating that C3 subtype 
tends to be resistant to chemotherapy and targeted therapy.

Discussion
Transcriptomic dysregulation mediated by epigenetic 
mechanisms is critical in the uneven evolution of GC. 
Currently, molecular subtypes of GC based on DNA 

methylation regulation have been developed, and the 
classification potential of miRNA expression profiles 
has been widely confirmed [9, 10]. However, it is still 
unclear whether epigenetic regulation of miRNAs and 
DNA methylation play a synergistic role in GC advance-
ment, and if so, whether it contributes to the classifica-
tion of GC. Here, we found that the aberrant frequencies 
of MIRcor genes and METcor genes are significantly co-
regulated. Depending on the integrated miRNA expres-
sion and DNA methylation profiles, four molecular 
subtypes with significant differences in clinical traits and 
molecular features were developed and validated in 1521 
GC samples from five independent cohorts. The correla-
tions between our subtypes and clinical traits, published 
subtypes, epigenetic and genomic features, immune 
landscape and immunotherapy response, and potential 
therapeutics were further investigated.

In this study, patients of C1 subtype exhibited bet-
ter survival, patients with subtype C4 showed the 
worst prognosis, and the prognosis of C2 and C3 sub-
types lay somewhere in between. This was consist-
ent with our findings that C4 subtype tends to perform 
advanced tumor stage and higher grade. Pathway enrich-
ment analysis suggested that these four subtypes were 
endowed with cell proliferation and transformation, 
intracellular signaling, ligand–receptor formation, and 

Fig. 8 Potential therapeutic agents for each subtype. A, B Consistency and robustness of two prediction models (CTRP and PRISM), the low 
expression of STAT3 correlates with sensitivity to 5-fluorouracil (5-FU). C–F The most probable potential therapeutic agents for each subtype. G–J 
Susceptibility prediction of GC subtypes based on CTRP and PRISM for 4 first-line drugs (5-FU, apatinib, paclitaxel, and cisplatin). *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001
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immune-related pathways, respectively, illustrating the 
significant differences in biological functions of the four 
epigenetic subtypes. Moreover, potential links between 
the four subtypes and published subtypes were further 
investigated to characterize the underlying properties of 
distinct epigenetic GC subtypes. It was observed that C1 
subtype is significantly associated with MSI-H subtype, 
which has been widely shown to perform better progno-
sis [39–41], whereas the C4 subtype is strongly related to 
MSS and lncSubtype3 tumors, further validating its dis-
mal prognostic outcomes [20, 42]. In addition, the similar 
performance of C4 subtype with lncSubtype3 seems to 
guide us to investigate the relationship between lncRNA 
and epigenetic alterations in GC in more depth. Notably, 
our findings indicated that patients of C1 subtype typi-
cally exhibit higher tumor purity. As previous reports, a 
higher tumor purity generally reveals a better prognosis 
in GC and more likely to benefit from adjuvant chemo-
therapy [43, 44], which not only validated the better sur-
vival of C1 subtype but also suggested that C1 patients 
might benefit more from neoadjuvant chemotherapy.

Considering the high correlation between C4 subtype 
and tumor immunity, the immune landscape of four sub-
types was further investigated. Although C3 and C4 sub-
types exhibited a significantly elevated abundance of 
immune cell infiltration, distinct immunological proper-
ties were observed in these two subtypes, respectively. 
Specifically, the expression of several immune-related co-
suppressor genes including CTLA-4, PDCD1, PDCD1LG2, 
BTLA, TNFRSF14, ENTPD1, HAVCR2, and NTE5 were 
significantly higher in C3, whereas several immune-related 
co-stimulatory genes (HHLA2, ICOS, ICOSLG, CD274, 
CD70, CD40, TNFRSF18, TNFRSF4, and TNFRSF9) were 
dramatically up-regulated in C4, suggesting that the C3 
may be an immunosuppressive subtype, while the C4 
tends to be an immune-activating subtype. Alternatively, 
the C3 subtype displayed the lowest scores in tumor 
immune steps such as immune cell infiltration into the 
tumor and T cell recognition of cancer cells, suggesting 
that patients with the C3 subtype may be in a state of T cell 
exhaustion, further leading to immunosuppression and 
immune evasion. Besides, C3 performed the lowest SNV-
derived neoantigens score and the highest TGF-β response 
signature score, validating the immune evasion and resist-
ance to immunotherapy properties of C3 patients [34, 35, 
45]. Notably, TIDE analysis displayed that patients with 
C4 subtype exhibited the highest sensitivity to immuno-
therapy, which was further validated in six independent 
immunotherapy cohorts based on the SubMap algorithm, 
suggesting that patients with C4 subtype are more prob-
ably to benefit from immunotherapy.

Subsequently, we investigated the mutational landscape 
of GC subtypes to characterize the somatic mutations 

and CNVs that may drive GC subtypes. The mutation 
frequencies of TTN, PIK3CA, and KMT2D were signifi-
cantly higher in C1 subtype. High mutation frequency 
of TTN tends to predict better survival outcomes, while 
mutations of PIK3CA were associated with a better prog-
nosis in older individuals in GC [46, 47], which validated 
the results of the survival analysis and clinical traits com-
parisons. In addition, the study by Li et  al. showed that 
mutations in KMT2D are closely related to the prolifera-
tion of GC [48], which is consistent with the cell prolif-
eration and transformation properties of the C1 subtype 
in the functional analysis. Moreover, among the top 20 
frequently mutated genes in GC, most genes showed the 
highest mutation frequency in C1 subtype, suggesting 
that C1 subtype is likely to be a mutation-driven subtype.

Based on multiple pharmacological databases and 
comprehensive bioinformatics algorithms, four poten-
tial agents sensitive to C1, C2, C3, and C4 were obtained, 
respectively. 5-FU, cisplatin, paclitaxel, and apatinib are 
currently the mainstay of combination chemotherapy or 
targeted therapy for GC patients [38]. Our results indi-
cated that C3 subtype displayed the lowest sensitivity to 
all four drugs, suggesting that chemotherapy and targeted 
treatment may be less effective for those with C3. On the 
other hand, patients with C1 displayed a higher sensitiv-
ity to 5-FU and paclitaxel, while C2 patients benefit more 
from apatinib and cisplatin, providing new insights into 
the individualized therapy for distinct GC subtypes.

Although our classification is a promising comprehen-
sive platform to stratify GC patients, several restrictions 
should be recognized. Firstly, since each sample used in 
our investigation was retrospective, future validation of 
GC subtypes should be carried out in prospective fresh 
samples. Secondly, due to limited resources and capac-
ity, we did not explore the link between epigenetic altera-
tions in GC and intrinsic genetic alterations. Therefore, 
the study of epigenetic regulatory mechanisms of GC still 
needs to be explored in greater depth.

Conclusions
Based on the epigenetically regulated GEPs, we devel-
oped four robust GC molecular subtypes, which not only 
facilitated the comprehension of the epigenetic mecha-
nisms involved in GC heterogeneity but also offered a 
viable platform for enhancing decision-making and sur-
veillance procedure for specific GC patients.
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