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Abstract 

Background  Advances in understanding of cancer biology, genomics, epigenomics, and immunology have resulted 
in development of several therapeutic options that expand cancer care beyond traditional chemotherapy or radio-
therapy, including individualized treatment strategies, novel treatments based on monotherapies or combination 
therapy to reduce toxicities, and implementation of strategies for overcoming resistance to anticancer therapy.

Results  This review covers the latest applications of epigenetic therapies for treatment of B cell, T cell, and Hodg-
kin lymphomas, highlighting key clinical trial results with monotherapies and combination therapies from the main 
classes of epigenetic therapies, including inhibitors of DNA methyltransferases, protein arginine methyltransferases, 
enhancer of zeste homolog 2, histone deacetylases, and the bromodomain and extraterminal domain.

Conclusion  Epigenetic therapies are emerging as an attractive add-on to traditional chemotherapy and immuno-
therapy regimens. New classes of epigenetic therapies promise low toxicity and may work synergistically with other 
cancer treatments to overcome drug resistance mechanisms.

Keywords  B cell lymphoma, EZH2 inhibitor, Hodgkin lymphoma, T cell lymphoma

†Javier L. Munoz and J. C. Villasboas contributed equally and are co-senior 
authors of this work

*Correspondence:
Allison C. Rosenthal
rosenthal.allison@mayo.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-023-01452-6&domain=pdf


Page 2 of 13Rosenthal et al. Clinical Epigenetics           (2023) 15:39 

Graphical Abstract

Background
Non-Hodgkin lymphoma (NHL) is the seventh-most 
prevalent cancer and has the sixth-highest mortality rate 
among cancers in the USA [1]. Hodgkin lymphoma (HL) 
is the other main subtype of lymphoma. An estimated 
8830 individuals in the USA will have been diagnosed 
with HL in 2021 [2]. Other subtypes of NHL include B 
cell, T cell, and natural killer cell lymphomas, with the 
most common B cell lymphoma subtypes being diffuse 
large B cell lymphoma (DLBCL; 31% of diagnosed lym-
phomas), follicular lymphoma (FL; 22%), and marginal 
zone lymphoma (8%) [1]. The prognoses for patients with 
HL and NHL are dependent on a variety of factors, such 
as age at diagnosis, cancer stage, lymphatic involvement, 
how well the patient performs normal daily activities 
(performance status), and levels of lactate dehydrogenase 
in the blood [3]. Although survival rates are dependent 

on these factors, the overall 5-year survival rate is 89% 
for patients with HL [2] and 73% for patients with NHL 
[2, 3]. Survival rates are globally increasing; however, the 
prognosis for people with relapsed lymphoma remains 
poor.

In patients with NHL or HL, common treatment 
options include chemotherapy, immunotherapy, and radi-
otherapy, used alone or in combination, and have high 
curative potential for many patients but come with signif-
icant challenges for a small subset of patients. Although 
chemotherapy is a well-established, effective method of 
treating lymphoma, many adverse events (AEs) are asso-
ciated with chemotherapeutic agents due to their cyto-
toxic and nonselective mechanisms of action [4]. Some of 
the short-term impacts of chemotherapy, such as fatigue, 
nausea, hair loss, and loss of appetite, resolve quickly 
with lifestyle modifications and/or supportive therapy 
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[5]. Supportive therapy or other approaches used to 
reduce the impact of chemotherapy-induced AEs are not 
effective in reducing the long-term impact of chemother-
apy and may be associated with additional AEs. Some of 
the long-term impacts of chemotherapy that may or may 
not be controlled by supportive medicine include loss of 
fertility, secondary cancer development, and lung dam-
age. In aggressive forms of lymphoma, such as DLBCL, 
most patients are older than 60  years when diagnosed 
and some are too frail for standard chemotherapies [6].

The anti-CD monoclonal antibody rituximab revolu-
tionized the treatment and prognosis for CD20+ B cell 
malignancies and established immunotherapy as a valid 
treatment option for B cell malignancies [7]. Despite the 
success of rituximab, resistance to first-line rituximab in 
indolent B cell NHL and in relapsed or refractory (R/R) 
disease can occur [8]. Rituximab is indicated for treat-
ment of patients with previously untreated or R/R B 
cell NHL [9]as monotherapy for patients with R/R FL, 
in combination with chemotherapy regimens contain-
ing cyclophosphamide, doxorubicin, vincristine, and 
prednisone (CHOP) for patients with untreated DLBCL, 
and with cyclophosphamide, vincristine, and predni-
solone (CVP) for patients with untreated FL [9, 10]. For 
advanced-stage FL, common treatment regimens include 
rituximab alone or in combination with chemotherapy, 
such as CVP or CHOP [11], or a targeted therapy, such 
as rituximab plus lenalidomide (R2), as first-line therapy 
[12]. R2 is also used as a treatment option for multiple 
NHL subtypes [9, 10, 13]. Combination rituximab and 
bendamustine is also indicated for patients with indo-
lent NHL [14]. Rituximab is a component in 58% of 
second-line FL combination therapies, and the majority 
of patients with R/R FL will receive rituximab again in 
subsequent lines of therapy [15]. For example, one study 
showed that 40% of patients with relapsed FL or low-
grade NHL responded to re-treatment with rituximab 
after having received prior rituximab therapy [16]. How-
ever, rituximab rechallenge in patients with R/R NHL is 
associated with a shorter progression-free survival rate 
than patients naive to rituximab [10]. Therefore, alterna-
tives to existing treatments are being sought, particularly 
with regard to targeted therapies [17]. More recently, gly-
coengineered type II anti-CD20 monoclonal antibodies, 
such as obinutuzumab, have shown superior response 
rates to rituximab, whether as monotherapy or in com-
bination for R/R indolent lymphoma [18]. Unfortunately, 
this therapy is associated with increased side effects com-
pared with rituximab monotherapy and may be better 
suited in combination with therapies with low risk of AEs 
[17, 18].

Subsequent advances in our understanding of the 
biology, genetics, and immunology of cancer led to 

development of targeted therapies and immunomodu-
latory drugs, including small molecule kinase inhibitors 
and monoclonal antibodies targeting proteins involved 
in cancer cell growth and mitogenic signaling. Although 
these therapies are more selective than chemotherapy 
and thus designed to generate fewer off-target effects 
[4], their use is associated with unique AEs related to 
their targets, such as cutaneous toxicity observed with 
epidermal growth factor receptor inhibitors [19], and 
hepatotoxicity, diarrhea, glucose regulation abnormali-
ties (e.g., hyperglycemia) [20], as well as pneumonitis 
associated with phosphatidylinositol 3-kinase inhibitor 
use [21]. Emerging anticancer immunotherapeutic agents 
(e.g., immune checkpoint inhibitors, T cell therapies) are 
associated with immune-related AEs that can affect their 
safety and tolerability profiles [22, 23]. Issues of cytotox-
icity, treatment resistance, and tolerability with the afore-
mentioned therapies indicate additional need for new 
classes of therapeutics.

Epigenetic therapies are a selective way to treat cancer 
that avoid the cytotoxic AEs associated with chemother-
apy and targeted therapies [24]. They are also a means of 
overcoming drug resistance pathways, making them an 
important complementary tool in the treatment of R/R 
lymphomas. Epigenetic modulators control gene expres-
sion and are involved in several cellular processes that 
depend on modification of nucleic acids and histones, 
including cellular growth and proliferation [25]. Epige-
netic modifications include DNA methylation and his-
tone acetylation/methylation, all of which regulate the 
accessibility of chromatin to transcription factors and 
other DNA-binding proteins (Fig.  1) [25]. Many epige-
netic processes are linked to oncogenesis and cancer pro-
liferation [25]. Several epigenetic therapies are approved 
for treatment of lymphomas [26–30].

This review provides an in-depth summary of key 
clinical advances of epigenetic therapies for treatment 
of lymphoma in the last 5 years and the potentially syn-
ergistic benefits they provide when administered with 
other therapeutic agents. Classes of therapeutic agents 
covered include inhibitors of DNA N-methyltransferases 
(DNMTs), histone methyltransferases (HMTs), pro-
tein arginine methyltransferases (PRMTs), histone dea-
cetylases (HDACs), bromodomain (BRD), and BRD/
extraterminal domain (BET; Table 1) [31–43]. This review 
covers the safety profiles of key agents from these classes 
(Table 2).

Epigenetic mechanisms targeted in cancer therapy
Epigenetic writers
DNA hypermethylation in cancer cells is associated 
with silencing of tumor suppressor genes and activation 
of oncogenes, and it is one of the most characterized 
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Fig. 1  Overview of key epigenetic mechanisms and classes of epigenetic therapies

Table 1  Summary of key epigenetic therapies by lymphoma type

BCL B cell lymphoma; CTCL cutaneous T cell lymphoma; DLBCL diffuse large B cell lymphoma; EZH2 enhancer of zeste homolog 2; DMNT DNA N-methyltransferase; FL 
follicular lymphoma; HDAC histone deacetylase; HL Hodgkin lymphoma; mTOR mechanistic target of rapamycin; NHL non-Hodgkin lymphoma; ORR objective response 
rate; PMNT phenylethanolamine N-methyltransferase; PTCL peripheral T cell lymphoma; R-CVEP rituximab, cyclophosphamide, vorinostat, etoposide, and prednisone; 
R/R relapsed or refractory; and TCL T cell lymphoma

Lymphoma type Epigenetic 
inhibitor class

Key result

Monotherapy Combination therapy

BCL DMNT No clinical benefit [31] R/R DLBCL (azacitidine + vorinostat + gemcitabine/
busulfan/melphalan): ORR 78% [32]

EZH2 MT EZH2 FL (tazemetostat): ORR 69% [33] Data not yet available

PMNT Data not yet available No studies

HDAC R/R DLBCL (fimepinostat): ORR 37%
FL (vorinostat): ORR 47–49% [34, 35]

NHL (vorinostat + R-CVEP): ORR 41–57% [36, 37]

TCL EZH2 TCL (valemetostat): ORR 80% [38] No studies

HDAC CTCL (vorinostat): ORR 30% [39]
CTCL (romidepsin): ORR 33–41% [100–102]
PTCL (romidepsin): ORR 25% [40]

R/R PTCL (romidepsin + pralatrexate): ORR 71% [41]

HL HDAC Ineffective vs immunomodulating agents [42] Vorinostat + mTOR inhibitor: ORR 33–55% [43]

DMNT No studies Azacitidine + vorinostat + chemotherapy (gemcit-
abine/busulfan/melphalan): ORR 88% [32]
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epigenetic mechanisms in cancer [44]. Targeting epige-
netic writers, such as DNMTs, PRMTs, and HMTs, are an 
attractive strategy to restore the epigenomic regulation of 
cellular proliferation and halt cancer cell growth (Fig. 1) 
[25]. DNA methyltransferases transfer a methyl group 
from S-adenosylmethionine to the cytosine ring in a 
cytosine–phosphate–guanine dinucleotide pair in the C5 
position to create 5-methylcytosine, a molecule that reg-
ulates gene transcription [44]. Studies show that DNMT 
inhibitors induce hypomethylation and upregulation 
of genes involved in DNA transcription, RNA process-
ing, and ribosomal function as their primary therapeutic 
effect, although it is unclear if the modest increase in the 
rate of hypomethylation caused by an inhibitor is enough 
to affect cellular functions [45, 46]. DNMT mutations are 
common in many kinds of cancer cells, including lym-
phomas, and studies have shown that a higher baseline 
level of methylation exists in cancerous cells compared 
with noncancerous cells, even when cells stop dividing 
[47, 48].

Histone methyltransferases play a similar role to that of 
DNMTs in cancer cell biology, catalyzing the transfer of 1 
or more methyl groups to lysine and arginine residues on 
histone proteins [49]. Depending on the site of methyla-
tion, histones can promote or repress gene transcription 
[50]. The HMT EZH2 has emerged as an attractive thera-
peutic strategy for various malignancies because of its 
noncytotoxic mechanism of action and hypothesized role 
in overcoming mechanisms of chemoresistance [51–53]. 
Enhancer of zeste homolog 2 is the enzymatic subunit 

of polycomb repressive complex 2 that catalyzes 1 to 
3 methylations of Lys27 on histone H3, which serves to 
repress gene transcription [54, 55]. The gain-of-function 
EZH2 mutation at tyrosine 641 within the catalytic SET 
domain increases H3K27 trimethylation and decreases 
H3K27 monomethylation [54, 56]. However, wild-type 
germinal center-derived lymphomas also retain depend-
ency on EZH2 to proliferate and repress plasma cell dif-
ferentiation [57]. EZH2 plays a role in many processes 
within the tumor microenvironment, including CD4+, 
natural killer, and CD8 T cell differentiations and func-
tions [58].

Other potential epigenetic writer targets are protein 
arginine methyltransferase 5 (PRMT5) and lysine meth-
yltransferase 2 (KMT2). PRMT5 is a subtype of PRMT 
that catalyzes the methylation of mono- and symmetric 
dimethylarginine, which can repress or promote gene 
transcription. PRMT5 is one of the most overexpressed 
PRMT types in cancer cells, regulating B cell prolifera-
tion and survival, and germinal cell formation and expan-
sion, hence its emergence as a possible therapeutic target 
[59, 60]. KMT2, a lysine methyltransferase, is considered 
to be the main lysine 4 of the core histone H3 (H3K4) 
methyltransferase [61]. KMT2 positively regulates gene 
expression and mutations, in particular subsets of the 
KMT2 family, and has been implicated in hematologic 
malignancies owing to induction of H3K4me3 to the pro-
moter of genes associated with hematopoietic cell devel-
opment and differentiation [62].

Table 2  Summary of select grade ≥ 3 AEs by epigenetic therapy class

BET bromodomain and extraterminal domain; CTCL cutaneous T cell lymphoma; DLBCL diffuse large B cell lymphoma; DMNT DNA N-methyltransferase; EZH2 enhancer 
of zeste homolog 2; FL follicular lymphoma; HDAC histone deacetylase; HL Hodgkin lymphoma; NHL non-Hodgkin lymphoma; PTCL peripheral T cell lymphoma, PRMT 
protein arginine methyltransferase; and TCL T cell lymphoma
a Adverse events not listed by grade

Epigenetic class Agent Indication Grade ≥ 3 AE, incidence (%)

DNMT inhibitor Azacitidine + vori-
nostat + chemo-
therapy

NHL, HL, TCL [32] Mucositis (32), neutropenic fever (100), transient hyperbilirubinemia (18), 
transaminase elevation (25)

EZH2 inhibitor Tazemetostat FL [33] Anemia (2), neutropenia (3), thrombocytopenia (3)

Valemetostat NHL, TCL [38] Pneumonia (7), anemia,a dysgeusia,a decreased platelet counta

PRMT5 inhibitor JNJ-64619178 NHL [73] Anemia (17), neutropenia (6), thrombocytopenia (20)

HDAC inhibitor Vorinostat NHL [34, 35, 74] Anemia (4–6), decreased platelet count (29), neutropenia (41), thrombocytopenia 
(6–48)

CTCL [39, 75] Anemia (1–8), fatigue (5), thrombocytopenia (5–19)

Abexinostat NHL, TCL [76] Anemia (12), neutropenia (27), thrombocytopenia (80)

Panobinostat CTCL [77, 78] Thrombocytopenia (17–20), neutropenia (9–20)

Fimepinostat DLBCL [79] Neutropenia (16), thrombocytopenia (36)

Romidepsin CTCL, PTCL [40, 100–102] Neutropenia (0–18), thrombocytopenia (0–23), lymphopenia (0–21), leukopenia 
(0–12)

BET inhibitor Molibresib NHL [80] Thrombocytopenia (70)
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Epigenetic erasers
Epigenetic erasers  are proteins that remove DNA and 
histone protein modifications produced by epige-
netic  writers to regulate gene expression (Fig.  1) [25]. 
Histone and nonhistone protein acetylation is regulated 
through opposing functions of histone acetyltransferases 
and HDACs [25, 42, 63]. Histone acetylation promotes 
cancer cell growth by increasing the rate of gene expres-
sion of oncogenes, such as B cell lymphoma 6 (BCL6), 
which regulates oncogenes implicated in FL, DLBCL, 
and B cell lymphoproliferative disorders [25, 42, 63, 64]. 
Histone deacetylases are made up of 4 classes that are 
all potential anticancer targets, although some are zinc 
dependent (classes 1, 2a/b, and 4) or nicotinamide–ade-
nine–dinucleotide dependent (class 3) [42]. Studies show 
HDAC inhibitors reactivate tumor suppressor genes and 
promote an immune response [65].

Another epigenetic eraser, histone demethylases 
(KDM), removes the arginine and lysine residues added 
by HMTs [66]. A particular subfamily of KDMs, KDM5, 
can remove tri- and dimethyl marks from H3K4. KDM5 
can either activate or suppress transcription depend-
ing on the methylation site and has been shown to be 
involved in the regulation of oncogenes [66].

Epigenetic readers
Epigenetic readers are composed of domains that rec-
ognize and bind to specific post-translational DNA or 
histone modifications. These modifications include BRD-
containing proteins that recognize acetylated histone 
residues, methyl cytosine–phosphate–guanine-binding 
domains that recognize methylated cytosine–phosphate–
guanine, and chromodomains that recognize methylated 
lysine (Fig. 1) [25]. The BET family of epigenetic readers 
plays a critical role in cancer development by activating 
and potentiating expression of key oncogenes [25, 63]. 
The BET family comprises 4 members, including BRD-
containing proteins 2 (BRD2), 3 (BRD3), 4 (BRD4), and 
t (BRDt) [25], although targeting BRD4 is thought to be 
the primary cause of the anti-oncogenic effects of BET 
inhibitors [67].

Epigenetic therapies for lymphomas
B cell non‑Hodgkin lymphomas
DNA methyltransferase inhibitors
Two DNMT inhibitors, azacitidine and decitabine, are 
approved by the US Food and Drug Administration 
(FDA) and the European Medicines Agency for treatment 
of acute myeloid leukemia and myelodysplastic syndrome 
[27, 68, 69], but studies thus far have shown no evidence 
that decitabine promoted hypomethylation in individuals 
with DLBCL [31].

Although decitabine is ineffective as a monother-
apy [31], a phase 1/2 study combined decitabine with 
chemotherapy in 6 patients with DLBCL, NHL, and HL 
who previously experienced progressive disease (PD) 
on chemotherapy. Two participants maintained stable 
disease (SD), and the remainder experienced PD after 
several months [70]. In phase 1 studies, DNMT inhibi-
tors CC-486 (oral azacitidine) and azacitidine rendered 
chemotherapy-resistant DLBCLs sensitive to CHOP 
[71, 72]. In 26 participants with R/R DLBCL eligible for 
high-dose therapy, azacitidine followed by vorinostat in 
combination with gemcitabine, busulfan, and melphalan 
as second-line therapy yielded an objective response rate 
(ORR) of 78% and a complete response (CR) rate of 55% 
[32]. Common AEs reported with this regimen include 
mucositis, dermatitis, and transient hyperbilirubinemia, 
which resolved after 1 week on treatment [32–35, 38, 39, 
73–80].

Enhancer of zeste homolog 2 inhibitors
In early clinical trials, tazemetostat, an EZH2 inhibi-
tor that also reduces methyltransferase activity in EZH2 
mutant and wild-type FL [81], produced CR rates of 38% 
in participants with NHL [82] and 33% in participants 
with R/R DLBCL [83]. In a phase 2 trial in 99 participants 
with R/R FL, those with wild-type EZH2 FL (n = 54) had 
an ORR of 35% and participants with mutant EZH2 FL 
(n = 45) had an ORR of 69%. Durations of response in 
wild-type EZH2 FL were 13.0  months and 10.9  months 
in the mutant EZH2 FL group [33]. In 2020, tazemetostat 
received accelerated regulatory approval from the FDA 
for treatment of R/R FL. Grade ≥ 3 AEs associated with 
tazemetostat were low and included thrombocytopenia 
(3%), neutropenia (3%), and anemia (2%) [33]. By con-
trast, grade 3–4 AE rates of  > 30% for thrombocytopenia 
were reported with other classes of epigenetic agents [79, 
80, 84]. Following its approval as monotherapy, tazem-
etostat is undergoing evaluation in combination with 
rituximab (NCT04762160), in combination with lena-
lidomide and rituximab (NCT04224493) for treatment of 
R/R FL, and in combination with prednisolone for treat-
ment of R/R DLBCL (NCT01897571).

Another EZH2 inhibitor with reported clinical data 
is valemetostat, an oral dual inhibitor of EZH2 and 
enhancer of zeste homolog 1 (another methyltransferase) 
[85]. An ORR of 53% was achieved in the first-in-human 
clinical trial of 15 participants with B or T cell lymphoma 
[38, 63]. Several other EZH2 inhibitors are in ongoing 
clinical studies for treatment of NHL and include CPI-
0209 (NCT04104776), HH2853 (NCT04390737), and 
PF-06821497 (NCT03460977; Table 3) [86, 87].
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Protein arginine methyltransferase inhibitors
Three PRMT5 inhibitors—GSK3326595, JNJ-64619178, 
and PRT811—are in clinical development. GSK3326595 
is being evaluated in a dose-escalation study of patients 
with solid tumors and NHL (NCT02783300). JNJ-
64619178 is being studied in an ongoing phase 1 trial 
(NCT03573310) in which it induced partial responses 
and SD in participants with NHL and solid tumors [73]. 
PRT811 is being studied in a phase 1 trial for treatment of 
approximately 75 participants with either central nervous 
system lymphomas, advanced solid tumors, or recurrent 
high-grade gliomas (NCT04089449). Of the 54 patients 
enrolled in the JNJ-64619178 trial, preliminary clinical 
results indicate that 20% experienced grade ≥ 3 throm-
bocytopenia, 17% experienced grade ≥ 3 anemia, and 6% 
experienced grade ≥ 3 neutropenia [73].

Histone deacetylase inhibitors
First-generation HDAC inhibitors such as vorinostat are 
nonselective toward the 4 classes of HDAC enzymes, 
but selective HDAC inhibitors are being developed as a 
promising treatment class that may result in fewer off-
target effects than pan-HDAC inhibitors [88].

Monotherapy with HDAC inhibitors has demon-
strated modest clinical activity in several studies [34, 35, 
74, 76, 79]. Vorinostat, an inhibitor of class 1/2 HDAC 
enzymes, was tested as a monotherapy in a phase 2 study 
of patients with relapsed DLBCL, but 16 of 18 enrolled 
patients experienced PD [74]. By contrast, vorinostat 
monotherapy produced an ORR of 47% to 49% in par-
ticipants with FL and an ORR of 22% in participants with 
marginal zone lymphoma (n = 9) [34, 35]. None of the 

participants with mantle cell lymphoma in either study 
(n = 4 and n = 9) achieved a clinical response with vori-
nostat monotherapy. The most common grade 3/4 AE 
associated with vorinostat was thrombocytopenia [34, 
35, 74]. Another HDAC inhibitor, mocetinostat, was 
tested in a phase 2 study of patients with R/R DLBCL and 
FL, but the drug failed to reach the threshold for clini-
cal efficacy (> 20% ORR) [89]. Abexinostat, a pan-HDAC 
inhibitor, was clinically active as monotherapy in a phase 
2 study of patients with FL (ORR, 56%) or DLBCL (ORR, 
31%) [76]. Similar to vorinostat, the most common grade 
3/4 AEs were thrombocytopenia (80%) and neutropenia 
(27%) [76].

Fimepinostat, a first-in-class, dual-target inhibitor of 
phosphatidylinositol 3-kinase (PI3K) class I and pan-
HDAC enzymes, achieved an ORR of 37% when adminis-
tered as monotherapy in 25 participants with R/R DLBCL 
[79]. Of these participants, 36% experienced grade ≥ 3 
thrombocytopenia and 16% experienced grade ≥ 3 neu-
tropenia, resulting in a safety profile comparable with 
other HDAC inhibitors [79]. The FDA granted fime-
pinostat fast-track status in 2018 for treatment of R/R 
DLBCL [29].

Most HDAC inhibitors have low responses in B cell 
lymphomas when used as monotherapy, but they demon-
strate synergy with other drugs; however, this synergy is 
tempered by poor safety profiles. Vorinostat in combina-
tion with rituximab or rituximab plus cyclophosphamide, 
etoposide, and prednisone achieved an ORR of 41% to 
57% in participants with R/R B cell NHL, including those 
with DLBCL. The most frequent grade ≥ 3 AEs included 
lymphopenia (25–90%), fatigue (14–32%), and lowered 

Table 3  Ongoing clinical trials of EZH2 inhibitors

CRPC castration-resistant prostate cancer; DLBCL diffuse large B cell lymphoma; FL follicular lymphoma; HL Hodgkin lymphoma; MCL mantle cell lymphoma; MZL 
marginal zone lymphoma; R/R relapsed or refractory; SCLC small cell lung cancer; and SOC standard of care

Clinical trial Therapeutic agent Key study population

SYMPHONY-1
Phase 1b/3
NCT04224493 [86]

Tazemetostat + lenalidomide + rituximab R/R FL

SYMPHONY-2
Phase 2
NCT04762160 [87]

Tazemetostat + rituximab R/R FL

Phase 1/2
NCT01897571

Tazemetostat + prednisolone Advanced solid tumors (single-agent tazemetostat)
R/R DLBCL (combination therapy)

Phase 2
NCT04842877

Valemetostat R/R aggressive B cell lymphomas, transformed indolent lymphoma, FL, MCL, MZL, HL

Phase 1/2
NCT04104776

CPI-0209 Advanced solid tumors
R/R DLBCL

Phase 1
NCT04390737

HH2853 Advanced solid tumors
R/R DLBCL, FL

Phase 1
NCT03460977

PF-06821497 R/R SCLC (combination therapy with SOC), CRPC (combination therapy with SOC), FL 
(single agent), DLBCL (single agent)
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platelet (18–41%) and neutrophil (11–52%) counts [36, 
37]. In another phase 1/2 study, vorinostat in combina-
tion with rituximab plus CHOP (R-CHOP) achieved an 
ORR of 81% in participants with R/R DLBCL (n = 63), 
but participants assigned to the study combination had 
a high incidence of grade ≥ 3 neutropenia (63%), throm-
bocytopenia (36%), and sepsis (19%) that led investi-
gators to recommend against general clinical use of 
vorinostat with R-CHOP [90]. Vorinostat in combina-
tion with rituximab, ifosfamide, carboplatin, and etopo-
side for treatment of R/R NHL demonstrated efficacy in 
DLBCL (ORR, 67%; n/N = 4/6), mantle cell lymphoma 
(ORR, 60%; n/N = 3/5), and FL (ORR, 100%; n/N = 3/3). 
The most common grade ≥ 3 AEs at the maximum toler-
ated dose included hypophosphatemia (27%), febrile neu-
tropenia (27%), and infection (27%) [91]. Abexinostat is 
being studied in combination with ibrutinib in a phase 
1 trial of patients with DLBCL or mantle cell lymphoma 
(NCT03939182). Key AEs associated with HDAC inhibi-
tors in patients with B cell lymphomas include grade ≥ 3 
fatigue, neutropenia, and thrombocytopenia (which can 
affect ≥ 30% of patients), and gastrointestinal issues (e.g., 
diarrhea, dehydration, anorexia) [88, 92].

Bromodomain and extraterminal domain inhibitors
Bromodomain and extraterminal domain inhibitors that 
target BRD2, BRD3, and BRD4 have been studied in the 
clinical setting. A phase 1 study of birabresib, a BRD2/
BRD3/BRD4 inhibitor, reported responses in 3 of 22 
patients with DLBCL whose disease progressed on other 
treatments. However, because of toxicities (e.g., throm-
bocytopenia) associated with the chosen study drug dose, 
a lower dose was selected for additional studies [84].

Responses with other BET inhibitors were also disap-
pointing. In a phase 1/2 study, INCB057643 generated 
an ORR of 33% in patients with R/R FL (n/N = 1/3) [93]. 
BAY  1238097 was ineffective against refractory malig-
nancies of any type, and its trial was halted due to toxic-
ity issues and lack of efficacy [94]. Interim results from 
a phase 1 study of molibresib, another BET inhibitor 
tested in patients with NHL [63, 80], found that 70% of 
participants (n/N = 19/27) experienced grade ≥ 3 throm-
bocytopenia [80]. In addition to thrombocytopenia, 
gastrointestinal toxicity and diarrhea are commonly 
reported nonhematologic AEs in patients receiving BET 
inhibitors [80, 84, 95–97].

Interim results from a phase 1 study of 44 partici-
pants showed that treatment with CPI-0610 achieved 
CRs in 3 of 24 participants with R/R DLBCL and 1 par-
tial response in 8 participants with R/R FL. Eleven par-
ticipants with R/R lymphomas showed ongoing partial 
responses (n = 5) or SD (n = 6) [97]. One participant 

developed grade 4 thrombocytopenia, and another devel-
oped grade 3 diarrhea.

Hodgkin lymphoma
DNA methyltransferase inhibitors
A small clinical study that included 8 patients with HL 
examined the efficacy of azacitidine followed by vori-
nostat with chemotherapy (gemcitabine, busulfan, and 
melphalan) as second-line therapy [32]. This combina-
tion yielded CRs in 7 of 8 participants with HL [32]. Fur-
thermore, event-free and overall survival rates were high 
(76% and 95%, respectively) after a median follow-up 
period of 15 months. However, all participants developed 
neutropenic fever [32]. In addition, an ongoing phase 1 
study is evaluating azacitidine followed by tumor assisted 
antigen-specific cytotoxic T cell lymphocytes in patients 
with HL and NHL (NCT01333046).

Histone deacetylase inhibitors
Several HDAC inhibitors have been tested as monothera-
pies in patients with R/R HL in clinical trials, including 
panobinostat [98], vorinostat (NCT00132028), givinostat 
(NCT00496431), resminostat (NCT01037478), moce-
tinostat (NCT00358982 [trial terminated]), abexi-
nostat (NCT00724984, NCT01149668), ricolinostat 
(NCT02091063), entinostat (NCT00866333), and tinos-
tamustine (NCT02576496). Panobinostat produced 
an ORR of 27% in 129 participants with R/R HL [98]. 
However, in the other completed or terminated clinical 
trials, HDAC inhibitors generated relatively low ORRs 
and comparable progression-free survival versus other 
targeted therapies or immunomodulatory antibodies 
that target immune checkpoint pathways such as pro-
grammed cell death 1 (PD-1) or its ligand (PD-L1) [42].

Vorinostat is also being evaluated as part of a combi-
nation therapy regimen in patients with R/R HL. When 
combined with the mechanistic target of rapamycin 
inhibitors everolimus or sirolimus, vorinostat produced 
moderate ORRs (55% and 33%, respectively) in a dose-
escalation study of patients with R/R HL [43]. Key AEs 
included grade ≥ 3 thrombocytopenia in 67% of partici-
pants treated with vorinostat plus everolimus and in 55% 
of participants treated with vorinostat plus sirolimus 
[43]. Vorinostat in combination with rituximab plus ifos-
famide, carboplatin, and etoposide also demonstrated 
effectiveness for treatment of patients with R/R HL 
(ORR, 88%; n/N = 7/8) [91].

T cell lymphomas
DNA methyltransferase inhibitors
The study described earlier [32] with azacitidine followed 
by vorinostat with chemotherapy as second-line ther-
apy also included 8 patients with R/R peripheral T cell 
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lymphoma (PTCL; n = 3; anaplastic large-cell lymphoma; 
n = 2 natural killer T cell lymphoma, n = 2; angioimmu-
noblastic T cell lymphoma, n = 1). The regimen yielded 
a CR rate of 100% in participants with T cell lymphoma 
and measurable disease (n/N = 2/2) [32]. A small retro-
spective series of 12 patients with angioimmunoblastic T 
cell lymphoma, 11 of whom had R/R disease and 1 who 
was treatment naive, were treated with azacitidine and 
experienced a 75% ORR, median progression-free sur-
vival of 15 months, and a median overall survival rate of 
21 months [99]. Several studies looking at DMNT inhibi-
tors in combination with other treatments are planned or 
recruiting patients.

Enhancer of zeste homolog 2 inhibitors
Valemetostat achieved an ORR of 80% in early clinical 
trials among 15 patients with T and B cell lymphoma; 
however, the study examined 2 patients with adult T cell 
lymphoma, 2 with angioimmunoblastic T cell lymphoma, 
and 1 with PTCL not otherwise specified [38]. Key AEs 
included decreased platelet count (73%), anemia (47%), 
decreased lymphocyte count (40%), dysgeusia (47%), and 
diarrhea (27%) [38].

Histone deacetylase inhibitors
Several nonselective HDAC inhibitors have been stud-
ied as monotherapies for treatment of T cell lymphomas. 
Abexinostat produced an ORR of 40% in a phase 2 study 
of 15 participants with T cell lymphomas [76]. Oral vori-
nostat yielded an ORR of 24% to 30% in phase 2 studies in 
participants with refractory and progressive cutaneous T 
cell lymphoma (CTCL) and was approved for treatment 
of CTCL by the FDA in 2006 [39, 75]. Panobinostat, a 
pan-HDAC inhibitor, produced an ORR of 67% in partic-
ipants with advanced CTCL (n/N = 6/10) when admin-
istered as oral monotherapy [78]; however, in a larger 
phase 2 cohort of 139 participants with refractory CTCL, 
the ORR was 17% [77]. Romidepsin, an intravenously 
administered selective HDAC class 1 inhibitor, produced 
an ORR of 33% to 41% in patients with CTCL [100–102]. 
In patients with CTCL, the most common grade 3/4 
toxicities associated with panobinostat with or without 
abexinostat were thrombocytopenia (20–80%) and neu-
tropenia (9–27%) [76–78]. However, grade 3/4 AE rates 
were lower with vorinostat: thrombocytopenia (5–19%), 
anemia (1–8%), and fatigue (5%) [39, 75].

Histone deacetylase inhibitors have also been tested 
as monotherapies for treatment of R/R PTCL, although 
the reported response rates were modest. Belinostat, a 
pan-HDAC inhibitor, demonstrated an ORR of 26% in 
participants with R/R PTCL (n/N = 31/120) [103] and 
an ORR of 46% in participants with R/R angioimmuno-
blastic T cell lymphoma (n/N = 10/22) [104]. Romidepsin 

produced an ORR of 25% in patients with R/R PTCL 
(n = 130) [40, 105]. After demonstrating clinical efficacy 
in phase 2 studies [102, 106], romidepsin was approved 
for treatment of R/R CTCL by the FDA in 2009 and for 
R/R PTCL in 2011, although the company withdrew 
the PTCL indication in 2021 owing to lack of efficacy 
in subsequent phase 3 trials [27, 28, 107]. Chidamide, 
a selective HDAC class 1 inhibitor, achieved an ORR of 
39% when administered as oral monotherapy in 256 par-
ticipants with R/R PTCL [108]. As with the other HDAC 
inhibitors discussed, hematologic events were the most 
common grade 3/4 AEs, with event rates generally below 
30% [40, 102, 103, 106, 108].

As with other classes of epigenetic agents, HDAC 
inhibitors demonstrate slightly higher clinical activity 
in patients with T cell lymphomas in combination than 
when administered as monotherapies. As combina-
tion therapy with CHOP, vorinostat achieved an ORR 
of 100% in 12 participants with untreated PTCL [109]. 
Chidamide demonstrated an ORR of 51% when com-
bined with chemotherapy in 127 participants with R/R 
PTCL [108]. Panobinostat in combination with bort-
ezomib produced an ORR of 43% in participants with 
R/R PTCL (n/N = 10/23) [110]. Romidepsin combined 
with the antimetabolite pralatrexate demonstrated an 
ORR of 71% in a phase 1 study in participants with R/R 
PTCL [41]. Romidepsin in combination with oral azac-
itidine achieved an ORR of 61% in participants with R/R 
PTCL (n/N = 15/25) [111]. Key grade ≥ 3 AEs associated 
with HDAC inhibitors when used as combination ther-
apy include thrombocytopenia (48%), neutropenia (40%), 
lymphopenia (32%), and anemia (16%) [111].

Future directions
Although several classes of epigenetic treatments have 
shown moderate antitumor activity as monotherapies, 
combination regimens with chemotherapy generally had 
better clinical activity than monotherapy (Table  2). The 
success of PRMT5 inhibitors (GSK3326595 [112, 113], 
JNJ-64619178 [114], and PRT811 [115]) and KDM5 
inhibitors [116] in preclinical and early phase studies 
may lead to the development of new classes of selec-
tive epigenetic therapies. Possible future combination 
therapies could include the EZH2 inhibitor tazemetostat 
and chemotherapies or antibodies. Combination of the 
HDAC inhibitor vorinostat with phosphatidylinositol 
3-kinase inhibitors has demonstrated antitumor effects 
in preclinical studies with NHL cells [117]. DNA meth-
yltransferase inhibitors have been shown to resensitize 
CHOP-resistant DLBCL to chemotherapy, and other epi-
genetic therapies may exploit similar mechanisms [71, 
72]; for example, BET inhibitors have shown modest effi-
cacy as monotherapy for treatment of B cell lymphomas 
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[93, 97], but future studies of these inhibitors in com-
bination with chemotherapy may allow higher rates of 
efficacy at lower doses to reduce the severity of clinical 
effects.

Studies are also beginning to show that epigenetic modu-
lators can impact lymphoma therapy through promotion of 
antitumor immunity [118]. In the future, epigenetic therapy 
is likely to be part of a combination approach using multi-
ple classes of treatment to simultaneously overcome drug 
resistance mechanisms and boost the patient’s immune 
system.

Many epigenetic therapies could be more success-
ful in the clinical setting if they were individualized to 
patient biomarkers. An example of this is the difference 
in response rates between patients with wild-type and 
mutant EZH2 FL treated with the EZH2 inhibitor tazem-
etostat (ORRs of 35% and 69%, respectively [33]), findings 
that suggest additional research to uncover epigenetic 
biomarkers is needed to identify patients more likely to 
benefit from these agents. As such, investigators should 
consider including epigenetic biomarker end points in 
their clinical trial designs.

Conclusions
Older classes of epigenetic therapies, such as pan-HDAC 
inhibitors, are associated with high rates of toxicity and 
poor target selectivity, but newer classes, such as EZH2 
inhibitors, have higher selectivity and better safety pro-
files and are being tested in a variety of lymphomas. 
By offering potential synergies with chemotherapies, 
kinase inhibitors, and antibodies, epigenetic agents can 
overcome chemoresistance and improve outcomes for 
patients with lymphomas, while their strong target selec-
tivity can reduce the AEs associated with early epigenetic 
therapies.

Understanding the distinct mechanisms of emerging 
epigenetic therapies and the patient subpopulations they 
are most likely to benefit is key to their clinical imple-
mentation for treatment of lymphomas. The diversity 
of epigenetic therapies allows tailoring treatments to an 
individual patient’s tumor characteristics and needs and 
has the potential to greatly improve patient survival and 
quality of life.
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