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Abstract 

Background:  DNA methylation (5-mC) is being widely recognized as an alternative in the detection of sequence 
variants in the diagnosis of some rare neurodevelopmental and imprinting disorders. Identification of alterations 
in DNA methylation plays an important role in the diagnosis and understanding of the etiology of those disorders. 
Canonical pipelines for the detection of differentially methylated regions (DMRs) usually rely on inter-group (e.g., 
case versus control) comparisons. However, these tools might perform suboptimally in the context of rare diseases 
and multilocus imprinting disturbances due to small cohort sizes and inter-patient heterogeneity. Therefore, there is 
a need to provide a simple but statistically robust pipeline for scientists and clinicians to perform differential meth-
ylation analyses at the single patient level as well as to evaluate how parameter fine-tuning may affect differentially 
methylated region detection.

Result:  We implemented an improved statistical method to detect differentially methylated regions in correlated 
datasets based on the Z-score and empirical Brown aggregation methods from a single-patient perspective. To accu-
rately assess the predictive power of our method, we generated semi-simulated data using a public control popula-
tion of 521 samples and investigated how the size of the control population, methylation difference, and region size 
affect DMR detection. In addition, we validated the detection of methylation events in patients suffering from rare 
multi-locus imprinting disturbance and evaluated how this method could complement existing tools in the context 
of clinical diagnosis.

Conclusion:  In this study, we present a robust statistical method to perform differential methylation analysis at the 
single patient level and describe its optimal parameters to increase DMRs identification performance. Finally, we show 
its diagnostic utility when applied to rare disorders.

Keywords:  DNA methylation, Differentially methylated regions, Rare diseases, Imprinting, Multilocus imprinting 
disturbance, Statistical method, Epivariation, Beckwith–Wiedemann syndrome, Neurodevelopmental disorders, 
Congenital disease, Single patient, Optimization

Background
DNA methylation (DNAm) of cytosines (5-mC) plays an 
important role in cell biology, most notably in tissue-spe-
cific regulation of gene expression. Other roles include 
X-chromosome inactivation, regulation of splice junc-
tions, and genomic imprinting [1, 2] Differential meth-
ylation of cytosines, or epivariation, has been linked 
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to a wide array of diseases such as cancer, aging, meta-
bolic, cardiovascular, neurodevelopmental, and auto-
immune disorders [3–9], as well as other variables like 
the body mass index (BMI), smoking status or ethnic-
ity [10–13]. Differential methylation can occur either 
at single cytosines (DMCs) or affect several loci within 
a region, resulting in differentially methylated regions 
(DMRs). Depending on their origin, primary and second-
ary epivariations can be differentiated. Primary epivaria-
tions arise from stochastic errors in the establishment or 
maintenance of a methylation state by the DNA methyl 
transferase proteins family. Secondary epivariations, by 
contrast, derive from genetic alterations such as copy 
number variations (CNVs) or single nucleotide variations 
(SNVs) at the differentially methylated locus or inactivat-
ing variants in trans-acting factors with a key role in the 
establishment or maintenance of methylation state of that 
locus [14]. Both primary and secondary epivariations are 
found in patients suffering from rare diseases, a world-
wide public health issue estimated to affect between 260 
and 445 million people [15]. On the one hand, primary 
epivariations are the main molecular event causing some 
imprinting disorders [16], rare cases of cancer [17, 18], 
and neurodevelopmental diseases [19]. On the other 
hand, secondary epivariations are a known alternative 
mechanism in rare diseases and the detection of these 
sequence variants has gained popularity in the diagnostic 
process. That is the case in the group of neurodevelop-
mental disorders known as the Mendelian disorders of 
the epigenetic machinery (MDEMs), for which detection 
of episignatures (i.e., group of DMCs acting as a blue-
print for the disease) has been shown to enable patient 
diagnosis [20–28], or in imprinting disorders [29–34], 
where DMRs are localized at imprinting control centers. 
Episignatures and DMRs at imprinting loci are usually 
linked to a single disease. However, it has been shown 
that MDEMs’ episignatures sometimes share overlap-
ping DMCs [35] and there have been increasing reports 
of patients showing multi-locus imprinting disturbances 
(MLIDs). MLIDs represent rare cases of imprinting dis-
orders characterized at the molecular level by several 
defects at imprinting regions [36]. Patients suffering from 
MLIDs often share overlapping phenotypes based on the 
imprinted regions showing defects [30, 34, 37–41]. As a 
consequence of this molecular and phenotypic heteroge-
neity, aggregating patients in groups is not always trivial.

Classical methods to identify differentially methylated 
regions and episignatures are usually based on inter-
group comparisons, requiring a large number of samples 
in each group to reach statistically significant results [42, 
43]. Those methods cannot be systematically applied in 
the context of rare diseases due to either the cohort size 
or the intra-group heterogeneity. It is especially the case 

when the disease affects only a handful of patients, hence 
making it difficult to gather cohorts large enough to sat-
isfy canonical group-comparison method assumptions. 
In addition, group comparison loses the ability to capture 
inter-patient heterogeneity, such as in MLIDs. Therefore, 
single patient-based analyses could be used to address 
those issues and support the personalization of diagnosis.

In the literature, only two methods have been described 
for single case–control DNAm analysis. The first method 
is divided into two steps. First, the Crawford-Howell 
(C-H) adaptation of the t test is used to detect differential 
methylation at individual CpGs. Then, individual scores 
are aggregated in a DMR score using the Fisher aggre-
gation method [44]. The second method [19] has been 
developed following two empirical rules: (i) at least 3 
probes that each have methylation levels above the 99.9th 
percentile of the control distribution for that probe and 
are ≥ 0.15 above the control mean; (ii) at least 1 probe 
with a methylation level ≥ 0.1 above the maximum 
observed in controls for that probe.

Although both methods allow the detection of bio-
logically relevant DMRs, they present some limitations. 
In the first method, the statistical method for individual 
probe testing described by Crawford-Howell is suggested 
to be used when the normative sample size (i.e., the size 
of the control population) is less than 50 [45]. Above that 
threshold, the Z-score is preferred. In addition to this 
limitation, the Fisher aggregation method used to com-
bine individual scores (i.e., P values) assumes independ-
ence between variables. However, this assumption does 
not hold in most large high-throughput biology datasets 
that show a correlation between variables. Indeed, it has 
been shown that closely located CpGs tend to be co-
methylated [46–48]. In the second method, the empirical 
rules, while relevant, do not allow the ranking of candi-
date regions by a confidence score such as a P value [19], 
and therefore it lacks the flexibility of applying a thresh-
old for DMR calling. Finally, there is no evaluation of 
how the choice of the used parameters (e.g., number of 
probes, difference in methylation, cohort size) may affect 
DMR calling.

Therefore, in this paper, we propose a statistical method 
based on the Z-score followed by the Empirical Brown 
method that takes into account covariance between vari-
ables [49] to identify DMRs in a single-patient setting. 
First, we characterize the behavior of CpGs methylation 
status in various regions of biological interest and show 
that CpGs display a high correlation in those regions, 
thus justifying the use of Brown’s aggregation method 
to assign a DMR score. Second, we investigate how dif-
ferent parameters such as the size of the control popula-
tion, the amplitude of the methylation difference, and the 
size of the regions affect the performance of this method 
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for DMRs identification. In addition, we show the diag-
nostic utility of this method in the context of MLIDs 
and other neurodevelopmental disorders and congenital 
anomalies (ND-CAs), as well as its potential to identify 
new epivariants in existing datasets from a single-patient 
perspective.

Results
Characterizing CpGs methylation within a normal 
population
DNA methylation analyses are highly dependent on the 
control population used. Therefore, we decided to char-
acterize the behavior of CpG methylation within our con-
trol population of 521 unaffected individuals. In the same 
way as DNA sequence variants, it is easier to infer the 
significance of an epivariant when it is in a region with a 
known function [50]. Thus, we focused on several regions 
known for their biological functions typically investigated 
in DNAm analysis: predicted CpG islands (CGIs); known 
imprinted regions; FANTOM5 enhancers; cis-regulating 
elements from the Encode project; genes associated with 
rare diseases from the Orphanet database (see Methods).

First, we wanted to assess whether methylation 
between pairs of CpGs is correlated within those 
regions. Indeed, the canonical way to identify DMRs 
aims at aggregating P values of CpGs tested for dif-
ferential methylation individually. As discussed 

previously, Fisher’s aggregation method has been the 
method of choice. However, this method assumes 
independence between variables. Thus, we computed 
the Pearson correlation across all the samples for CpG 
pairs in regions of biological interest as a function of 
the distance between the two CpGs forming the pair 
(Fig.  1a). It has been shown that closely located CpGs 
are co-methylated [46–48]. We confirmed that there 
is a larger proportion of highly correlated CpGs in the 
0–200  bp range and that this proportion decreases 
with distance. However, we only noticed a sharp drop 
in mean correlation levels in imprinted regions and 
FANTOM5 enhancers whereas mean correlation lev-
els in the other regions of interest stayed comparable. 
Interestingly, we saw a significant increase in correla-
tion between CpG pairs in FANTOM5 enhancers that 
were separated by + 1800 bp. Enhancers can sometimes 
be separated by thousands of base pairs. We can only 
hypothesize that this change is related to a common 
DNAm regulatory mechanism for regions interacting 
together [46–48]. Furthermore, we showed that mean 
correlation levels were higher in imprinted (Mean 
r = 0.33) and enhancer regions (Mean r = 0.31), lower 
in CGIs (Mean r = 0.19), and close to zero in Orphanet 
genes (Mean r = 0.05) (Additional file 5: Fig. S1a).

In a second step, we investigated how methylation lev-
els vary at the single CpG levels.

Fig. 1  a Distribution of the pair-wise squared Pearson correlation for CpG pairs in different regions of biological interest as a function of the 
distance between the 2 CpG forming the pair. Correlation levels decline with distance in all regions of interest except in FANTOM5 enhancers where 
long-distance CpGs have a higher mean correlation than close-distance ones. b Distribution of the normalized Shannon’s entropy (between 0 
and 1) per CpGs in regions of biological interest. CpGs within CpG Islands show the lowest mean entropy, whereas CpGs in the other regions have 
similar levels. Boxplot bars are limited to 1.5 × the interquartile range
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To do this, we calculated the standard deviation and 
Shannon’s entropy of the CpGs beta values (i.e., meth-
ylation percentage) within the same loci of interest (see 
Methods). Those two measures are complementary and 
indicate the stability of a given CpG’s methylation state 
within the normal population. The higher the entropy, 
the less stable the methylation level for the tested ele-
ment. Our results indicate that CpG methylation levels 
are stable within the tested regions. Indeed, the mean 
standard deviation of the beta value is under 4% in all 
groups (Additional file 5: Fig. S1b). We also showed that 
overall mean entropy levels are low with CGIs having the 
lowest mean entropy (Mean entropy < 0.2), which high-
lights a high level of consistency in methylation (Fig. 1b). 
At the epigenome level, the mean entropy was 0.16, 
and the mean standard deviation was 3%. We could not 
detect any significant changes in those parameters at the 
chromosome level (Additional file  5: Fig.  S2a and S2b). 
This highlights a stable distribution of methylation levels 
at the CpG level within our control population.

Optimizing parameters for DMR identification in single 
patients
As mentioned in the introduction, our method to assign 
a confidence score to differentially methylated regions 
(DMRs) consists of the Z-score, because our norma-
tive population was large (N = 521) and prevented the 
use of the Crawford-Howell method, in addition to 
Brown’s aggregation method to take into account the 
interdependence of the methylation level between adja-
cent CpGs. After defining the statistical bases of our 
method, we sought to assess how different parameters 
associated with DMR detection would influence the 
score of a region. Because of the difficulty to establish 
which signal is false in real data, we decided to use a 
semi-simulated approach based on a population of unaf-
fected patients (see Methods). This strategy enabled us 
to define true DMRs and false signals that we considered 
as background noise and allowed the usage of standard 
performance metrics such as the area under the preci-
sion–recall curve (AUC) to evaluate the influence of sev-
eral parameters. First, we tested how the difference in 
methylation levels between a sample of interest and the 
control population would affect the outcome of the scor-
ing method. We performed this analysis on two datasets 
where we introduced either a low noise (5%, Fig. 2a) or 
high noise (10%, Fig. 2b) level. Then, in those noisy data-
sets, we assessed how the method performed to detect 
increasing true methylation differences. As expected, 
performances were poor when trying to detect a small 
methylation effect of only 5% relative to the noise (sig-
nal of 10%, low noise conditions mean AUC = 0.77; sig-
nal of 15%, high noise: mean AUC = 0.69). The method 

performed better when the methylation effect increases. 
Indeed, at 10% of relative methylation difference, the 
mean AUC for the low noise data and the high noise data 
were 0.89 and 0.83, respectively, and a mean AUC over 
0.95 was obtained with a methylation defect of 15% for 
the data with low noise against 20% for the noisier one. In 
the subsequent analyses, we decided to use the low noise 
setting (5% of noise level) and introduced a 30% shift in 
methylation as a true signal to evaluate the influence of 
other parameters. Precision/recall curves as well as the 
AUC of the true and false positive rate are available in the 
supplementary data (Additional file 5: Figs. S3, S4).

Next, we assessed how the number of modified CpGs 
within a window would affect its score. Indeed, in the 
literature, it is commonly accepted to use windows of 
1000  bp containing a minimum of 3 CpGs when look-
ing for DMRs [19, 44, 51, 52]. However strong arguments 
for the choice of this parameter are lacking. Therefore, 
we evaluated the detection of DMRs using windows of 
increasing size, from 1 to 7 CpGs (Fig.  2c, Additional 
file  5: Fig. S5). While the AUC for precision and recall 
was high for all window categories (> 0.96), perfor-
mances tended to increase with the number of CpGs and 
approached a plateau around 0.995 when the number of 
CpGs per window was ≥ 4.

Finally, we tested how the size of the control popula-
tion would influence performance by comparing the 
semi-simulated data against a population of increasing 
size, from 5 to 509 samples (Fig.  2d, Additional file  5: 
Fig. S6). Although the overall performance was good 
(AUC > 0.89), we could observe significant improvements 
when the size of the control population increased sig-
nificantly until 30 controls, the highest differences were 
seen from 5 to 10 controls (mean AUC from 0.904 to 
0.980) and from 10 to 20 controls (mean AUC from 0.980 
to 0.988). Larger control populations displayed a lower 
increase in performances with this high signal–noise 
ratio (30% signal, 5% noise) setting.

Identification of DMRs in Beckwith–Wiedemann patients
After defining optimum parameters, we sought to evalu-
ate the performance of the method for DMR identifica-
tion on real patient data. We performed the methylome 
analysis on 5 patients suffering from Beckwith-–Wiede-
mann syndrome (BWS) that also showed multilocus 
imprinting disturbances (BWS-MLID, GEO accession 
number GSE133774, and GSE153211). Because con-
trols (N = 27) from the same batch were available we 
decided to compare the scoring of DMRs using the 
Crawford-Howell method with batch-matched controls 
and the Z-score with a larger population of controls 
(N = 521) from another batch (GEO accession number: 
GSE152026). This allowed evaluation of whether in the 
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context of single-patient analysis, one should gather a 
small control cohort (N < 50) obtained at the same facil-
ity or whether using a larger cohort of publicly avail-
able controls would yield better results. Nevertheless, 
we used a modified version of BMIQ [53] described in 
[9] to rescale methylation value distribution between 
patients and controls to reduce batch effects (see Meth-
ods). Rescaling efficiency was evaluated by looking at the 
probes’ methylation level distribution (Additional file  5: 
Fig. S7). Both our patient and control populations came 

of European descent; therefore, we did not expect to find 
DMRs related to ethnicity. To limit the number of false 
positives that may occur due to DNAm changes associ-
ated with ethnicity, age, BMI, and smoking status, we 
compiled a list of CpGs influenced by those covariates 
and removed DMRs that included them (see Methods). 
To compare the two tests, we investigated the aggre-
gated P value of known imprinted regions and checked 
whether the regions detected with our method were also 
retrieved in the original papers [30, 39] (Additional file 1: 

Fig. 2  Areas under precision and recall curves to identify inserted DMRs (i.e., true positives). a Performances as a function of true methylation 
differences with a background noise of 5%. b Performances as a function of true methylation differences with a background noise of 10%. C 
Performances as a function of the number of CpGs for the background noise of 5% and 30% true methylation difference. d Performances as a 
function of the control population size for the background noise of 5% and 30% true methylation difference
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File S1, Table 1). Across the 5 samples and out of the 43 
imprinting loci tested in the original paper, we found 
22 to be under the 0.05 corrected P value significance 
threshold with the Crawford-Howell method, versus 49 
with the Z-score, 19 DMRS identified with one method 
were also significant using the other (representing 86% of 
the 22 found with C-H and 39% of the 49 found with the 
Z-score). Those numbers were lower at the 0.01 thresh-
old (Number of regions: C-H = 19, Z-score = 46) for 17 
DMRs deemed significant by both methods. One of the 
typical molecular defects of BWS involves loss of meth-
ylation at the KCNQ1OT1:TSS-DMR locus and normal 
methylation at H19/IGF2 IG-DMR; this pattern was 
identified in the patients in the original papers through 
molecular testing. Using our single-patient approach, 
the KCNQ1OT1:TSS-DMR locus was considered as sig-
nificantly differentially methylated (P value < 0.01) in all 
patients only when using the Z-score, suggesting a higher 
sensitivity in comparison to the Crawford-Howell test. 
Visualization of the profile of methylation levels in that 
region showed that this result is due to the high variabil-
ity of the small control population used for the C-H test 
(Fig.  3). In addition to this locus, several other known 
imprinting regions were found as significantly differen-
tially methylated in the patients using the Z-score, thus 
confirming the MLIDs diagnostic previously established, 

and the capacity of the method to identify regions of 
interest (Additional file 2: File S2).

Then, we performed a scan of the microarray-based 
epigenome of the BWS patients to identify new DMRs 
outside of canonical regions. We analyzed only win-
dows containing at least 4 CpGs (see Methods) as this 
provided the optimal performances on simulated data 
and applied a strict threshold of 10% on the median dif-
ference between the patient CpGs methylation level and 
the mean methylation in the control population. Except 
for one patient (GEO accession number: GSM4635795) 
where we found 107 DMRs, we identified less than 10 
DMRs in the other patients for a total of 143 additional 
significant DMRs (Additional file  3: File S3, Additional 
file  5: Fig. S8 a-f ). Out of those, 2 regions were found 
hypermethylated in all patients, encompassing the 
ABCD1P4 (NCBI entry: 26,957) pseudogene and the 
AC093787.2 long non-coding RNA promoters. Addition-
ally, one DMR in the CpG Island within the protein-cod-
ing gene TNNT3 (NCBI entry: 7140) was found in 4 of 
the patients and 4 DMRs were found in two patients, two 
of those in the protein-coding genes COL18A1 (NCBI 
entry: 80,781) and ANK1 (NCBI entry 286). Interestingly, 
among the DMRs identified outside canonical imprinting 
regions, some were located in genes with known relation-
ships to congenital and neurodevelopmental diseases, 

Fig. 3  Methylation profile of the region KCNQ1OT1:TSS-DMR (hg38: chr11: 2,699,200–2,700,855) in the 5 BWS patients and the controls. a Controls 
(N = 521) from the literature used for Z-score calculation. b Controls (N = 27) produced from the same study used for the C–H test
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and further investigation would help to better charac-
terize the impact of DMRs in such genes. To further 
evaluate the influence of age on the predicted DMRs, we 
performed the same analysis using different age-based 
subgroups of the control population. We couldn’t detect 
any major differences in the number of DMRs identified 
with the different control subgroups (Additional file  5: 
Fig. S9a and S9b). We finally used the DNAm age clock 
[9] to control methylation age in the patient population 
(see Methods) and to check if methylation alterations 
could affect age estimation. We found that all patients 
had a methylation age close to their biological age 
(< 8.5 years) (Additional file 1: File S1, Table 2).

Identification of DMRs in ND‑CAs patients
To further evaluate our method, we applied the same 
analysis procedure to methylation data from 489 indi-
viduals suffering from neurodevelopmental disorders 
(NDs) and congenital anomalies (CAs) described in 
[19]. DMRs were originally identified in that cohort 
using the empirical method described in the introduc-
tion. Using our method, we found a total of 4261 DMRs 
in 293 patients (i.e., 60% of the patients tested), with 
most patients having less than 3 DMRs (percentile 75) 

(Fig.  4a). Similarly to the original paper, we removed 
samples with more than 10 DMRs. Doing so yielded 
520 identified DMRs in 268 patients (i.e., 55% of 
the patients tested), 53 of those DMRs were already 
described in the original paper (i.e., 37% of DMRs iden-
tified in [19]) (Additional file  4: File S4). Among the 
520 identified DMRs, 272 were present in at least two 
samples (i.e., 52% of the total in patients with less than 
10 DMRs), mapping to 79 genes. At the gene level, we 
identified 32 DMRs in genes affected in more than two 
samples (representing 41% of all the affected genes). 
The most affected gene was GSDMD which shows 
significant hypermethylation in 17 patients (Fig.  4b), 
the second one was ECEL1P2 a pseudogene hypo-
methylated in 15 patients. GSDMD has been linked 
to neonatal-onset multisystem inflammatory disease 
(NOMID) in mice [54]. According to the rare disease 
database, NOMID symptoms include cognitive dis-
abilities. No existing data point to disease association 
in the case of ECEL1P2. Interestingly, we could detect 
a DMR in the gene PRDM16 (Fig. 4c), a gene shown to 
be involved in cardiomyopathy [55], which was consist-
ent with the symptoms experienced by the patients (i.e., 
GEO ID: GSM2366439, GSM2366759, GSM2366459, 
GSM2366724).

Fig. 4  a Empirical cumulative distribution function (ECDF) representing the percentage of samples having less than a certain number of DMRs. 
Percentiles 5, 25, 50, 75, and 95 are represented in red. Samples with > 25 DMRs are not shown. b Recurrent hypermethylation of the GSDMD locus 
(hg19: chr8: 144,635,260–144,636,462) and associated UCSC Genome Browser view. c Recurrent hypomethylation at the PRDM16 locus (hg19 
chr1:2,979,311–2,980,937) and associated UCSC Genome Browser view
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Discussion
In the context of rare disorders affecting the epigenome, 
classical case–control studies are not always applica-
ble. In addition, it has been shown that individuals with 
overlapping phenotypes suffering from multilocus meth-
ylation disturbances (MLMDs) show unique methylation 
patterns that could be used to further refine the clinical 
diagnosis [16, 21, 23, 56–58]. Previously, two methods 
have been proposed to detect aberrant methylation in 
cases using a single-patient approach with one of them 
based on statistical testing [19, 44]. In this paper, we built 
on those previous methodologies to propose an appre-
hensible single-patient-based method for DNA meth-
ylation analyses. First, we confirmed previous findings 
that methylation levels of CpGs within close distance are 
correlated [46–48] and observed a constant decrease in 
correlation with distance (Fig.  1a). We further showed 
that there were positive mean correlation levels between 
CpGs located within CpG islands, known imprinted 
regions, FANTOM5 enhancers, cis-regulating elements 
from the Encode project, and to a lesser extent in genes 
associated with rare diseases from the Orphanet database 
(Additional file 5: Fig. S1a). Those results indicate that the 
assumption of independence made by Fisher’s method 
does not hold and should be replaced by a method tak-
ing this interdependence into account when aggregating 
scores of individual CpGs into DMRs. We suggest the use 
of Brown’s aggregation method implemented in [49]. We 
further showed that CpGs in a population of unaffected 
individuals have high stability as illustrated by the low 
entropy and standard deviation observed (Fig. 1b, Addi-
tional file 5: Fig. 1b). That stability was seen throughout 
the entire epigenome (Additional file 5: Fig. S2a and S2b). 
This low variability can have an impact on DMRs identifi-
cation capacity. Indeed, extremely low standard deviation 
values can be caused by a bad sampling of the norma-
tive population, which can lead to extremely significant 
scores for a CpG even if the difference in methylation is 
low. Thus, we used semi-simulated data to quantify how 
methylation difference, amongst other parameters, would 
influence the performance of DMR identification. The 
method showed satisfying performances when the meth-
ylation difference in the DMRs was at least 10% both for 
low and high noise data, but better performances were 
achieved at a 15% difference and above (Figs. 2a and 2b). 
Therefore, we advise applying a threshold of at least 10% 
on the median difference in methylation between the 
controls and the case when considering DMR signifi-
cance. In addition to the effect size, we investigated the 
influence of the number of CpGs per window. Common 
DMRs identification methods use windows of at least 3 
CpGs [19, 44]. Precision–recall AUCs starting at one 
CpG were already in a very good range, and we observed 

increasing performance until a peak that plateaued at 4 
CpGs (Fig.  2c). We concluded that every window size 
tested (≥ 1 CpG) is acceptable in terms of performance 
but warn about the analysis burden that smaller window 
size generates. We thus decided to use ≥ 4 CpGs for the 
subsequent analyses. Then, we tested for the minimum 
number of samples that should be included in the con-
trol population (Fig.  2d). Based on our results, we sug-
gest using a control population of at least 30 samples. 
However, due to sampling bias, we believe that a larger 
control cohort will generally yield fewer false positives. 
Nevertheless, our semi-simulated data present some 
limitations. Indeed, we could not account for batch 
effects that are present when using a different cohort 
as controls, and the way we modeled DMRs may not 
reflect the full field of biological variations occurring in 
various syndromes. In addition, our analysis was based 
on a strong signal of 30% to find the best value for the 
size of the control population and the number of CpGs 
per window. We seldom encountered DMRs with a sig-
nal as strong as 30% in patients’ data and thus speculate 
that the measured performances using semi-simulated 
data are probably overestimated. However, trends in 
those performances are still a good indication that a 
larger control population size and number of CpGs per 
window will yield better results, hence our suggestion to 
use a control population as large as possible, and focus 
on windows containing at least 4 CpGs. We also com-
pared the use of a batch-matched cohort (N = 27) against 
a larger cohort (N = 521) from another batch, using 
methylation data from 5 patients diagnosed with Beck-
with–Wiedemann syndrome and MLIDs. In the context 
of the two control populations used here, we showed that 
using the Z-score with a larger cohort outperformed the 
Crawford-Howell t test with a smaller—although batch-
matched—control population in the ability to retrieve 
the hypomethylation of the KCNQ1OT1 region (Fig. 3). 
However, we want to underline the necessity to correct 
the batch effect before this comparison. We rescaled the 
global distribution of methylation levels using an adapted 
version of the BMIQ software [9, 53] (Additional file  5: 
Fig.  S7). This method allows the use of a golden stand-
ard to rescale new samples and thus is very well suited 
to single-patient analysis, where individual samples can 
all be normalized against the same standard. Using this 
method allowed us to improve greatly the outcome of 
DMRs analysis for the non-matching batch cohort. Fur-
thermore, it has been shown that different covariates may 
affect DNAm. Accounting for those covariates is trivial 
when using multivariate linear models, as one can sim-
ply include them in the design matrix [43]. However, this 
is not possible in a single-patient analysis. We believe 
that a careful match should always be made between the 
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control cohort and the patient to avoid covariate effects 
as much as possible and that this task will be easier in the 
future with the greater availability of methylation data. 
However, at the time of this study, only one large popu-
lation of control produced with the EPIC microarray 
was available (GEO accession number: GSE152026). To 
account for age, we showed that our patient methylation 
age was similar to their biological age and that control-
ling for age in the control population had little effect on 
the number of DMRs detected (Additional file 5: Fig. S9a 
and S9b). To control for other covariates such as smok-
ing status, ethnicity, and BMI, we decided to compile a 
list of CpGs known to be correlated with different covari-
ates and removed all DMRs containing them. Finally, we 
applied this method to detect additional DMRs in the 
same patients at the whole epigenome level (Additional 
file 5: Fig. S8). We were able to identify DMRs that were 
not reported previously. Among those new differentially 
methylated regions, two were present in all BWS-MLID 
patients and implicated genes that should be studied 
further in the context of BWS-MLID. In addition, we 
applied our method to a previously described cohort of 
489 undiagnosed NC-DA patients. Similarly, we identi-
fied new DMRs of interest in several patients. Although 
additional research would be needed to assign any role 
to those DMRs in the symptoms experienced by patients, 
we believe that our method of analysis allowed a greater 
characterization of their DNA methylation landscape and 
showed promising results to understand the molecular 
mechanism at play.

In conclusion, we described an improved single-
patient-based method to detect differentially methylated 
regions and discussed its optimal parameters to increase 
its utility and reliability in a diagnostic setting.

Methods
Cohorts
Illumina EPIC data were retrieved for GSE152026, 
GSE133774, and GSE153211. IDAT files were available 
for GSE133774 and GSE153211. We used R minfi package 
to preprocess them. Cross-reacting probes, probes con-
taining SNPs, and probes with a detection P value > 0.01 
were removed according to minfi functions, and sam-
ples were normalized using minfi quantile normaliza-
tion. Probes from sexual chromosomes were removed 
from the analysis, resulting in 830,257 probes left. Beta 
values from Illumina 450 k data of GSE89353, GSE36064, 
GSE40279, GSE42861, and GSE53045 described in [19] 
were retrieved. Only the 370,065 overlapping probes 
were used for the analysis. Beta values were rounded to 
3 digits. Rounded beta values were used for batch correc-
tion (see Batch correction). Logit-transformed Beta val-
ues (= M values) were used for all statistical analyses. For 

consistency with the annotation provided by the manu-
facturer, genome versions hg38 and hg19 were, respec-
tively, used for the annotation of Illumina EPIC and 450 k 
data.

Characterizing CpGs within a normal population
521 control patients from GEO datasets GSE152026 
were used to characterize probes present on the Illu-
mina EPIC array. Several annotation files in bed format 
were retrieved from the UCSC table browser using the 
hg38 version of the genome. Those annotations included 
Orphanet genes [15, 59], CpG Islands (This track was 
generated using a modification of a program developed 
by G. Miklem and L. Hillier (unpublished)) and Encode 
candidate cis-regulation elements (based on ENCODE 
data released on or before September 14, 2018) [60]. 
CpGs within imprinted regions were selected based on 
the research in [61]. FANTOM5 enhancers were down-
loaded from the Zenodo database [62].

Correlation between pairs of CpGs was calculated 
using Pearson’s correlation. We used Fisher’s z-transfor-
mation to calculate mean correlation: individual corre-
lation coefficients were transformed in Z-scores before 
mean calculation, then mean Z-scores were transformed 
back into mean correlation. Shannon’s entropy was cal-
culated using the entropy function in Python scipy.stats 
package, and the histogram function from the numpy 
package, by binning CpGs beta values in 10 bins from 0 
to 1, and default parameters. Entropy was normalized to 
vary between 0 and 1.

Semi‑simulated data
Generation of control population datasets, windows, 
beta value shifts, P value per window, and performance 
parameters was made using in-house Python3 scripts 
and the libraries numpy, scipy, pandas, statsmodels as 
well as in-house R 4.1.1 scripts with packages reshape2 
and data.table. We selected 10 random samples from the 
control population (GEO accession number: GSE152026) 
to be modified and compared to the rest of the con-
trols. To evaluate the influence of the size of the control 
population the remaining control population was pro-
gressively divided into smaller datasets (N = 100, 50, 40, 
30, 20, and 10). We defined windows of CpGs using the 
Illumina v1.0 B5 annotation from the Illumina website 
(https://​emea.​suppo​rt.​illum​ina.​com/​downl​oads/​infin​
ium-​methy​latio​nepic-​v1-0-​produ​ct-​files.​html). ChrX, 
ChrY, ChrM, and individual probes with missing infor-
mation about chromosomes, positions, or strands (hg38 
version) were removed. Adjacent probes were aggregated 
into non-overlapping windows using a fixed number of 
CpGs and a maximum window size of 1000 bp. The num-
ber of CpGs per window ranged from 1 to 7 to assess the 

https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html
https://emea.support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html
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influence of window size, otherwise, it was 4. To avoid 
any effect due to genomic location, chromosomes were 
segmented into 1000 regions of equal size: 1/10 of these 
regions were selected for modification. Windows over-
lapping these regions were selected for modification. 
Selected windows with missing beta values (for at least 
one probe and at least one control) were removed (Addi-
tional file 5: Table S1). To mimic noise in our data, a shift 
in beta value was applied to the probes in all regions. The 
shift applied (x %) per probe was sampled from a Gauss-
ian distribution with mean = x, and std = 0.5%, and was 
either low (x = 5%) or high (x = 10%). The same principle 
applies when the signal (5, 10, 20, 30, or 40% of methyla-
tion) was inserted for DMR identification and evaluating 
effect size. To avoid negative beta values and beta values 
over 1, we added or subtracted signal when the beta value 
was over and under 50%, respectively.

Batch correction
A batch correction was applied through a rescaling of the 
distribution of beta values using the adapted BMIQ [53] 
function described in [9] with default parameters except 
nfit = 820,000 (BWS analysis) or nfit = 415,000 (ND-CAs 
analysis) and th1.v = c(0.10, 0.60). Rescaling is made in 
function of a reference sample. For the BWS analysis, 
reference was either defined by the mean beta value of 
samples from GSE152026 (when testing with the z-score) 
or GSE153211 (when testing with C-H). For the ND-CAs 
samples, the reference was the mean beta value of sam-
ples from GSE42861. All were normalized by those two 
references in the respective analysis.

DNAm age calculation
DNAm age of the BWS patients was calculated using the 
software described in [9].

DMR identification
Individual CpGs in BWS and ND-CAs samples were 
tested individually for differential methylation using 
either a two-tailed Z-score or a two-tailed Crawford-
Howell t test [45] against a control population using 
the Python scipy.stats library. P values obtained from 
Z-score were adjusted for multiple testing by the Bon-
ferroni method (using the array size as the number of 
tested CpGs). DMRs were defined by a rolling win-
dow approach of 1000  bp containing at least 4 CpGs, 
and overlapping windows were merged. P values for 
CpGs within the same window were aggregated using 
Brown’s aggregation method described in [49]. Sig-
nificant DMRs were defined as having an aggregated 
P value > 0.01 and a median difference in methylation 
of 10% with respect to the controls. Statistical testing 

was always performed on M values and not beta values 
due to their statistical properties. A “black list” of CpGs 
known to be involved in BMI [11, 12], aging [9], smok-
ing status [13], and ethnicity [10] was compiled (Addi-
tional file 1: File S1, Table 3). DMRs containing any of 
those CpGs were removed. To assess the effect of age 
on DMRs identification in BWS patients, we subdivided 
our control population into three age categories: under 
25yo (mean age = 21.4yo), between 25 and 50yo (mean 
age = 37.8yo), and over 50yo (mean age = 56.8yo). The 
mean age of the total control population was 38.7yo.
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