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Extensive intratumor regional epigenetic 
heterogeneity in clear cell renal cell carcinoma 
targets kidney enhancers and is associated 
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Abstract 

Background  Clear cell renal cell cancer (ccRCC), the 8th leading cause of cancer-related death in the US, is challeng-
ing to treat due to high level intratumoral heterogeneity (ITH) and the paucity of druggable driver mutations. CcRCC 
is unusual for its high frequency of epigenetic regulator mutations, such as the SETD2 histone H3 lysine 36 trimethyl-
ase (H3K36me3), and low frequency of traditional cancer driver mutations. In this work, we examined epigenetic level 
ITH and defined its relationships with pathologic features, aspects of tumor biology, and SETD2 mutations.

Results  A multi-region sampling approach coupled with EPIC DNA methylation arrays was conducted on a cohort 
of normal kidney and ccRCC. ITH was assessed using DNA methylation (5mC) and CNV-based entropy and Euclidian 
distances. We found elevated 5mC heterogeneity and entropy in ccRCC relative to normal kidney. Variable CpGs are 
highly enriched in enhancer regions. Using intra-class correlation coefficient analysis, we identified CpGs that segre-
gate tumor regions according to clinical phenotypes related to tumor aggressiveness. SETD2 wild-type tumors overall 
possess greater 5mC and copy number ITH than SETD2 mutant tumor regions, suggesting SETD2 loss contributes to 
a distinct epigenome. Finally, coupling our regional data with TCGA, we identified a 5mC signature that links regions 
within a primary tumor with metastatic potential.

Conclusion  Taken together, our results reveal marked levels of epigenetic ITH in ccRCC that are linked to clinically 
relevant tumor phenotypes and could translate into novel epigenetic biomarkers.
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Background
Clear cell renal cell carcinoma (ccRCC) accounts 
for ~ 75% of kidney cancers and is the 8th leading cause 
of cancer death in the USA. It is also well established as 
a tumor with a high degree of genetic intratumor het-
erogeneity (ITH) [1]. Despite intensive surgical efforts, 
approximately 30% of ccRCC patients experience meta-
static progression, typically within three years of surgery. 
Although adjuvant immunotherapy has been approved, 
the data for overall survival benefit are not mature [2]. 
Completion of The Cancer Genome Atlas (TCGA) Pro-
ject enabled identification of actionable mutations in vir-
tually every solid tumor, and those mutational profiles 
now drive clinical treatment decisions [3]. One major 
exception, however, is RCC, where the current standard 
of care, immune checkpoint inhibitor and anti-VEGF 
therapy, does not take into account chromatin regulator 
mutations or ITH [4–6]. After first-line therapy, response 
rates are 20%, highlighting the need to identify novel 
drivers and biomarkers to advance individualized treat-
ment of ccRCC patients [5, 7].

The importance of intratumor heterogeneity (ITH), 
driven by genetic, epigenetic, transcriptional, and tumor 
microenvironment  differences, to cancer biology and 
clinical outcome has been recognized for some time [8]. 
CcRCC is characterized by high-level ITH at the gene 
mutation, copy number variation (CNV), and treat-
ment response levels [1, 9, 10]. For example, only 34% 
of all mutations detected by a multi-region sequenc-
ing approach were present in all regions of the tumor; 
of known ccRCC driver genes, only VHL was mutated 
ubiquitously [11]. Mutational ITH was also observed 
among epigenetic regulators, including SETD2 and 
KDM5C, which sustained multiple unique and spatially 
distinct inactivating mutations within individual tumor 
regions. That these subclonal events are important is 
evident given that their influence on a common truncal 
event (e.g., VHL loss) leads to diverse clinical outcomes 
[1, 11]. Reconstructing tumor clonal architectures and 
identifying common aberrations located at the trunks of 
phylogenetic trees are  expected to lead to more robust 
biomarkers and novel therapeutic approaches. In the 
case of ccRCC, however, VHL is the only consistent trun-
cal mutation, which has only recently become targetable 
through its downstream HIF effectors, demonstrating the 
need to delve deeper into other processes contributing to 
ITH [1, 11, 12]. ITH, combined with the polygenic nature 
of drug resistance, likely contributes to the failure of most 
targeted therapies, including immune therapies that are 
the mainstay of ccRCC treatment [4–6].

The contribution of ITH to tumor evolution, metas-
tasis, and treatment failure also arises through epige-
netic mechanisms, involving heritable changes in gene 

expression driven by remodeling of epigenetic marks at 
the DNA and histone levels. Several studies have linked 
DNA methylation (5mC) aberrations, hypermethylation 
events in particular, to poor outcome and mutation of the 
SETD2 histone H3 lysine 36 trimethylase (H3K36me3) in 
ccRCC [13–15]. Epigenetic mechanisms play an impor-
tant role in driving ITH given their functions in modu-
lating expression and responding to environmental cues 
[16]. Indeed, phenotypic plasticity involving differentia-
tion state-related epigenetic programs has been reported 
as a key driver of drug resistance through heritable 
changes in expression programs, independent of genetic 
aberrations [17]. Consistent with this notion, variance in 
cell transcriptional programs across tumor types is often 
independent of genetic-level ITH [18], but is linked to 
variability in 5mC patterns in genetically homogeneous 
cell populations [19]. 5mC patterns positively promote 
expression when localized to gene bodies or repress tran-
scription when present in promoters and enhancers [20]. 
5mC also varies between cell types, individuals, and with 
age, thus providing a rich substrate on which cancer cell 
properties such as inflammation, metastasis, and drug 
resistance may be selected for by Darwinian evolutionary 
forces [21]. CcRCC metastases exhibit few novel de novo 
mutations, suggesting that most of the diversity promot-
ing metastatic dissemination accumulates in the primary 
tumor and/or that yet-to-be discovered epigenetic altera-
tions drive selection of metastasis-competent cell popu-
lations [22].

In the present study, we sought to gain a better under-
standing of epigenetic ITH at the level of methylation 
within ccRCC by integrating 5mC heterogeneity with 
genetic and pathologic data, determine the specific 
influence of SETD2 mutations on ITH given its role 
in regulating DNA methylation, and apply evolution-
ary principles to discover novel epigenetic cancer driver 
events. To accomplish this, we sampled spatially distinct 
regions from twelve genotyped ccRCC patients and three 
normal kidneys and performed genome-wide 5mC and 
copy number analysis using the MethylationEPIC Bead-
Chip (850 k) array. Results were further correlated with 
immunohistochemical quantification of the same regions 
for 5mC, H3K36me3 (the mark catalyzed by SETD2), and 
other pathologic measures. We observed marked hetero-
geneity at the pathologic level including both H3K36me3 
and 5mC marks. While epigenetic ITH in normal kid-
ney was minimal and localized primarily to gene bod-
ies, epigenetic ITH in ccRCC was dramatically elevated 
and highly enriched in kidney enhancers. CcRCC also 
displayed markedly elevated methylation-level entropy, 
which was significantly higher in SETD2 wt tumors 
and correlated with markers of tumor aggressiveness. 
Phyloepigenetic analysis revealed novel epigenetically 
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deregulated drivers and that methylation contributed 
more to diversity within a tumor than CNV level genetic 
ITH. Finally, by interfacing our epigenetic ITH data with 
TCGA data, we uncover a novel 5mC signature of metas-
tasis that may be useful for assessing metastatic potential. 
Overall, SETD2 wt/H3K36me3-positive tumor regions 
showed more epigenetic and genetic level ITH, suggest-
ing that SETD2 mutations drive an epigenetic landscape 
that promotes a distinct and more homogeneous epig-
enome associated with adverse outcomes.

Results
Patient and tumor characteristics, and evidence 
for widespread pathologic‑level ITH in ccRCC​
We identified ccRCCs from our tissue repository con-
taining multiple distinct regions of the tumor (Addi-
tional file  1: Table  S1). From formaldehyde fixed 
paraffin embedded (FFPE) samples, tumor material was 
sectioned, mounted onto microscope slides, and then, 
further sub-divided into sections that were isolated for 
genomic DNA preparation, as shown schematically in 
Fig. 1A (top). This resulted in 10–13 distinct regions from 
2–5 blocks per patient (138 sections in total, Additional 
file  1: Table  S2). In parallel, each region was scored by 
H&E pathologic analysis of key tumor features such as 
grade, stage, and necrosis, and IHC was used to assess 
levels of H3K36me3 (the mark written by the SETD2 his-
tone methyltransferase), and DNA methylation (5mC). 
Thus, each distinct region within a tumor underwent 
both microscopic assessment of clinical pathology and 
molecular assessment of DNA methylation.

A single region from each tumor representing the 
highest nuclear grade was analyzed for gene mutations 
using an established 600 cancer gene hybridization-
capture approach in a CLIA-certified laboratory to a 
median sequencing depth of at least 650x. Analysis was 
performed to identify base substitutions, insertions/
deletions, gene fusions, rearrangements, and copy num-
ber variation (CNV) relative to a normal control kidney 
sample [23]. A summary of the mutations identified in 
each tumor sample is summarized in Additional file  1: 
Table  S3. As such, some data presented are on a per 

patient basis (e.g., SETD2 mutation status, presence of 
metastasis) while other data are presented on per region 
basis (e.g., H3K36me3 status). The tumors were cho-
sen to comprise an equal mix of SETD2 wild-type (wt) 
and SETD2 mutant (mt) given connections that we and 
others have reported linking SETD2 mutation to poor 
outcome and regulation of 5mC [24–27]. Analysis of 
sequencing data revealed that genes commonly mutated 
in ccRCC, including VHL (10/12 patients) and PBRM1 
(8/12 patients), are the two most frequently mutated 
genes, indicating that our ccRCC samples have a muta-
tional profile consistent with other large tumor genome 
sequencing studies such as TCGA KIRC [14] (Additional 
file 1: Table S3). The cohort also contained a comparable 
representation of ccRCCs that underwent metastasis vs 
those that did not (7/12 patients, Table 1). For one case, 
we also obtained and analyzed a single region from a 
matched synchronous pancreatic metastasis (Table 1).

ITH was first examined at the pathologic level by 
evaluating H&E and IHC (H3K36me3 and 5mC) stains. 
Representative images are shown in Fig.  1A (bottom). 
A strong correlation between SETD2 mutation and 
H3K36me3 levels has been established [28]; therefore, 
H3K36me3 is used as a surrogate for SETD2 status given 
that SETD2 antibodies are not suitable for IHC. The 
oncoprint in Fig.  1B summarizes the extent of hetero-
geneity across various tumor characteristics. Of the five 
parameters we examined on an individual tumor region 
basis (grade, necrosis, SSIGN, H3K36me3, and 5mC), 
all displayed varying degrees of ITH within 9/12 of the 
tumors. For the remaining pathologic categories (vary-
ing on a per region basis), H3K36me3 levels were signifi-
cantly underrepresented in SETD2 mt tumors (p < 0.01), 
while SSIGN score (p = 0.174), tumor grade (p = 0.762), 
and necrosis (p = 0.325) did not differ between sequence 
confirmed SETD2 wt and mt tumors. However, even for 
H3K36me3 IHC, tumors scored as SETD2 mt by single 
region targeted sequencing contained multiple regions 
of H3K36me3 positivity (e.g., patient m12, Fig.  1B) and 
conversely, sequence confirmed SETD2 wt tumors con-
tained regions that were negative for H3K36me3 (e.g., 
patient w3, Fig.  1B). In fact, for two SETD2 wt patients 

(See figure on next page.)
Fig. 1  Strategy for defining intratumoral heterogeneity and summary of pathology-level heterogeneity within our ccRCC cohort. A Summary 
of sample acquisition methodology to profile 5mC in distinct tumor regions. Multiple regions of each resected tumor are fixed in FFPE blocks, 
sectioned, and embedded on microscopic slides. Sequential slides from each block are divided into sections that are assessed independently for 
H&E, IHC, and 5mC. In panel A (bottom), we illustrate pathology-level ITH represented as different nuclear grade and H3K36me3 levels between 
neighboring regions of the same tumor. DNA is extracted from these sections independently for downstream analysis. Figure created with 
Biorender.com B Oncoprint showing patient-level results (SETD2 mutational status, metastasis, and T stage) of all 12 ccRCCs, and below that 
region-specific results (nuclear grade, necrosis, SSIGN score, H3K36me3 IHC status, and 5mC IHC status). Tumors are grouped according to their 
SETD2 mutational status (wt to the left and mt to the right). P-values are the outcome of χ2 comparison of each criterion between SETD2 wt and mt 
tumors. Some tumor regions could not be scored (NR, white blocks). C Barplots showing a significant pairwise association of 5mC with H3K36me3 
(Neg = negative, Pos = positive) and SSIGN score, H3K36me3 with SSIGN score, and nuclear grade with necrosis (P = present, A = absent) and SSIGN 
score. Frequencies are plotted on the y-axis, and count is indicated in each section of the colored bars
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Fig. 1  (See legend on previous page.)
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(w1 and w2), all regions stained for H3K36me3 were neg-
ative (Fig. 1B). 5mC IHC levels were also heterogeneous 
across 5/12 patient tumors and correlated positively with 
H3K36me3 level determined for each region by IHC. 
That is, H3K36me3-positive tumor regions were more 
likely to be positively stained for 5mC (p = 1.35 × 10–9, 
Fig. 1C). Additionally, SSIGN score exhibits associations 
with 5mC (p = 3.86 × 10–3), H3K36me3 (p = 3.65 × 10–9), 
and nuclear grade (p = 1.35 × 10–9). Tumor regions with 
low SSIGN score (0–7) are associated with less aggres-
sive tumor traits such as 5mC and H3K36me3 positivity, 
as well as lower nuclear grade (Fig. 1C). Taken together 
these results reveal considerable heterogeneity within our 
12 examined tumors at multiple pathologic levels. These 
results also reveal that while H3K36me3 IHC correlates 
well overall with SETD2 mutation calls, there are limits 
to this association revealed by our regional analyses.

Differential DNA methylation between normal and tumor 
samples reveals that inter‑patient heterogeneity 
dominates the 5mC landscape
5mC was measured using the Illumina EPIC (850 k) array 
from 30 samples derived from 3 normal kidneys (normal 
(N), no cancer, n = 10 regions/kidney) and 138 samples 
originating from multi-region sampling of 12 ccRCCs 
(~ 12 regions/tumor (T)). A comparison of global meth-
ylation between the normal and tumor groups stratified 
by SETD2 mutation status shows significant differences 
among most groups (Fig. 2A). Specifically, the SETD2 wt 
group is globally hypomethylated relative to normal kid-
ney and the SETD2 mt groups; surprisingly, overall 5mC 
of the SETD2 mt group is not significantly different from 
normal kidney samples. Additionally, we examined meth-
ylation stratified by genomic feature, which revealed that 
gene bodies, promoters, intergenic regions, and enhanc-
ers (defined as regions with overlapping H3K27ac and 

H3K4me1 peaks, but lacking H3K4me3 in normal kid-
ney), are all differentially methylated between the three 
groups, highlighting that global differential methylation 
is not driven by any specific feature (Additional file  2: 
Fig. S1). Principal component analysis (PCA) using all 
CpGs on autosomal chromosomes shows a segregation 
between normal and tumor regions, and a tendency for 
H3K36me3-negative tumor regions to segregate from the 
center of the plot and appear overall more variable (larger 
spread, red squares and triangles, Fig. 2B). Furthermore, 
unsupervised hierarchical clustering employing the top 
5,000 most variable CpGs segregated normal and tumor 
regions entirely on a per patient basis (Fig. 2C), indicat-
ing that 5mC differences between patient tumors are 
greater than within individual patient tumors (patients 
are indicated by the top-most color bar in Fig. 2C).

We performed methylation differential analysis 
between normal kidney and ccRCC. We observe 166,411 
differentially methylated CpGs (DMCpGs) using a Δβ 
cutoff of ± 0.1 and a p value < 0.01 (Additional file  2: 
Fig. S2). Genes ranking as highly differentially meth-
ylated include PRDM16 (n = 152  CpGs) and DPP6 
(n = 72  CpGs) which, when hypermethylated, are asso-
ciated with poor outcome in ccRCC [15, 29]. These loci 
in our tumor samples show extensive promoter hyper-
methylation, consistent with an inverse correlation of 
promoter 5mC and gene expression for these loci in 
TCGA-KIRC (Additional file 2: Fig. S3A and S4A, tracks 
3–4). To investigate DMCpGs more stringently, we first 
raised the Δβ to ± 0.25 (p value < 0.01), yielding 8749 
DMCpGs between normal and tumor samples (Fig. 2D). 
Of the 8749 DMCpGs shown in Fig. 2D, 2874 CpGs are 
hypermethylated and 5875 CpGs are hypomethylated 
(their distribution by feature is summarized in Additional 
file  1: Table  S4). Using ChIP-seq data from the Epige-
nome Roadmap, we defined a set of normal kidney active 

Table 1  Summary of patient clinical and pathologic information

*  Nonparametric test used

Normal (n = 3) All Tumors (n = 12) SETD2 wt (n = 6) SETD2 mt (n = 6) p value (wt v mt)

Age (years) 71.67 ± 5.03 63.58 ± 7.76 61.00 ± 7.85 66.17 ± 7.41

p = 0.081 p = 0.378*

Sex (males) 2 (66.67%) 9 (75%) 4 (66.67%) 5 (83.33%)

p = 0.661 p = 0.999

SSIGN Score (4–8/ ≥ 9) 9/3 5/1 4/2 0.999

T-Stage (T1/T2/T3/T4) 4/0/8/0 2/0/4/0 2/0/4/0 1.000

Tumor Size (cm) 8.33 ± 4.08 9.20 ± 2.86 9.00 ± 4.88 0.933

Grade (2/3/4) 6/4/2 3/2/1 3/2/1 1.000

Necrosis (yes) 3 (25%) 1 (16.67%) 2 (33.33%) 0.999

Nodal Stage N0 N0 N0

M Stage (M1) 7 (58.33%) 3 (50%) 4 (66.67%) 0.999
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Fig. 2  Defining differential DNA methylation among normal kidney and SETD2 wt/mt ccRCC. A Global 5mC of normal kidney (n = 30) and ccRCC 
regions (n = 138, stratified by SETD2 status). B PCA using all autosomal CpGs (n = 843,393). Each point represents a tissue region. Each region’s 
shape is representative of the SETD2 status of the tumor it originates from, and the color is representative of the H3K36me3 IHC status of each 
region. C Unsupervised hierarchical clustering using the 5,000 most variable CpGs across the whole cohort. D Volcano plot of the differential 
analysis between tumor and normal samples. DMCpGs are represented by red points. E Venn diagram showing the number of DMCpGs (n = 2097) 
overlapping a selection of three histone marks: H3K27ac, H3K4me1, and H3K4me3. N = 6652 DMCpGs are not represented as they do not overlap 
with any of the three marks. F Bar plot showing the relative distribution of 2874 hypermethylated and 5875 hypomethylated DMCpGs, normalized 
to the distribution of CpGs in EPIC array, over four genomic features indicated. Enhancers are defined by loci overlapping with H3K27ac and 
H3K4me1, but not H3K4me3. CpGs mapped to TSS1500, TSS200, and 5’ UTR, in the EPIC manifest, are considered promoter CpGs. The asterisk 
indicates a significant distribution difference of the respective feature and the EPIC array total. Y-axis—relative difference (log10) of each feature. G 
Ontology of enriched pathways derived from 579 and 926 genes linked to the 397 active enhancer and 768 active promoter (defined as positive for 
H3Kme3 based on normal kidney) DMCpGs, respectively, from panel F, using IPA. The color bar represents the p values as −log10
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enhancers as regions intersecting with active regulatory 
region histone marks H3K27ac and H3K4me1, but not 
the active promoter-associated H3K4me3 mark. Using 
these regions, we identified 397 DMCpGs between nor-
mal and tumor linked to enhancers (Fig.  2E). The 8749 
DMCpGs were also differentially enriched among pro-
moter, body, intergenic, and enhancer features, with pro-
moter changes underrepresented and enhancer DMCpGs 
over-represented, relative to all CpGs on the EPIC array 
(Fig.  2F), indicating that normal kidney enhancers are 
targets for epigenome deregulation in ccRCC, particu-
larly for hypermethylation events. Ontology analysis 
reveals that ccRCC DMCpGs map to genes linked to 
tumor driver and anticancer therapy pathways including 
PD-1 immunotherapy, invasion/metastasis (epithelial-
mesenchymal transition (EMT) and CXCR4 signaling), 
and inflammation (interferon and IL8 signaling, Fig. 2G).

The normal kidney displays low levels of regional 
epigenetic heterogeneity
We next examined heterogeneity in normal kidney, which 
could be subject to age or environmental factors, by sam-
pling ten geographically distinct regions from three nor-
mal kidneys (Additional file 1: Table S5) to assess global 
5mC, entropy, and Euclidian distance. This analysis 
shows there are no significant global methylation differ-
ences among the normal kidney regions or across the 
three donors (Fig. 3A). This result also excludes the pos-
sibility of selection bias during sample selection and con-
stitutes a foundation on which to draw a normal baseline. 
Upon stratification of CpGs into their respective features, 
only enhancer CpGs were different among the normal 
kidneys (Additional file 2: Fig. S5), which may be reflec-
tive of differing environmental exposures since the age of 
the donors did not differ significantly. Euclidian geom-
etry measures the distance between organisms based on 
triangle inequality. It can be used to assess genome-wide 
divergence between samples, where a large Euclidian dis-
tance is reflective of greater difference between samples 
[30]. In a phyloepigenetic tree, all regions of an individual 
donor kidney cluster together (or branch from a common 
point). More specifically, kidney regions from NDK8 
tend to be closest to each other with the shortest intra-
tissue Euclidian distances, followed by NDK4, and NDK5 
whose regions are the most spread (Figs. 3B, C).

To further examine heterogeneity, we measured 
entropy for all 10 regions from each normal kidney 
using a modified Shannon entropy for 5mC data [31]. 
We observed no significant entropy differences globally 
among the three normals (Fig.  3D), but did find, when 
stratified by feature, that gene body and promoter CpGs 
showed significantly different entropies (Additional file 2: 
Fig. S6). We therefore queried intra-kidney variability 

by measuring the standard deviation (SD) of each CpG 
and observed overall very low 5mC variability (median 
SD of CpGs being lower than 0.1, Fig. 3E). The number 
of highly variable CpGs (SD > 0.1) varied between the 
three kidneys with NDK5 having the largest number 
(n = 17,677 CpGs; 2.10%) and NDK8 having the small-
est number (n = 1444 CpGs; 0.17%). This observation is 
concordant with results in Figs. 3B, C, where NDK5 and 
NDK8 have the longest and shortest intra-tissue Euclid-
ian distances, respectively. Additionally, the highly vari-
able CpGs tend to be unique to their respective patient 
with only 41.16% shared with at least one other normal 
kidney (Fig. 3F), suggesting a distinct randomness to this 
set of normal kidney variable CpGs. Variable CpGs are 
enriched in gene bodies but depleted for enhancers and 
promoters (Fig.  3G). Interestingly, when examining the 
highly variable CpGs in the 12 ccRCCs (with SD > 0.1), 
this feature-related trend completely reverses, with an 
enrichment of the most variable tumor CpGs in enhanc-
ers and reduced gene body enrichment (Fig. 3G). Finally, 
we examined 574 genes associated with highly variable 
enhancer CpGs in normal kidney tissue, and 2027 genes 
associated with the 5000 most variable enhancer CpGs 
in tumors. Ontology revealed that enhancer CpGs from 
the normal group are weakly associated with pathways 
commonly linked tumorigenesis (e.g., EMT and renal 
carcinoma signaling), unlike the tumor enhancer CpGs 
that were enriched for cancer-associated pathways like 
MAPK, PTEN, and CXCR4 signaling (Fig.  3H) [32, 33]. 
Taken together, these findings indicate an overall low 
level of intra-kidney methylation variability, and that the 
modest number of CpGs that do display heterogeneity 
are largely unique to each patient.

Epigenetic heterogeneity is markedly elevated in tumors 
and impacted by SETD2 status
To assess intratumor heterogeneity, we applied the same 
measures used for the normal kidney regions, to the 
138 distinct tumor regions obtained from 12 ccRCC 
patients. Tumor regions possess significantly higher vari-
ability than normal kidney (Figs.  4A, B). This difference 
in variability is also observed when tumors are strati-
fied according to SETD2 genetic status (Fig.  4B), with 
the median SD of CpGs in the SETD2 wt ccRCC group 
being significantly higher than that in the SETD2 mt 
group of tumors (p < 2.2 × 10–16). The standard deviation 
of intratumor global 5mC is significantly greater than the 
standard deviation of intra-tissue normal kidney 5mC 
(µSDTumor = 0.015, µSDNormal = 0.009, p = 0.016). This dif-
ference, however, disappears when stratified by SETD2 
status (µSDwt = 0.016, µSDmt = 0.013, p = 0.291, Fig. 4C).

As shown in Fig. 4D, tumors have significantly higher 
entropy than normal kidney, indicating an elevated level 
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Fig. 3  Quantifying and localizing epigenetic heterogeneity within normal kidney tissue. A Boxplot comparing global 5mC between three 
normal kidneys, 10 regions each. Each dot represents the mean methylation of 843,393 CpGs per region. B Phyloepigenetic tree showing the 
branching of 30 normal regions obtained from 3 normal kidneys. C Boxplot comparing the Euclidian distances within each normal kidney. Each 
dot represents the distance between any two samples originating from the same normal kidney. D Boxplot comparing entropy among the same 
normal kidney regions. Each dot represents the entropy of a sample calculated for 843,393 CpGs. E Boxplot showing the SD of each CpG within 
each normal kidney. Age and sex of the donors are indicated along with the number of highly variable (SD > 0.1) CpGs in each kidney. The dotted 
red line intersects the y axis at y = 0.1 and establishes our threshold between high and low variability. F Venn diagram showing the overlap of the 
highly variable CpG group between the three normal kidneys. G Bar plot showing the relative feature distribution of the highly variable CpGs of 
each normal kidney (n = 3) and the ccRCCs (n = 12) when normalized to the distribution of all CpGs on the EPIC array over four genomic features 
indicated. Enhancers and promoters are defined as in Fig. 2. The asterisk indicates a significant distribution difference of the respective feature and 
the EPIC array total. Y-axis—relative difference (log10) of each feature. H Ontology of enriched pathways derived from 574 and 2027 genes linked to 
the 368 active enhancers in the normal group and the 5,000 most variable active enhancer CpGs from the tumor group, respectively, from panel G, 
using IPA. The color bar represents the p-values as −log10
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of disorder in ccRCC. Furthermore, we observe a wider 
spread in entropy values for the tumor group as a whole, 
reflecting more diverse methylomes present within 
the same tumor (presumably corresponding to a more 
phenotypically diverse tumor cell population). Higher 

grade and presence of metastasis are also associated 
with higher entropy (Additional file 2: Fig. S7). Analysis 
of entropy associations with other clinico-pathological 
characteristics (age, tumor size, necrosis, etc.) can be 
found in Additional file 2: Fig. S7. Moreover, SETD2 wt 

Fig. 4  Defining epigenetic heterogeneity within cRCC. A Boxplot of the SD of each CpG within sampled regions from each patient. The red 
dashed line intersects the y axis at y = 0.1. CpGs with a SD greater than 0.1 considered heterogeneous. B Boxplot of the SD of each CpG within 
all regions of normal kidney and ccRCCs stratified by their SETD2 status. The red dashed line intersects the y axis at y = 0.1. CpGs with a SD 
greater than 0.1 considered heterogeneous. C Global 5mC of sampled regions from each patient. Each dot represents the mean methylation of 
a sample using 843,393 autosomal CpGs. D Entropy comparison of normal kidney and SETD2 wt/mt tumor regions. Dots represent the entropy 
calculated using the amended Shannon entropy for 843,393 CpGs. Dot colors reflect the H3K36me3 status of each tumor/normal region. E 
Euclidian distance comparison of sampled regions from each patient using 843,393 autosomal CpGs. Dots represent the distance between any 
two samples originating from the same patient. F Phyloepigenetic tree of the 5000 most variable CpGs among tumor samples. G Supervised 
hierarchical clustering of the 5,000 most variable CpGs within the ICC 0.4–0.6 group forms three major clusters. P-values result from the χ2 analysis 
of all clusters against each other and the comparison of cluster 1 against the combination of clusters 2 and 3. CpG features are indicated by 
the colored bar to the left of the heatmap. H Relative feature distribution of the 5,000 most variable CpGs within the ICC 0.4–0.6 group when 
normalized to the distribution of all CpGs on the EPIC array over four genomic features. The asterisk indicates a significant distribution difference 
of the respective feature and the EPIC array. Y-axis – relative difference (log10) of each feature. I Heatmap showing the correlation coefficients (r) 
of 392 KIRC survival-linked CpGs significantly associated with the expression of their respective genes. The dendrogram separates the CpGs with 
positive (n = 73; red) from the CpGs with negative (n = 319; blue) correlations. The side bars correspond to the methylation status associated with 
better survival, and the feature of the CpG. There is a significant over representation (p = 0.011) of CpGs associated with better survival when 
hypomethylated among the CpGs inversely correlated with the expression of their respective genes. There is no feature distribution difference 
between the two CpG clusters
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tumors have a significantly higher entropy (p = 0.025) 
than SETD2 mt tumors (Fig.  4D), but when stratified 
by H3K36me3 IHC status, no significant difference is 
observed (p = 0.220). We then examined the Euclidian 
geometry within all patients and observed that tumors 
have significantly higher medians and wider ranges of 
Euclidian distances than those observed among the nor-
mal kidney regions (Fig. 4E). These results reveal greater 
divergence within tumor samples than normal kidney, 
and within tumors SETD2 wt ccRCC manifests with 
significantly larger Euclidian distances than SETD2 mt 
ccRCC (µEDwt = 86.88, µEDmt = 77.51, p = 1.98 × 10–5).

Identification of a distinct group of CpGs linked 
to intratumor heterogeneity
We next sought to identify CpGs driving heterogene-
ity across our cohort of 12 tumors. Using the 5,000 most 
variable CpGs in the ccRCC group of samples/regions, it 
was not possible to identify heterogeneity drivers since 
tumor regions segregated purely by patient (Fig. 4F). This 
finding indicates that this traditional method of analysis 
fails to filter out inter-patient differences, which domi-
nate the 5mC landscape. To identify CpGs with high 
variability driven by ccRCC as opposed to patient genet-
ics and/or environmental exposures, we calculated the 
intraclass correlation coefficient (ICC) for all autosomal 
CpGs on the EPIC array for this sample set [34, 35]. CpGs 
with high ICC show high inter-individual variation (dif-
ferences are greater between two samples obtained from 
two individuals, compared to two samples obtained from 
the same individual: genetically driven, for example). On 
the other hand, CpGs with low ICC reflect high intraclass 
variation and low inter-individual variation (differences 
are greater between two samples obtained from the same 
individual than two samples obtained from different indi-
viduals: intratumor epigenomic variation irrespective of 
patient genetics/environment). A depiction of the inter- 
and intra-patient variability for representative CpGs 
based on different ICC levels is shown in Additional file 2: 
Fig. S8. We distributed CpGs into three groups based on 
their ICCs (ICC < 0.4, n = 461,927 CpGs, ICC 0.4–0.6, 
n = 267,991 CpGs, and ICC > 0.6, n = 113,475 CpGs). 
The behavior and properties of CpGs in each of the three 
ICC groups are significantly different. For example, CpGs 
within the ICC 0.4–0.6 group are significantly hyper-
methylated, while CpGs within the ICC > 0.6 group are 
significantly hypomethylated (Additional file 2: Fig. S9A). 
This differential methylation is also observed within each 
of the ICC groups when tumors are stratified by SETD2 
mutational status or genomic feature (Additional file  2: 
Figs. S9B-C). In terms of genes/biological processes, 
enhancer-associated CpGs in the low ICC group are 
enriched for xenobiotic metabolism and inhibition of 

matrix metalloprotease pathways, while the enhancers 
in the high ICC group are enriched for sonic hedgehog 
and interferon signaling (not shown). For the intermedi-
ate ICC group, we compared CpGs in enhancers relative 
to promoters (determined by H3K4me3 presence), which 
revealed that enhancer CpGs are enriched for protein 
kinase A and PPAR signaling pathways while promoters 
are enriched for p53 signaling and antigen presentation 
pathways (Additional file  2: Fig. S9D). To drill down on 
CpGs of interest, we performed unsupervised hierarchi-
cal clustering using the 5,000 most variable CpGs from 
each of the three ICC CpG sets (ICC < 0.4, Additional 
file  2: Fig. S10A; ICC 0.4–0.6, Fig.  4G; and ICC > 0.6, 
Additional file  2: Fig. S10B). The ICC < 0.4 set yields no 
distinct clusters and there is a high degree of intermix-
ing of tumor regions across all patients (Additional file 2: 
Fig. S10A). In contrast, CpGs from the ICC > 0.6 set 
cluster all tumor regions based on their patient of ori-
gin, thus masking intratumor diversity which drives ITH 
(Additional file  2: Fig. S10B). Unlike the other two sets, 
the ICC 0.4–0.6 group CpGs segregate tumor regions 
into three distinct groups, and tumor region cluster-
ing is not dominated by patient of origin, indicating that 
this intermediate ICC range does indeed discover CpGs 
with high inherent epigenetic ITH (Fig.  4G). Cluster 1, 
dominated by hypermethylation events, is overrepre-
sented for tumor necrosis and higher nuclear grade (G3 
and G4) regions. Cluster 2 is enriched for hypometh-
ylation events, while cluster 3 is intermediate. The 5,000 
most variable CpGs from the ICC 0.4–0.6 group are also 
enriched for normal kidney enhancers and depleted of 
promoters (Fig. 4H, Additional file 1: Table S6). In sum-
mary, CpGs with an intermediate level of ICC represent 
markers of ITH with ccRCC population-wide relevance. 
The different ICC group CpGs also present with distinct 
properties, genomic localizations, and links to clinical 
phenotypes.

To examine properties of the 5000 most variable CpGs 
in the ICC 0.4–0.6 list in a larger independent set of 
samples, we examined their 5mC, expression, and sur-
vival relationships using TCGA’s KIRC database, as dia-
grammed in Additional file 2: Fig. S11. After overlapping 
the two datasets, 1945 out of 5000 CpGs are shared with 
the Illumina 450 k array (used for the KIRC methylation 
analysis) and 819 out of 1945 CpGs are significantly asso-
ciated with better ccRCC-specific survival (Additional 
file 1: Table S7). In addition, the methylation of 392/819 
CpGs is significantly correlated with expression of their 
respective gene(s) (Fig. 4I). We also observe a significant 
(p = 0.011) overrepresentation of CpGs associated with 
better survival when hypomethylated, among the CpGs 
negatively correlated with expression of their respec-
tive genes. Collectively, 66% (n = 172) of these CpGs 
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are in the body of the gene, and 34% (n = 89) are in the 
promoter. Genes linked to CpGs within the ICC 0.4–0.6 
group include PRDM16 and DPP6, which were identi-
fied earlier to be among the most hypermethylated in our 
ccRCC cohort (Additional file 2: Fig. S3B and S4B). The 
expression of PRDM16 and DPP6 is downregulated in 
TCGA-KIRC, and the promoters of these genes are sig-
nificantly hypermethylated (with both parameters linked 
to poorer RCC-specific survival). Higher nuclear grade 
and necrosis are also linked to PRDM16 and DPP6 pro-
moter hypermethylation (Additional file  2: Figs. S3B-G 
and S4B-G). Taken together, our data suggest that the 
PRDM16 and DPP6 genes play an important role in 
ccRCC onset and progression, consistent with work from 
others [36, 37].

Phyloepigenetic analysis of enhancers reveals novel 
putative drivers of ccRCC​
To identify common targets of epigenetic deregula-
tion that may drive ITH and impact ccRCC biology, we 

conducted singular value decomposition (SVD) analy-
sis on CpGs linked to enhancers using the GeneHancer 
database of pan-tissue enhancers and their predicted 
gene targets (n = 435,104 CpGs) [38]. For each tumor, 
SVD ranks CpGs in order of their contribution to the 
sample deconvolution. We selected the top 5,000 CpGs 
from each tumor per SVD ranking and determined the 
frequency of highly ranked CpGs across our panel of 
tumors, which yielded 435 enhancer-associated CpGs 
common to any four or more tumors. Of these, 236 CpGs 
are located in the body or promoter of the gene they are 
predicted to regulate (Additional file 2: Fig. S12A; Addi-
tional file 1: Tables S8–9). Applying this subset of CpGs 
to our entire cohort in hierarchical clustering resulted 
in four distinct clusters that segregated all normal (clus-
ter 4) from all tumor regions and further divided the 
ccRCC regions into three groups; cluster 1 = overall 
hypomethylated; cluster 2 = hypermethylated; cluster 
3 = intermediate methylation level (Fig. 5A). Among the 
ccRCC clusters, hypermethylated cluster 2 showed an 

Fig. 5  Enhancer-associated CpGs as drivers of ITH in ccRCC. A Heatmap resulting from supervised hierarchical clustering of 236 
enhancer-associated CpGs identified using GeneHancer that are predicted to influence expression of their respective gene. Four major clusters 
are formed. The p-values are the result of χ2 analyses of clusters 1, 2, and 3 against each other. The color bar at the left indicates the genomic 
feature of each CpG. B Two representative phyloepigenetic trees showing evolutionary methylation changes of regions from the same tumor, with 
progression from the normal baseline into low grade and then high-grade regions. Major evolutional intervals are highlighted and identify genes 
with the highest number of CpG methylation changes (red = hypermethylation; blue = hypomethylation). C Boxplots comparing the average 
Euclidian distance between normal kidney and ccRCC regions with various clinico-pathological parameters (grade, necrosis, SSIGN, and H3K36me3). 
Each point represents the average distance between a tumor region and the normal kidney samples. D Heatmap showing the correlation 
coefficients (r) of 34 KIRC survival-associated CpGs significantly associated with expression of their respective genes. The dendrogram separates 
CpGs with positive r (n = 2; red) from CpGs with negative r (n = 32; blue) correlations. The side bar indicates whether the methylation status is linked 
to more favorable survival outcome
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overrepresentation of regions with necrosis and high 
nuclear grade (G3/G4), while hypomethylated cluster 1 
was overrepresented for low 5mC (1/2) and low SSIGN 
score (0–7). H3K36me3-positive regions were enriched 
in the intermediate methylation cluster 3.

The 236 enhancer-associated CpGs were able to dis-
criminate among tumor regions and across patients; 
therefore, we examined how they cluster regions of the 
same tumor within an individual patient. Using an evo-
lutionary differential analysis between phyloepigenetic-
based tree branches of the same tumor, we identified 
genes with a unique methylation signature that contrib-
ute to each tree’s branching pattern by treating normal 
samples as baseline and identifying differentially meth-
ylated (Δβ > 0.1) CpGs between every group of branches 
and all branches preceding them. This allowed for dis-
covery of gradual and evolutionary methylation changes 
in each tumor for the 236 enhancer CpGs (Fig. 5B, Addi-
tional file 2: Fig. S13). For example, USP44, a ubiquitin-
specific protease that is hypermethylated in the most 
terminal/progressed branches of patient m11 (Fig.  5B, 
left), is known to be downregulated and hypermethylated 
in ccRCC, and USP44 expression is negatively correlated 
with ccRCC stage, grade, and patient survival [39]. Con-
sistent with this, higher expression of 5/13 genes shown 
across phyloepigenetic trees in Additional file  2: Fig. 
S13, including USP44, is associated with more favorable 
survival in TCGA-KIRC (Additional file 2: Fig. S14). On 
average, tumor regions with more aggressive character-
istics (i.e., high grade/SSIGN, necrosis) show the greatest 
Euclidian distance from normal kidney in their respec-
tive trees (Fig. 5C). To further understand links between 
the ITH-driven enhancer CpGs and primary ccRCC, we 
validated their 5mC/expression survival associations 
using TCGA-KIRC data (method summarized in Addi-
tional file 2: Fig. S12B). Of the 236 CpGs from the EPIC 
array, 77 are shared with the Illumina 450 k array (used 
for TCGA-KIRC 5mC analysis), and of these, 49 out of 77 
CpGs are significantly associated with better ccRCC sur-
vival (Additional file 1: Table S10). In addition, expression 
of the genes linked to 34 of these 49 CpGs is significantly 
correlated with their methylation status (28 genes in 
total, including ANKS4B, KRBA1, and USP44) (Fig. 5D). 

Taken together, the 236 heterogeneity-driven enhancer-
linked CpGs have the power to segregate individual 
tumor regions by clinical properties and show that more 
aggressive regions tend to be most distinct, or progressed 
evolutionarily, from less aggressive ccRCC regions and 
normal kidney.

Intratumor epigenetic heterogeneity and copy number 
variation (CNV)
Given that copy number variation (CNV) is associated 
with poor outcome in multiple cancer types [40] and 
can be derived from EPIC array data [41], we explored 
ITH at the CNV level and its interplay with epigenetic 
ITH. We observe variation in copy number within indi-
vidual tumors overall and a significant difference in the 
number of CNVs between normal kidney, SETD2 wt, 
and SETD2 mt ccRCC regions (p < 2.2 × 10–16, Addi-
tional file 2: Fig. S15A). A significant difference in CNV is 
also observed between SETD2 wt and SETD2 mt tumor 
regions (p = 1.4 × 10–9, Fig.  6A, top panel), with higher 
CNV in the former. Overall, there was a negative correla-
tion between global methylation and the number of CNV 
events (r = − 0.48, p = 3.4 × 10–9; Fig. 6A, top panel), con-
sistent with previous findings in other tumor types [42, 
43]. In contrast to global methylation, the number of total 
CNVs (gains and losses) positively correlates with 5mC 
entropy (r = 0.36, p = 1.6 × 10–5; Fig.  6A, bottom panel); 
reinforcing the notion that the level of chaos (entropy) in 
the methylome increases with the frequency of genetic 
changes.

CNV has been examined previously in ccRCC with 
several amplifications and deletions linked to clinical 
outcome, including chromosome 9p deletion [1, 44]. We 
focused on 12 of these ccRCC CNV hotspots and quanti-
fied their amplification or deletion status at the level of 
the chromosome. A detailed listing of all CNVs for each 
tumor region is provided in Additional file 1: Table S11. 
Our results indeed show ITH for this group of clinically 
relevant CNVs, with a significant overrepresentation of 
chr8p deletion (p < 0.001), chr9p deletion (p < 0.001), and 
chr22q deletion (p = 0.014) among regions corresponding 
to SETD2 wt tumors (Fig. 6B), suggesting that the pres-
ence of SETD2 mutation/loss of H3K36me3 influences 

Fig. 6  Interplay between copy number level ITH, 5mC, and clinical parameters. A Scatterplots showing the correlation between CNV counts and 
global 5mC, and CNV counts and entropy, for ccRCC regions. Each dot represents a tumor region and is colored according to the SETD2 status of 
the tumor of origin. The barplot at the top of the panel shows that regions of SETD2 mt tumors have a significantly smaller number of CNVs. The 
side panels show a significant global hypermethylation in SETD2 mt tumors and a significantly higher entropy in SETD2 wt tumors. B Oncoprint 
showing presence and absence of CNVs associated with ccRCC as per Gerlinger et al. [1] and Gulati et al. 44] in our cohort of 12 tumors. Gross 
tumor characteristics (SETD2 mutational status, metastasis, and T stage) of all 12 tumors, and a region-specific result (H3K36me3 IHC status) are 
also shown. Tumors are grouped according to their SETD2 mutational status (wt to the left and mt to the right). P values are the outcome of χ2 
comparison of each CNV between SETD2 wt and mt tumors. Some tumor regions could not be scored (‘NR’) and are left white. C Phylo(epi)genetic 
trees corresponding to the 5mC and CNV datasets. The 5mC tree is drawn using the standardized Euclidian distance measured for the methylation 
of 843,393 CpGs, and the CNV tree is drawn using the standardized Euclidian distance measured for the log2 signal intensities for 25,752 loci

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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genomic stability or drives tumor development down 
a more epigenetically driven pathway less reliant on 
genome instability.

Having established ITH at the 5mC and copy num-
ber levels within the same tumor regions, we sought to 
understand if one of these parameters was more domi-
nant in terms of ITH and the subsequent branching 
structure of phylo(epi)genetic trees. Since the scales of 
CNV and methylation data are different, we standardized 
the Euclidian distances of each dataset separately before 
conducting a comparison by using the method described 
in Hua et  al. (2020) [45]. This analysis shows that the 
phyloepigenetic tree based on 5mC is significantly larger 
than the phylogenetic tree based on CNV, with a median 
standardized Euclidian distance fold difference of 1.41 
(p < 0.001; Fig. 6C). This reflects a more diverse environ-
ment in the methylome than the genome, at least at the 
level of CNV. Furthermore, the mean Euclidian distance 
between any tumor region and normal kidney region is 
significantly larger in the methylation tree compared to 
the CNV tree (Additional file 2: Fig. S15B). Lastly, by plot-
ting the standardized Euclidian distances between ccRCC 
and normal kidney regions for the two trees stratified by 
clinical and pathologic variables (Additional file  2: Figs. 
S15C–F), we observe that tumor regions associated with 
more aggressive phenotypes (high grade, necrosis, and 
high SSIGN score) have on average significantly longer 
standardized Euclidian distances from normal samples in 
the 5mC tree, while displaying no difference in the CNV-
based tree. Taken together, these findings reveal that 
CNV shows antithetical relationships with methylation 
and entropy, and that overall, the methylome is a greater 
source of variability than CNV within ccRCC.

Translational applications of epigenetic ITH to understand 
ccRCC biology
While ITH impacts treatment response, the major cause 
of ccRCC mortality results from metastasis. Given this 
fact, and that few genetic drivers of metastasis have 
been identified [22], we examined our epigenetic ITH 
data to probe for links between regional 5mC variation 
and ccRCC metastatic potential. We began by querying 
TCGA-KIRC data by unsupervised hierarchical cluster-
ing and found that using methylation at the 5000 most 
variable CpGs segregated primary ccRCC that metas-
tasized (M1) from primary ccRCC that did not (M0, 
p = 5.23 × 10–4; Additional file  2: Fig. S16). Given the 
imperfect overlap between the 450  K (used by TCGA) 
and EPIC arrays (this study), integration of this result 
with our methylation data resulted in 4333 out of the 
5000 most variable CpGs being available for further anal-
ysis. Several CNV events have previously been implicated 
in ccRCC aggressiveness and metastasis [1]; therefore, 

we examined whether these events are differentially dis-
tributed among 5mC-based clusters, which could fur-
ther support the clinical and functional relevance of the 
observed clusters. The 4333 CpGs conserved across the 
two array platforms and CNV data calculated from SNP 
arrays in TCGA-KIRC for the same set of amplifica-
tions and deletions used in Fig. 6B were used for analy-
sis. We observed that, as in Additional file  2: Fig. S16, 
two ccRCC clusters form, with cluster 1 enriched for M0 
tumors and cluster 2 enriched for M1 tumors, and overall 
greater CNV enrichment in M1-enriched 5mC cluster 2 
(Fig. 7A). CcRCCs in the M1 enriched cluster 2 are also 
significantly hypermethylated and carry more CNVs irre-
spective of their metastasis status (Figs. 7B, C). Further-
more, the M1 samples in cluster 1, despite the appearance 
of being ‘misclassified’, are significantly hypermethylated 
relative to M0’s in cluster 1 (not true for the M1 tumors 
in cluster 2, Fig.  7D). This suggests that M0 ccRCCs in 
cluster 2 are as hypermethylated as M1 tumors, despite 
not metastasizing, at least during the follow-up period 
available from TCGA.

Since the 4,333 CpGs discriminate between M0 and 
M1 primary ccRCC, suggestive of a 5mC signature of 
metastasis present in the primary tumor, we examined 
how they cluster ccRCC regions from our ITH analy-
sis. We performed hierarchical clustering of the KIRC 
tumor samples with each tumor in our cohort (10–13 
regions each) using the 4333 metastasis-associated CpGs 
(after performing batch correction), and identified tumor 
regions most epigenetically similar to and clustering 
with the KIRC M1 ccRCCs (not shown). Interestingly, 
the M1-like tumor regions from our ITH set are over-
all significantly more distant, in a phyloepigenetic tree, 
from normal kidney regions than M0-like tumor regions 
(p = 0.04; Fig. 7E). This finding is concordant with results 
in TCGA-KIRC where M1 tumors are also significantly 
farther from normal samples than M0 tumors (Addi-
tional file  2: Fig. S17). Furthermore, M1-like regions 
from our cohort carry significantly more CNV than 
M0-like tumor regions (p = 0.024; Fig.  7F). Finally, for 
one case (patient w3) we were able to obtain and analyze 
a single region from a matched synchronous pancreatic 
metastasis. In a phyloepigenetic tree drawn using the 
4333 metastasis-associated CpGs, the pancreatic metas-
tasis branches off from the same branch carrying two 
M1-like regions (Fig. 7G), providing further support that 
the 4333 CpGs do indeed flag regions within primary 
tumors with metastatic ‘tendency’. A similar phyloepi-
genetic tree branching pattern of the metastatic sample 
is observed when incorporated with the primary tumor 
regions of patient w3 and replotted using the previous 
236 enhancer-associated CpGs (Fig.  7H compared with 
Additional file 2: Fig. S13). Figure 7H shows the gradual 
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change in 5mC between normal samples and advanced 
tumor regions. The mean methylation of CpGs in two 
genes is hypomethylated in normal and hypermethylated 
at the terminal tumor regions (USP44 and SATB2); the 
opposite is true for three other genes (KRBA1, ANKS4B, 
and KDM8). The magnitude of change is large and ranges 
between two- and sevenfold. Interestingly, of the 236 

CpGs used to plot the tree in Fig. 7H, 22 are shared with 
the 4333 CpGs from Fig.  7G. Genes linked to these 22 
CpGs include USP44 (n = 2 CpGs), KRBA1 (n = 2 CpGs), 
and ANKS4B (n = 1 CpG), suggesting that epigenetic 
deregulation of these loci plays a role in ccRCC patho-
genesis. Taken together, these findings suggest that epi-
genetic level ITH provides information on the metastatic 

Fig. 7  Translational application of epigenetic ITH to understand ccRCC metastasis. A Unsupervised hierarchical clustering of TCGA’s KIRC cohort 
using the 4333/5000 most variable CpGs that overlap with the EPIC array and do not have any missing data across samples. B Comparison of mean 
5mC of the 4333 CpGs of the M0 tumors in cluster 1 to those in cluster 2, and the M1 tumors in cluster 1 to those in cluster 2. C Boxplot showing 
the over-representation of CNVs in cluster 2 irrespective of the metastasis status. Dots represent TCGA-KIRC samples, and the y-axis indicates the 
number of CNVs from a published set of CNVs linked to clinical features [1, 44]. D Comparison of mean 5mC of the 4333 CpGs of the M0 to the M1 
tumors in cluster 1, and then the M0 to the M1 tumors in cluster 2. E Euclidian distance comparison between M0-like samples in our cohort and 
the normal kidneys, and the distance between the M1-like samples and the normal kidneys. F Difference in the number of observed CNVs in our 
M0-like and M1-like samples. G Phyloepigenetic tree for tumor w3 drawn using the 4333. M0-like and M1-like branches are colored differently. A 
metastatic sample obtained from the pancreas is included in this tree (red arrow) and branches off with two M1-like regions most distant from the 
normal kidney. H Phyloepigenetic tree for tumor w3 drawn using 236 enhancer-associated CpGs derived from Fig. 5. M0-like and M1-like branches 
are colored differently. The heatmap represents the average 5mC of the enhancer CpGs mapped to genes indicated on the tree in Additional file 2: 
Fig. S13: USP44 (n = 3), KRBA1 (n = 4), AKNS4B (n = 5), KDM8 (n = 4), and SATB2 (n = 2)
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potential of individual regions within a tumor, which 
may, with further study, reveal prognostic signatures or 
novel epigenetic drivers of metastasis that could fill an 
important gap in our knowledge of this most insidious 
property of cancer.

Discussion
Prior studies of ITH in ccRCC have focused on mutations 
or CNV; however, far less is known about epigenetic ITH. 
In the present work, we analyzed ITH at the DNA meth-
ylation level, correlated relationships with clinical and 
pathologic data, compared 5mC ITH to copy number 
ITH, examined the influence of SETD2 mutation on ITH 
parameters, and finally applied our ITH data to better 
understand ccRCC metastatic potential. Our data reveal 
marked pathologic level heterogeneity within 5mC and 
H3K36me3 levels. While the latter generally correlates 
well with SETD2 mutation status defined using a single 
region of the tumor, there are limits to the association, 
indicating that addition of H3K36me3 IHC to routine 
pathologic analysis would add value to mutation screen-
ing. Normal kidney shows modest levels of 5mC ITH, 
whereas ccRCC displays markedly elevated methylation 
variability that is highly enriched in kidney enhancers. 
We then linked 5mC variability to entropy and found 
that tumor 5mC entropy was strongly linked to clinical 
parameters including tumor grade and metastasis, and 
that SETD2 wt tumors had greater 5mC entropy than 
SETD2 mutant tumors. Standard differential methyla-
tion analysis revealed a dominating role for inter-patient 
variability within the methylation landscape, which 
necessitated use of intra-class correlation to pinpoint 
5mC variability within and across individual patient 
tumor regions. This approach uncovered a set of CpGs 
with unique properties that robustly clustered tumor 
regions by clinical feature. Extending this approach, we 
applied phyloepigenetic analysis to uncover novel epi-
genetic drivers such as USP44, ANKS4B, and KDM8. 
Copy number was also analyzed revealing that higher 
CNV ITH correlated with lower global 5mC but higher 
5mC entropy. Finally, we applied our ITH findings to a 
key aspect of ccRCC biology: understanding tumor meta-
static potential. Our findings revealed that 5mC ITH data 
pinpoint epigenetic signatures related to metastasis.

Our study has several limitations. First, although 
we isolated small regions from individual slides, the 
approach is still a ‘bulk’ approach, and as such we are 
dealing with mixtures of cells. Although all the regions 
we analyzed were chosen to have > 60% tumor content, 
our results may nonetheless be influenced by cell compo-
sition. Advantages of the multi-region approach include 
much greater ‘coverage’ of the tumor, including cover-
age of a larger geographic area; a noted limitation of 

single-cell sequencing approaches. Second, at the DNA 
methylation level, single cell whole genome bisulfite 
sequencing is only just becoming available and suffers 
from low CpG coverage [46]. Third, we did not sequence 
each subregion within the tumor for loss of function 
mutations such as VHL, BAP1, and PBRM1. Given that 
VHL mutation is the only consistent truncal mutation 
in ccRCC, and nearly two-thirds of other ccRCC driver 
mutations are subclonal, a single region, single cell 
approach would almost certainly miss substantial ITH 
present at any level [1]. The importance of subclonal 
mutations to the tumor overall are only just beginning 
to be appreciated, but data suggest that they can drive 
overall tumor growth and contribute to development of 
new phenotypic traits [47]. Ideally, as single cell epig-
enome methods become more routine and their genome 
coverage increases, a future study addressing epigenetic 
ITH might combine the two approaches to achieve both 
macro- (i.e., regional) and micro- (single cell) level cov-
erage to fully understand the functional consequences 
of ITH. As such, this would complement the work of 
Li et  al. [48] who studied ccRCC heterogeneity using a 
multi-region analysis of scRNA-seq and exome sequenc-
ing mutational landscapes.

We initially hypothesized that loss of SETD2-mediated 
H3K36me3 and its ability to target 5mC via DNMT3B 
(and to a lesser extent DNMT3A [26]) would result in 
greater epigenetic disorder; however, we observed the 
opposite. This may indicate that loss of SETD2 is a strong 
driver of epigenome deregulation that directs tumor 
cells down a distinct pathway, whereas SETD2 proficient 
tumor cells sustain greater variability in the epigenome 
due to diversity of other genetic changes that may work 
only partly through the epigenome (e.g., VHL [49]) and/
or epigenome-independent pathways. Our analysis also 
revealed that while there was a modest level of 5mC het-
erogeneity (or entropy) in the normal kidney, this was 
markedly elevated in ccRCC. Kidney 5mC variability 
was primarily enriched at gene bodies, whereas ccRCC 
5mC variability was highly enriched in kidney enhanc-
ers. This suggests that variable CpGs in normal kidney 
are less involved with gene regulatory events (rather they 
may reflect other influences on gene expression such as 
genetic and/or environmental exposures), while the epi-
genetic heterogeneity within ccRCC has the potential to 
drive more dramatic effects on gene expression though 
changes in cell-type-specific enhancer function. Indeed, 
genes linked to normal kidney epigenetic heterogene-
ity are weakly enriched in specific pathways, includ-
ing tumor-relevant pathways, whereas genes linked to 
enhancers subject to epigenome ITH are highly enriched 
in cancer-related pathways like epithelial-to-mesenchy-
mal transition and CXCR4 signaling that may influence 



Page 17 of 20El Khoury et al. Clinical Epigenetics           (2023) 15:71 	

metastatic potential [49]. The importance of epigenetic 
ITH targeting enhancers was also evident from our find-
ing that a small subset of enhancer 5mC changes linked 
to ITH within patient tumors robustly segregated tumor 
regions by clinically relevant properties including grade, 
stage, and metastasis, and uncovered both known and 
novel putative 5mC drivers in phyloepigenetic analyses. 
Thus, epigenetic ITH targeting enhancers could impact 
a diverse array of processes including cell survival and 
proliferation, response to chemotherapeutics, the tumor 
microenvironment, and metastatic potential. The impli-
cations of epigenetic heterogeneity, and differences 
driven by epigenetic regulator mutations like SETD2 are 
likely relevant for both therapy and biomarker develop-
ment. Use of phyloepigenetic approaches would enhance 
both efforts by aiding in identification of the most com-
mon/early epigenetic changes throughout the tumor, and 
for biomarker development since these truncal epigenetic 
changes may become targetable by future therapeutics. 
It is unclear how epigenetic heterogeneity will influence 
response to epigenetic drugs like 5-aza-2’-deoxycytidine, 
but, drawing inferences from genetic heterogeneity, less 
ITH may portend a better response to these agents since 
greater epigenetic heterogeneity would be expected to 
contribute to enhanced phenotypic heterogeneity upon 
which evolutionary selection can act [17]. Such analy-
ses will be important as part of future studies to better 
understand how epigenetic-level ITH influences tumor 
properties and response to treatment.

During our analyses we noted that, for a number of 
measured parameters, there was a discrepancy between 
findings related to SETD2 mutation status (defined 
by targeted exome sequencing of single region), and 
SETD2 ‘functionality’ defined by presence of H3K36me3 
detected by IHC. For example, global methylation vari-
ability, Euclidian distances between tumor regions and 
normal kidney, and overall CNV number were higher 
in sequence-based SETD2 wild-type tumors, but higher 
in IHC-based H3K36me3 negative tumor regions. In 
contrast, other parameters such as global 5mC and 
enhancer-based entropy were only significant for one of 
the two parameters. Given the high level of ITH reported 
within ccRCC at the mutational, copy number, immune 
microenvironment, and therapeutic response levels [1, 
9, 10] this outcome may not be surprising. While on 
the one hand this could be discordance, it could also 
be because we did not sequence the SETD2 gene in all 
tumor regions as this was not our main focus. Follow-
up work performing targeted sequencing across SETD2 
might reveal the presence of subclonal mutations, which 
are common in ccRCC [1]. While a number of reports, 
including from our own group, have used H3K36me3 as 
a surrogate for SETD2 mutational status due to the lack 

of suitable IHC grade SETD2 antibodies [25, 28], in most 
cases only the single most clinically aggressive region is 
examined by sequencing. Discordance between meth-
odologies used to assess the mutational status of other 
oncogenes and tumor suppressor genes has been noted 
previously, including HER2 amplification and overex-
pression in breast cancer [50], TP53 mutations in ovarian 
cancer [51], BRAF V600E mutation status in colorec-
tal cancer [52], and aberrant cytoplasmic localization of 
nucleophosmin in acute myeloid leukemia [53]. While 
SETD2 mutation may initiate loss of H3K36me3, SETD2 
mutant cells initially may comprise only a small fraction 
of the tumor mass, and/or be distributed non-uniformly 
throughout the tumor. Whether this immediately leads to 
H3K36me3 loss or whether other factors might initially 
compensate, such as H3K36me2 driven by the NSD1/2/3 
family, is unknown. Indeed, when SETD2 is knocked out 
in mouse models, the H3K36me2 mark partially redis-
tributes to regions formerly enriched for H3K36me3 [26] 
and in vitro studies show that NSD factors can perform 
mono, di, and trimethylation at the H3K36 position [54]. 
Alternatively, other methods of gene inactivation, such as 
epigenetic silencing though promoter methylation, may 
contribute to the observed discordance. VHL, for exam-
ple, is intact but silenced by DNA hypermethylation in 
11–35% of ccRCC cases [55, 56]. While we did not find 
evidence for SETD2 promoter hypermethylation in this 
study (data not shown, consistent with [57]), other regu-
lators of H3K36 methylation like NSD1 can be targeted in 
this way in ccRCC [58]. An additional issue relates to the 
nature of the SETD2 mutations themselves. While most 
of the SETD2 mutations in our cohort are likely inacti-
vating because they are frameshift or nonsense mutations 
(5/6), one patient’s tumor contained a missense mutation 
(R1592P in patient m11) that is predicted as ‘probably 
damaging’ by Polyphen-2. Indeed, this patient showed 
7 out 10 regions positive for H3K36me3 by IHC. Given 
SETD2’s large size, very few cancer mutations have been 
functionally studied for their effect on enzymatic activity, 
DNA binding, subcellular localization, or protein stabil-
ity. We are not aware of a systematic intratumor com-
parison of these two parameters for ccRCC outside of 
our study. Our results indicate that more comprehensive 
co-analyses of SETD2 mutation and H3K36me3 levels are 
warranted in future studies, and will likely be essential to 
fully understand their interplay with tumor phenotypes 
and patient outcome.

Conclusions
This study represents, to our knowledge, the first inves-
tigation into 5mC ITH in ccRCC using a multi-region 
sampling approach. Our results reveal marked ITH at the 
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epigenome level, particularly targeting kidney enhancers. 
Furthermore, using epigenetic ITH findings we identi-
fied a 5mC signature that links primary tumor regions 
with more aggressive clinical characteristics to metastatic 
potential.

Methods
Upon institutional review board approval, patients who 
underwent radical nephrectomy for unilateral ccRCC 
were identified through the Mayo Clinic Biobank. FFPE 
blocks containing predominantly histologically viable-
appearing tumor cells were identified by a genitouri-
nary pathologist (MLS). Sections from each block were 
cut and mounted onto glass slides, and then each slide 
was further divided into 3–6 regions for DNA isolation 
(typically the same region was cut and pooled from 3 to 
5 adjacent re-cuts to obtain sufficient DNA, Fig. 1). This 
yielded 10–13 separate tumor regions from each patient 
(138 tumor regions total from 12 patients). DNA was 
extracted and genomic mutational profiles determined 
using a targeted next generation sequencing cancer gene 
panel. From these samples, we identified six SETD2 wild-
type (wt) and six SETD2 mutant (mt) cases to allow us 
to compare the impact of this mutation, known to regu-
late H3K36me3 and 5mC patterns [24] on epigenome-
level ITH. Clinical and pathologic characteristics of each 
tumor are summarized in Table 1 and listed individually 
by patient, along with their gene mutation profiles from 
the targeted gene sequencing panel in Additional file  1: 
Tables S1 and S3. We also obtained three snap-frozen 
non-cancerous kidney tissue samples from the National 
Disease Research Interchange (NRDI). Information on 
the normal kidney samples is also listed in Table  1 and 
Additional file 1: Table S5.

5mC profiling from normal kidney and ccRCC regions 
was measured using the Infinium MethylationEPIC array 
(Illumina) run at the University of Minnesota Genom-
ics Core Facility. IDAT files were preprocessed using the 
commonly used normalization [59] and QC pipelines 
[60] before obtaining methylation β values.

All analyses such as differential methylation, copy num-
ber variation (CNV), intraclass correlation coefficient 
(ICC), singular value decomposition (SVD), entropy, and 
Euclidian distances measurement, as well as plot genera-
tion were executed in an R environment (version 3.6.2). 
Ingenuity Pathway Analysis (IPA, Qiagen) and Genomic 
Regions Enrichments of Annotation Tool (GREAT) [61] 
were used for gene ontology and comparative analyses. 
Additional details regarding these methodologies can 
be found in the Supplemental Methods section in Addi-
tional file 2.
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