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Abstract 

Silicosis is one of the most severe occupational diseases worldwide and is characterized by silicon nodules and diffuse 
pulmonary fibrosis. However, specific treatments for silicosis are still lacking at present. Therefore, elucidating the 
pathogenesis of silicosis plays a significant guiding role for its treatment and prevention. The occurrence and devel-
opment of silicosis are accompanied by many regulatory mechanisms, including epigenetic regulation. The main 
epigenetic regulatory mechanisms of silicosis include DNA methylation, non-coding RNA (ncRNA), and histone modi-
fications. In recent years, the expression and regulation of genes related to silicosis have been explored at epigenetic 
level to reveal its pathogenesis further, and the identification of aberrant epigenetic markers provides new biomark-
ers for prediction and diagnosis of silicosis. Here, we summarize the studies on the role of epigenetic changes in the 
pathogenesis of silicosis to give some clues for finding specific therapeutic targets for silicosis.
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Background
Silicosis is a potentially pulmonary interstitial disease 
caused by long-term exposure to crystalline silica dust 
(aerodynamic diameter < 10  μm) [1]. Due to its high 
morbidity and mortality, silicosis continues to be a pub-
lic health issue worldwide [2], especially in developing 
countries such as China, India, Vietnam, and Brazil [3]. 
According to a report from the Global Burden of Disease 
(GBD) research in 2017, the number of silicosis inci-
dents increased from 14, 973 in 1990 to 23, 695 in 2017 
[4]. In particular, the highest number of incident cases 
and the highest measure of age-standardized incidence 
rate (ASIR) were counted in China (Taiwan), followed 
by Papua New Guinea, and then China (mainland) [4]. 
Recent outbreaks of silicosis in the mining industry in the 
USA and Australia demonstrated that even in developed 

countries, it is necessary to be vigilant in the control of 
dust levels [5].

Occupational exposure to respirable crystalline silica 
usually happens when a substance or material contain-
ing silica is mechanically disintegrated [6]. Long-term 
inhalation of respirable crystalline silica can cause sili-
cosis, which is characterized by persistent inflamma-
tory response, diffuse interstitial pulmonary fibrosis, and 
the formation of silicon nodules, ultimately leading to 
impaired lung function, respiratory failure, or even death 
[5]. Therefore, silicosis is a progressive disease, and early 
prevention is of great significance. Unfortunately, despite 
extensive research into the mechanisms of silicosis, there 
are still no effective drugs or treatments to reverse or halt 
the progression of silicosis to date.

Epigenetics is currently one of the fastest growing fields 
in biological research. It refers to the heritable changes 
of gene expression without altering the DNA sequence, 
which eventually leads to the changes of function and 
phenotype [7]. Epigenetic processes mainly include 
methylation modification, non-coding RNA (ncRNA), 
histone modifications, genomic imprinting, and chro-
matin remodeling [8]. These processes modify gene 
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expression and, due to their chemical modifications, 
affect the transmission of gene activity from one genera-
tion of cells to the next, providing an alternative mecha-
nism for biological inheritance and variation [9]. Previous 
studies have shown that epigenetics plays a crucial role 
in many cellular processes, such as the regulation of gene 
expression and transcription, cell growth and differentia-
tion, and chromosome remodeling and inactivation [10]. 
Recent evidence showed that epigenetic mechanisms 
could act as a link between environmental stimuli and 
gene expression, suggesting that epigenetic modifications 
are the adaptation of genes in response to environmen-
tal changes [11]. Epigenetic regulations, especially meth-
ylation modification, ncRNA regulation, and histone 
modification, have been reported to be associated with 
the progression of silicosis [12]. In this review, we will 
comprehensively summarize the pathogenesis of silico-
sis from the perspective of epigenetic modifications, with 
the aim of providing new ideas for early diagnosis, dis-
ease assessment, and targeted treatment of silicosis.

Methylation modification
DNA methylation
DNA methylation is one of the most intensively stud-
ied epigenetic modifications. DNA methylation is cata-
lyzed by a family of DNA methyltransferases (DNMTs), 
which transfer a methyl group from S-adenyl methionine 
(SAM) to the fifth carbon of cytosine residue of CpG 
dinucleotide to form 5-methylcytosine [12]. A great num-
ber of studies have demonstrated that DNA methylation 
can cause changes in chromatin structure, DNA confor-
mation and stability, and the way of interaction between 
DNA and protein, thus controlling gene expression [13].

Most changes in methylation patterns exist in the pro-
cess of cell division and differentiation, in which new 
DNA methylation, demethylation, and maintenance of 
methylation marks may occur [14]. DNA methylation 
mainly exists in gene bodies, intergenic regions, DNA 
repetitive sequences, and endogenous retrotransposons. 
In contrast, CpG-rich regions in the genome, called CpG 
islands, are unaffected by DNA methylation; they are 
consistent with promoters, replication origins, and cis-
regulatory transcription elements [15]. DNA methylation 
is catalyzed by three DMNTs: DNMT1, DNMT3a, and 
DNMT3b. DNMT1 regulates the maintenance of DNA 
methylation during cell division and preferentially selects 
hemimethylated DNA as its substrate, while DNMT3a 
and DNMT3b regulate de novo DNA methylation and 
establish new DNA methylation modes [16]. These 
enzymes have various regulatory functions and partici-
pate in many biological processes such as cell prolifera-
tion, organ development, aging and tumorigenesis [17].

Studies have shown that DNA methylation changes at 
the genome-wide level are related to silica-induced pul-
monary fibrosis.

In vitro and in vivo experiments
In an alveolar macrophage/fibroblast co-culture system, 
Li et  al. conducted the genome-wide DNA methylation 
profiles and observed that fibroblasts presented extensive 
methylation changes when macrophages were exposed to 
silica. Those methylation changes were mainly involved 
in the mitogen-activated protein kinase (MAPK) signal-
ing pathway and metabolic pathways [18]. In the study 
by Wang et  al., they found that transforming growth 
factor-β1 (TGF-β1) induced global DNA methylation 
in fibroblasts in a transforming growth factor-β recep-
tor I (TGFBR1)/Smad3-dependent manner. In addition, 
methyl-CpG-binding domain 2 (Mbd2) selectively bound 
to methylated CpG DNA within the erythroid differen-
tiation regulator 1 (Erdr1) promoter to inhibit its expres-
sion, which promoted fibroblasts to differentiate into 
myofibroblasts by enhancing TGF-β/Smads signaling 
transduction and exacerbating silica-induced pulmonary 
fibrosis [19].

Confirmed by in vivo experiments, Li et al. ascertained 
a dose-dependent decrease in genomic methylation of 
fibroblasts during silica-induced transdifferentiation. 
These genes mainly focused on metabolism, environ-
mental information processes, cellular processes, and 
biological systems [18]. In another research, Zhang et al. 
reported that DNMTs increased in the tissues of silica-
exposed rats, and pretreatment with DNMT inhibitor 
5-aza-dC could reduce the expression of collagen type I 
(COL-I), collagen type II (COL-III), and alleviate silica-
induced pulmonary fibrosis [20].

Human experiment
The abnormal levels of genome-wide DNA methylation 
were also observed in subjects with silicosis. Zhang et al. 
reported that the methylation level of CpG loci in lung 
tissues of silicosis was approximately 17% higher than 
that of healthy controls [21].

In addition to genome-wide DNA methylation, the 
dysregulation of specific genes-methylation in silicosis 
patients was also observed in previous studies. Studies 
found that DNA methylation could be directly involved 
in the regulation of gene expression during the pathologi-
cal process of silicosis.  DNA methylation status in the 
promoter regions of five tumor suppressor genes (e.g., 
MGMT, p16INK4a, RASSF1A, DAPK, RARb) was found 
to be higher in the serum of silicosis patients than that 
in healthy controls [22]. By analyzing the DNA methyla-
tion spectrum in the lung tissue of silicosis, Zhang et al. 
revealed that the number of phosphatase and tensin 
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homolog deleted on chromosome ten (PTEN) and c-Jun 
CpG promoter methylated sites were increased in the 
advanced stage of silicosis, and the hypermethylation 
of PTEN promoter was associated with the decreased 
expression of PTEN protein [21].

DNA methylation does exist in the process of silicosis, 
but according to the current research, a large number 
of in  vivo and in  vitro experiments and epidemiologi-
cal studies are still needed to comprehensively evaluate 
its specific changes and effects. There are few studies on 
the role of DNA methylation in silicosis, but the research 
on silica-induced pulmonary fibrosis can be used as a 
reference.

RNA methylation
Until now, more than 150 post-transcriptional modi-
fications have been discovered in RNA in all organisms 
[23].  N6-methyladenosine  (m6A) is the most common 
and abundant RNA modification in eukaryotic cells [24]. 
 m6A RNA methylation mainly occurs in the common 
motif of  RRm6ACH (R = A/G and H = A/C/U), which is 
enriched in the 3′ untranslated regions (3′UTRs), around 
the stop codons, and within the internal long exons [25, 
26].  m6A RNA methylation modification has been proved 
to play significant roles in regulating RNA metabolism at 
the post-transcriptional level, including the processing, 
transmission and translation of mRNA, and the biogen-
esis of lncRNA and miRNA [27, 28]. Besides,  m6A RNA 
methylation has shown a variety of key roles in mam-
mals, such as the renewal of stem cell, embryonic devel-
opment, immunity, sex determination, and tumorigenesis 
[29]. Many studies on  m6A RNA methylation have dem-
onstrated that the regulatory mechanisms of  m6A RNA 
methylation are involved in a lot of human diseases, 
including heart failure, diabetes, viral hepatitis, especially 
in human cancers [30–32].

Luo et  al. indicated that  m6A RNA methylation was 
abnormal in the early inflammatory stage of silicosis, 
and  m6A methylation modification of cireSLC2A13 
was involved in the activation of macrophages in the 
above process [33]. Using an  m6A-circRNA epitran-
scriptomic chip, Wang et  al. found that the screened 
hsa_circ_0000672 and hsa_circ_0005654 were explic-
itly participated in silica-induced pulmonary fibrosis by 
targeting eukaryotic translation initiation factor 4A3 
(EIF4A3), suggesting that  m6A RNA methylation of cir-
cRNAs mediated silica-induced fibrosis [34]. Besides, Sun 
et al. demonstrated that alkB homologue 5 (ALKBH5), a 
well-known  m6A demethylase, was increased in the lung 
tissues of silica-inhaled mice. And ALKBH5 promoted 
silica-induced lung fibrosis through miR-320a-3p/fork-
head box protein M1 (FOXM1) pathway or targeting 
FOXM1 directly. This finding indicated that methods 

targeting ALKBH5 might be effective in the treatment 
of pulmonary fibrosis [35]. Similarly, the  m6A methyla-
tion regulator methyltransferase-like 3 (METTL3) can 
be considered as an important biomarker for diagnosing 
pulmonary fibrosis occurrence because of its low expres-
sion in pulmonary fibrosis [36].

Although there are few reports on the role of RNA 
methylation in silicosis, the existing researches have 
proved that RNA methylation plays a vital role in the 
occurrence and development of silicosis. With the 
advancement of detection, the biological functions, 
potential molecular mechanisms, regulatory factors, and 
downstream target genes of RNA methylation will be fur-
ther understood.

ncRNA
non-coding RNA (ncRNA) is a kind of abundant RNA 
that does not encode proteins. According to the length, 
shape and location, ncRNAs are divided into different 
types, mainly including microRNAs (miRNAs), long 
non-coding RNAs (lncRNAs), circular RNAs (circRNAs), 
small interfering RNAs (siRNAs), piwi-interacting RNAs 
(piRNAs), and small nuclear RNAs (snRNAs) [37]. ncR-
NAs can serve as the functional regulatory factors to reg-
ulate cellular processes, including chromatin remodeling, 
gene transcriptional regulation, and signal pathway acti-
vation or inhibition. The network of ncRNAs can influ-
ence multiple molecular targets to drive specific cellular 
biological reactions. Therefore, ncRNAs act as key regu-
lators in the occurrence and development of diseases, 
dysregulation of ncRNA has been reported to be linked 
with a diversity of diseases, such as neurological, cardio-
vascular, respiratory disorders, and cancer [38].

miRNA
miRNAs are highly conserved non-coding single-
stranded RNA molecules with the lengths of 18–22 
nucleotides. They mainly mediate post-transcriptional 
gene silencing by destroying the stability or inhibiting 
the translation of target mRNA [39]. It is estimated that 
miRNAs can regulate the translation of more than 60% of 
protein-coding genes [40]. miRNAs have multiple func-
tions, including the regulation of cell proliferation, differ-
entiation and apoptosis, and tissue development [41, 42].

In vitro and in vivo experiments
With the development of silica-induced pulmonary fibro-
sis, Han et al. found that the expression of miR-449a was 
decreased, which could negatively regulate the target 
gene B-cell lymphoma-2 (Bcl-2), trigger autophagy and 
inhibit the proliferation of fibroblasts, therefore playing 
a role in inhibiting pulmonary fibrosis [43]. Study con-
ducted by Yuan et al. clarified that miR-770-5p played an 
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anti-fibrotic effect in silica-induced pulmonary fibrosis by 
targeting TGFBR1 [44]. And overexpressed miR-490-3p 
could prevent the process of fibroblast-to-myofibroblast 
transition (FMT) in  vitro [45]. Furthermore, Qian et  al. 
uncovered that miR-29c expression was significantly 
downregulated in the lungs of silicotic rats and in the 
pulmonary fibroblasts of the in  vitro model of silicosis, 
while miR-29c overexpression significantly suppressed 
the expression levels of fibrosis-related genes, such as 
α-smooth muscle actin (α-SMA), COL-I, and COL-III 
[46]. Chen et  al. observed that miR-155-5p negatively 
regulated meprin α, a major regulator of anti-fibrotic 
peptide N-acetyl-seryl-aspartyl-lysyl-proline. And treat-
ment with anti-miR-155-5p could elevate meprin α, ame-
liorate the activation of macrophage and fibroblast, and 
attenuate lung fibrosis in mice induced by silica. Sus-
tained suppression of meprin α and beneficial effect of its 
rescue by inhibition of miR-155-5p indicated that miR-
155-5p and meprin α were two primary regulators of sili-
cosis [47]. In addition, the group of Niu et al. confirmed 
that the increase of miR-7219-3p facilitated the FMT 
process, as well as cell proliferation and migration, while 
the inhibition of exosomal miR-7219-3p partially sup-
pressed FMT and silica-induced pulmonary fibrosis [48].

It has been well recognized that the endothelial mes-
enchymal transition (EMT) plays a crucial role in the 
process of silicosis [49, 50]. More importantly, the 
effects of miRNA-regulated EMT in silicosis have been 
widely identified in previous studies. Xu et  al. observed 
that miR-29b-2-5p and miR-34c-3p were significantly 
reduced in lung epithelial cells treated with TGF-β1 and 
mouse silicosis models. And overexpression of miR-
29b-2-5p or miR-34c-3p inhibited the EMT process and 
abrogated the profibrotic effect in  vitro [51], indicating 
that the upregulation of miR-29b-2-5p and miR-34c-3p 
could play a protective role in silicosis. In addition, Yu 
et al. found that let-7d negatively regulated silica-induced 
EMT and inhibited silica-induced pulmonary fibrosis, 
which might be partially achieved through direct binding 
to high mobility group protein 2 (HMGA2) [52].

The miRNA expression profiles of experimental silico-
sis rats identified 14 upregulated and 25 downregulated 
miRNAs in lung samples, of which miR-299 increased 
the most (7.28-fold changes) and miR-375 decreased the 
most (0.23-fold changes) [53]. Similarly, studies found 
that the up-regulation of miRNA-423-5p and miR-146a 
and the down-regulation of miR-503, miRNA-26a-5p and 
miR-181b in silicosis rats might be related to the occur-
rence and development of early silicosis [54–56].

In the study of Gao et  al., decreased level of miR-
411-3p was found in silicosis rats. And the increased 
miR-411-3p expression could abrogate silicosis by 
decreasing the ubiquitination degradation of Smad7 by 

Smad ubiquitination regulator 2 (Smurf2) and block-
ing the activation of TGF-β/Smad signaling [57]. To 
explore the potential function of miR-542-5p in silico-
sis, Yuan et  al. established a silicosis mouse model by 
intratracheal instillation of silica suspension and found 
that miR-542-5p was significantly reduced in the fibrotic 
lung tissues. They further proved that the upregulation of 
miR-542-5p visually attenuated a series of fibrotic lesions, 
including alveolar structural damage, alveolar intersti-
tial thickening, and silica-induced nodule formation, 
suggesting that miR-542-5p might be a new therapeutic 
target for silicosis [58]. Similarly, the increased expres-
sion of miR-326 attenuated pulmonary fibrosis in mice 
exposed to silica, and the relevant mechanism might 
be that miR-326 inhibited inflammation and promoted 
autophagy activity through the target protein tumor 
necrosis factor superfamily 14 (TNFSF14) and polypy-
rimidine tract-binding protein 1 (PTBP1), respectively 
[59]. Furthermore, by injecting miR-489 agomir via the 
tail vein into mice, Jin et al. confirmed that the upregu-
lation of miR-489 had a potential therapeutic effect in 
silica-induced pulmonary fibrosis, which was related to 
the inhibition of TGF-β1 release [60]. In addition, the 
expression of miR-1224-5p was significantly upregulated 
in lung tissue with silica-induced pulmonary fibrosis. 
miR-1224-5p could directly inhibit the expression of the 
target gene beclin 1 (BECN1), which in turn blocked the 
translocation of Parkinson’s disease protein 2 (PARK2) 
to mitochondria, resulting in mitochondrial damage and 
promoting pulmonary fibrosis [61].

By establishing the silicosis model in mice, Qi et  al. 
reported that miR-34a expression was downregulated 
in the fibrotic lung tissues induced by silica exposure. 
Overexpression of miR-34a markedly inhibited EMT, 
which might be achieved in part by targeting Smad4 [62]. 
Furthermore, using microarray assay, Sun et  al. discov-
ered that miRNA-29b was dynamically downregulated 
by silica and effected the promotion of EMT. Delivering 
miRNA-29b to mice could significantly inhibit silica-
induced EMT, prevent lung fibrosis, and improve lung 
function [63]. Ji et  al. observed that the expression of 
miR-486-5p was markedly downregulated in both silico-
sis patients and silicosis mice models. Similar to miR-31, 
miR-200 and miR-29 [64–66], overexpression of miR-
486-5p could alleviate silica-induced pulmonary fibrosis 
in mice [67].

Human experiment
Yang et  al. collected total RNAs from the peripheral 
blood leukocytes of 23 silicosis patients and 23 healthy 
controls, and the different miRNAs were screened using 
microarrays, the results showed that miR-19a in periph-
eral blood leukocytes could be used as an effective 
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biomarker for silicosis [68]. Rong et  al. found that miR-
200c and miR-29c were decreased in subjects with severe 
lung function decline, and the abnormal extracellular 
matrix regulated by these miRNAs might play a crucial 
role in the decline of lung function among subjects with 
silicosis [69] (Table 1).

lncRNA
lncRNAs are more than 200 nucleotides in length, which 
have almost no protein coding ability. lncRNAs can be 
classified as antisense lncRNAs, intronic lncRNAs, lin-
cRNAs, promoter-associated lncRNAs, UTR-associated 
lncRNAs et al. [70].

Table 1 The main miRNA changes involved in silicosis

miRNA Tissue/Cell/Patients Expression level Target gene References

miR-449a Mice
NIH-3T3

Down Bcl-2 [43]

miR-770-5p MRC-5 Down TGFBR1 [44]

miR-490-3p MRC-5, NIH/3T3 Down TGFBR1 [45]

miR-29c Rats
Pulmonary fibroblasts
Rat NR8383
Pulmonary macrophages

Down TGF-β1/α-SMA [46]

miR-155-5p MEFs Up Mep1a [47]

miR-7219-3p Mice
RAW264.7, HEK-293T, NIH-3T3

Up Spouty1 [48]

miR-29b-2-5p Mice
A549, BEAS-2B

Up MEKK2/NOTCH2 [51]

miR-34c-3p Mice
A549, BEAS-2B

Up MEKK2/NOTCH2 [51]

let-7d A549, THP-1 Up HMGA2 [52]

miR-299 Rats Up [53]

miR-375 Rats Down [53]

miRNA-423-5p Rats Up [54]

miRNA-26a-5p Rats Down [54]

miR-146a Rats Up Interleukin-1β [55]

miR-181b Rats Down TNF-α [55]

miR-503 Mice
HBE, A549

Down PI3K [56]

miR-411-3p Rats fibroblasts isolated from the lungs of 
newborn rats

Down TGF-β/Smad [57]

miR-542-5p Mice Down ITGA6 [58]

miR-326 Mice
HBE, A549, MRC-5, NIH/3T3

Up TNFSF14/PTBP1 [59]

miR-489 Mice Up TGF-β1 [60]

miR-1224-5p Mice
NIH-3T3, MRC-5

Up BECN1 [61]

miR-34a Mice Up Smad4 [62]

miR-29b Mice
RLE-6TN

Up COL-I/COL-III [63]

miR-31 Mice
MRC-5

Down integrin α(5)/RhoA [64]

miR-200 Rats
MRC-5, RLE-6TN

Down TGF-β1 [65]

miR-29 Mice Down TGF-β [66]

miR-486-5p Mice
Patients

Down Smad2/COL6A6 [67]

miR-19a Patients Down [68]

miR-200c Patients Down [69]

miR-29c Patients Down [69]
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Generally, lncRNAs regulate gene expression mainly 
via the following 5 ways: (1) at the epigenetic level, lncR-
NAs regulate the epigenetics of organisms through DNA 
methylation, histone modification, chromosome silenc-
ing, and genomic imprinting [71]; (2) at the transcrip-
tional level, lncRNAs can bind to transcription factors 
through cis or trans regulation to change RNA activity 
and control gene transcription, as well as complementary 
pairing with DNA and RNA bases to mask splice sites, 
promoters, and miRNA binding sites, thereby altering 
gene expression or protein function [72]; (3) lncRNAs 
can directly participate in the splicing of mRNA pre-
cursors; (4) lncRNAs can bind miRNAs as competitive 
endogenous RNAs (ceRNAs) and participate in the regu-
lation of target genes [73]; (5) lncRNAs bind to different 
proteins through spatial structure, allowing direct pro-
tein action and enhancing protein stability [74].

In vitro and in vivo experiments
To identify the crucial lncRNA-mRNA networks for sil-
ica-induced pulmonary fibrosis, Lei et al. selected a total 
of 1140 differently expressed mRNAs (DEmRNAs) and 
1406 differently expressed lncRNAs (DElncRNAs), in 
which they demonstrated that lncRNA AK131029 was 
specifically overexpressed in silicosis [75]. Using high 
throughput mRNA sequencing, Chen et al. reported that 
miR-455-3p and five lncRNAs (LOC105375913, NEAT1, 
LOC105375181, LOC100506098, and LOC105369370) 
related ceRNA network might be the toxicity mechanism 
of microcrystalline silica particles to human airway epi-
thelial cells (AEC), which might provide a method for the 
studies of the pathogenesis of early silicosis [76].

One study found that lncRNA cardiac hypertrophy-
related factor (CHRF) was upregulated in silica-induced 
pulmonary fibrosis, along with RAW264.7 cells and NIH-
3T3 cells treated with silica particles. CHRF could be 
used by adsorption of miR-489 on the target genes mye-
loid differentiation factor 88 (MyD88) and Smad3, which 
activated inflammatory and fibrotic signaling pathways 
and promoted the development of pulmonary fibrosis 
induced by silica particles [77]. Li et al. revealed that the 
upregulated lncRNA XIST could regulate miR-101-3p, 
which in turn upregulated the expression of E-box-bound 
zinc finger protein 1 (ZEB1), the transcription factor in 
the EMT process, thereby promoting the EMT process 
in alveolar epithelial cells during silicosis-associated pul-
monary fibrosis EMT [78]. Furthermore, Liu et al. dem-
onstrated that silica-stimulated macrophages secreted 
TGF-β1 to induce lncRNA activated by transforming 
growth factor-β (lncRNA-ATB) in epithelia cells, pro-
moting EMT by binding with miR-200c and releasing 
ZEB1 [79].

Using microarray assays, Sai et  al. investigated the 
changes of lncRNAs expression in lung tissue of silica-
exposed rats, and observed that silica exposure led to 
altered expression profiles of 682 lncRNAs (300 upregu-
lated and 382 downregulated). Among them, 73 ceRNA 
pairs were identified through predictive analysis [80]. By 
evaluating the differential expression of lncRNAs in the 
lungs of control and silicosis rats using RNA-sequencing, 
Cai et al. found that a total of 306 lncRNAs were differen-
tially expressed in the lungs of silicotic rat, including 224 
upregulated and 82 downregulated lncRNAs, in which 
LOC103691771 played a major role in myofibroblast dif-
ferentiation, and might be a potential therapeutic target 
for silicosis [81].

Combined with alleviating the fibrotic effects of miR-
326 in silica particle-exposed mice model, Wu et al. found 
that lnc-SNHG1 remarkably adsorbed miR-326 and pro-
moted specificity protein 1 (SP1) expression, thereby 
accelerating the conversion of fibroblasts to myofibro-
blasts and synergistically promoting the development of 
pulmonary fibrosis [82].

Wang et  al. found that there were 1077 differen-
tially expressed lncRNAs (378 upregulated and 699 
downregulated) between normal and silicotic rats, and 
MRAK050699 knockdown inhibited EMT via regulat-
ing the TGF-β/Smad3 signaling pathway. This finding 
indicated that MRAK050699 played an important role 
in EMT and could be served as a potential therapeutic 
target for silicosis [83]. Furthermore, in a silica particle-
induced lung fibrosis mouse model, lncRNA MALAT1, 
as a molecular “sponge”, could adsorb miR-503, reduce 
the expression of miR-503, and activate the PI3K/Akt/
Snail signaling pathway, leading to EMT and triggering 
lung fibrosis [56]. lncRNA MALAT1 could also affect the 
expression of miR-145, which directly targets TGFBR2 
and Smad3 to inhibit the EMT process. Consequently, 
lncRNA MALAT1 could induce the onset of EMT and 
promote the process of lung fibrosis by adsorbing miR-
145 [84]. In addition, a previous study established a sili-
cosis mouse model and an in vitro EMT model of A549 
cells and found that lncRNA UCA1 might regulate the 
EMT process by competitively adsorbing miR-204-5p to 
release its target gene ZEB1 [85].

Human experiment
Ma et al. found that the expression of lncRNA-ATB was 
upregulated in the plasma of coal miners and was posi-
tively correlated with the concentration of TGF-β [86]. 
Besides, the RNA-sequencing data were comprehensively 
analyzed in the peripheral blood lymphocytes of eight 
participants (four silicosis cases vs. four healthy con-
trols), the results showed that the expression of lncRNA 
ADGRG3 was low in silicosis patients, and the relevant 
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mechanism might be that single nucleotide polymor-
phisms rs1814521 in lncRNA ADGRG3 was associated 
with the susceptibility of silicosis [87] (Table 2).

circRNA
circRNA is a circular RNA molecule produced by a 
covalent combination of the 3′ end and 5′ end driven 
by reverse shear or lasso. Due to its end-to-end circular 
structure, circRNA is difficult to be degraded by ribonu-
cleases and is more stable than linear RNA. Generally, 
circRNAs can be divided into exonic circRNAs, intronic 
circRNAs, and exon–intron circRNAs. There are 4 mech-
anisms of circRNA: (1) sponge adsorption of miRNAs; (2) 
regulation of RNA-binding protein expression by adsorp-
tion of protein factors; (3) direct regulation of their par-
ent gene expression by cis or by trading; and (4) encode 
proteins [88].

In vitro and in vivo experiments
Cheng et  al. uncovered that circ-012091-regulated 
PPP1R13B played a key role in the development of sili-
cosis by promoting the proliferation and migration of 
lung fibroblasts through endoplasmic reticulum stress 
and autophagy [89]. Similarly, Cao et al. found that endo-
plasmic reticulum stress induced by silica exposure pro-
moted the development of silicosis, which was related to 
the increased expression of sigma-1 regulated by circH-
IPK2 [90]. In addition, circHIPK3 could enhance the 
expression of forkhead box K2 (FOXK2) via sponging 

miR-30a-3p, thereby facilitating fibroblast glycolysis and 
activation, while miR-30a-3p overexpression or FOXK2 
knockdown blocked fibroblast activation and abrogated 
the profibrotic effects of circHIPK3 [91]. Yang et al. found 
that circZC3H4 could act as ceRNA in RAW264.7 cells 
through sponge adsorption to regulate miR-212 activity, 
thereby inhibiting the silencing effect of miR-212 on the 
target gene zinc finger CCCH-type containing 4 protein 
(ZC3H4) and increasing the expression level of ZC3H4 
protein, which in turn promoted silica exposure-induced 
activation of alveolar macrophages, and the activated 
macrophages promoted the proliferation and migration 
of lung fibroblasts [92]. Another study found that after 
exposure to silica particles, ZC3H12A-mediated ubiq-
uitination in RAW264.7 cells decreased the expression 
of the downstream host gene HECTD1, which partici-
pated in the polar transformation of lung macrophages, 
released inflammatory cytokines, and accelerated the 
process of fibrosis [93]. Furthermore, Chu et  al. found 
that silica-induced autophagy was reversed by overex-
pression of circHECTD1 or HECTD1 knockdown in 
HPF-a cells, and silica-induced fibroblast activation, pro-
liferation, and migration were restored via downstream 
autophagy. These data provided new insight into the 
potential of circHECTD1/HECTD1 as therapeutic tar-
gets for silicosis [94].

circRNA CDR1as stimulated by silica could sponge 
miR-7 to release TGFBR2 and play a significant role in 
the process of pulmonary fibrosis by promoting EMT 

Table 2 The main lncRNA changes involved in silicosis

lncRNA Tissue/Cell/Patients Expression level Target gene References

lncRNA AK131029 Beas-2B Up [75]

LOC105375913 AEC Up [76]

NEAT1 AEC Up [76]

LOC105375181 AEC Up [76]

LOC100506098 AEC Up [76]

LOC105369370 AEC Up [76]

lncRNA CHRF Mice
RAW264.7, NIH-3T3

Up MyD88/Smad3 [77]

lncRNA-XIST Mice
A549

Up miR-101-3p [78]

lncRNA-ATB Beas-2B, A549 Up miR-200c [79]

LOC103691771 Rat
Rat lung fibroblasts

Up TGF-β1/Smad2/3 [81]

lnc-SNHG1 Mice
MRC-5

Up miR-326 [82]

MRAK050699 Rat Up TGF-β/Smad3 [83]

lncRNA MALAT1 Mice Up miR-503/miR-145 [56, 84]

lncRNA UCA1 Mice
A549

Up miR-204-5p [85]

lncRNA ADGRG3 Patients Down [87]
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process [95]. cirCECTD1 was found by Fang et al. to pro-
mote EMT in mouse lung microvascular endothelial cells 
when exposed to silica particles. The possible regulatory 
mechanism was that increased expression of cirCECTD1 
in response to silica exposure reduced the expression of 
the host gene HECTD1 by competitively binding to the 
precursor mRNA, thus promoting EMT, triggering pro-
liferation and migration of endothelial cells, and finally 
leading to irreversible lung fibrosis [96].

Human experiment
Cheng et al. observed that has_circ_0058493 was highly 
expressed in silicosis patients through RNA-sequencing. 
In particular, this study also found that hsa_circ_0058493 
knockdown inhibited the expression of fibrotic molecules 
by influencing the EMT process [97] (Table 3).

Among the ncRNA studies related to silicosis, miRNA 
is the most widely studied. A great number of miRNA 
microarrays and RNA-sequencing in human and animal 
peripheral blood and lung tissues provide biomarkers for 
the screening and diagnosis of silicosis. Simultaneously, 
a lot of studies have explored the significant role of miR-
NAs, most of which focus on the regulation of miRNAs 
on EMT and fibrosis-related target genes. And the anti-
fibrosis effect of miRNAs in silicosis is mainly discussed 
in cell and animal experiments. Besides, due to the late 
start of the research on lncRNAs and circRNAs, the 
pathogenic mechanism of them in silicosis has not been 
fully studied, and the application in the treatment of sili-
cosis remains in the exploratory stage. In particular, look-
ing for ncRNAs that can be used as targets will provide 
novel directions for the treatment of silicosis. Meanwhile, 
studying integrated RNA interaction networks may fur-
ther reveal the mechanisms of the occurrence and devel-
opment of silicosis.

Histone modifications
Histones (H1, H2A, H2B, H3, and H4) are essential pro-
teins that closely related to DNA and promote DNA 
compaction in the nucleus of eukaryotic cells. Histone 
modification is a covalent modification process, in which 
the N-terminal amino acid residues of histones are meth-
ylated, acetylated, phosphorylated, ubiquitinated and 
adenosine diphosphate (ADP)-ribosylated under the 
catalysis of relevant enzymes. The post-translational 
modifications affect chromatin compaction and thus 
access to DNA by regulatory proteins, affecting DNA 
recombination, replication, repair, and regulation of 
gene expression [13]. Zhang et  al. observed the level of 
extracellular histones in the plasma of silicosis cases and 
found that the plasma level of H4 was significantly cor-
related with the stage of silicosis, indicating that extra-
cellular histones played a vital role in the progression of 
fibrosis in silicosis [98].

Histone methylation can increase the affinity of his-
tones for DNA, change the interaction between histone 
tails and DNA or chromatin-associated proteins, and 
thus transform the structure and function of ribosomes 
[99]. Histone methylations are catalyzed by histone 
methyltransferases (HMTs), which are able to add methyl 
groups provided by S-adenosylmethionine to their tar-
get residues. Generally, methylation can be added to 
the ε-amino group of lysine in the form of mono- (me), 
di- (me2) or tri- (me3), while arginine methylation can 
be mono-methylated (me), di-methylated symmetrically 
(me2s) or asymmetrically (me2a) [100]. By establish-
ing an in  vitro model of silicosis, Liu et  al. found that 
there were significant changes in the methylation levels 
of whole-genome proteins H3K4 and H3K27 before and 
after transdifferentiation of lung fibroblasts exposed to 
silica, and the main changes were H3K27 demethylation 
and H3K4 methylation [18].

Table 3 The main circRNA changes involved in silicosis

circRNA Tissue/Cell/Patients Expression level Target gene References

circ-012091 L929, HPF-a Up PPP1R13B [89]

circHIPK2 HPF-a Up sigma-1 [90]

circHIPK3 MRC-5, NIH/3T3 Up miR-30a-3p/FOXK2 [91]

circZC3H4 RAW264.7 Up miR-212 [92]

circHECTD1 HPF-a Down HECTD1 [94]

circRNA CDR1as Mice
HBE, A549, MRC-5, NIH-3T3

Up miR-7 [95]

cirCECTD1 Mice
Pulmonary tissues of silicosis patients
MML1, RAW264.7

Up/Down HECTD1 [96]

hsa_circ_0058493 Patients Up [97]
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Histone acetylation facilitates the dissociation of DNA 
from histone octamers and the specific binding of tran-
scription factors to DNA binding sites, which loosens 
chromatin and activates transcription. Conversely, insuf-
ficient histone acetylation or inadequate histone deacety-
lation leads to dense chromatin structure, blocking gene 
transcription sites, and thus inhibiting gene expression. 
Generally, histone deacetylases (HDACs) play an essen-
tial role in the dysregulation of histone acetylation/dea-
cetylation. Zhang et  al. found that exposure of human 
embryonic lung fibroblasts (helf ) to quartz increased 
the acetylation levels of lysine, histone H2B (lys5/12), 
H3 (Lys9/14), and H4 (lys12) [101]. In contrast, the 
methylation level of arginine at position 2 of histone H3 
decreased, and ceruloplasmin could reverse the quartz 
exposure-induced histone acetylation and methylation 
changes [101].

The role of histone modifications in silicosis has rarely 
been reported. However, the above studies provide clues 
for further research on the role of histone modifications 
in the pathogenesis of silicosis and its treatment and 
prognosis.

Conclusions
Silicosis is an occupational disease caused by the inha-
lation of crystalline silica, which is characterized by dif-
fuse fibrosis of lung tissues and the formation of silicon 
nodules [102]. During the formation of silicosis, disease-
specific triggers can cause inflammation, myofibroblast 
activation, and the activation of a profibrotic positive 
feedback loop, leading to the continuous development of 
fibrosis [103]. Although the pathogenesis of silicosis has 
not been completely clarified, there are hypotheses that it 
has certain regulatory mechanisms, including epigenetic 
regulation. Among the studies of epigenetic regulation 
related to silicosis, miRNA is the most studied, and the 
mechanism is relatively complete. Besides, achievements 
have been made in the research of lncRNA and circRNA 
in cell signal pathway, transcriptional regulation and 
function as ceRNA binding to mRNA. However, due to 
the late start, the relevant research is less than miRNA. 
And the studies of ncRNA regulation are primarily about 
EMT and fibrosis-related target genes. Compared with 
ncRNA, the role of methylation modification and histone 
modifications in silicosis still needs further exploration.

Previous studies have confirmed that epigenetic regu-
lation can play key roles in the diagnosis and treatment 
of cancer, which give us great hints [104, 105]. Similarly, 
methylation modification, differential expression of 
ncRNAs, and histone modifications can serve as signal-
ing molecules for silicosis and play significant roles in 
diagnosing and initial assessing the severity of silico-
sis and its treatment. Exploring epigenetic changes of 

silicosis is of great value for understanding the patho-
genesis, disease surveillance, diagnosis, intervention, 
and treatment of silicosis. Therefore, using epigenetic 
factors to find new targets can provide new ideas for 
the treatment of silicosis. However, the pathogenesis 
of silicosis is a complex network of response regula-
tion consisting of multiple effector cells and active sub-
stances, a large number of studies still need to clarify 
how epigenetic regulation starts and plays a role in 
silicosis.
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