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Abstract 

Background:  DNA methylation (5-mC) signals in cell-free DNA (cfDNA) of cancer patients represent promising bio-
markers for minimally invasive tumor detection. The high abundance of cancer-associated 5-mC alterations permits 
parallel and highly sensitive assessment of multiple 5-mC biomarkers. Here, we performed genome-wide 5-mC profil-
ing in the plasma of metastatic ALK-rearranged non-small cell lung cancer (NSCLC) patients receiving tyrosine kinase 
inhibitor therapy. We established a strategy to identify ALK-specific 5-mC changes from cfDNA and demonstrated the 
suitability of the identified markers for cancer detection, prognosis, and therapy monitoring.

Methods:  Longitudinal plasma samples (n = 79) of 21 ALK-positive NSCLC patients and 13 healthy donors were col-
lected alongside 15 ALK-positive tumor tissue and 10 healthy lung tissue specimens. All plasma and tissue samples 
were analyzed by cell-free DNA methylation immunoprecipitation sequencing to generate genome-wide 5-mC pro-
files. Information on genomic alterations (i.e., somatic mutations/fusions and copy number alterations) determined in 
matched plasma samples was available from previous studies.

Results:  We devised a strategy that identified tumor-specific 5-mC biomarkers by reducing 5-mC background signals 
derived from hematopoietic cells. This was followed by differential methylation analysis (cases vs. controls) and bio-
marker validation using 5-mC profiles of ALK-positive tumor tissues. The resulting 245 differentially methylated regions 
were enriched for lung adenocarcinoma-specific 5-mC patterns in TCGA data and indicated transcriptional repression 
of several genes described to be silenced in NSCLC (e.g., PCDH10, TBX2, CDO1, and HOXA9). Additionally, 5-mC-based 
tumor DNA (5-mC score) was highly correlated with other genomic alterations in cell-free DNA (Spearman, ρ > 0.6), 
while samples with high 5-mC scores showed significantly shorter overall survival (log-rank p = 0.025). Longitudinal 
5-mC scores reflected radiologic disease assessments and were significantly elevated at disease progression com-
pared to the therapy start (p = 0.0023). In 7 out of 8 instances, rising 5-mC scores preceded imaging-based evaluation 
of disease progression.

Conclusion:  We demonstrated a strategy to identify 5-mC biomarkers from the plasma of cancer patients and inte-
grated them into a quantitative measure of cancer-associated 5-mC alterations. Using longitudinal plasma samples 
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Background
Liquid biopsies from circulating cell-free DNA (cfDNA) 
have demonstrated their utility for minimally invasive 
cancer detection, tumor genotyping, resistance as well 
as residual disease monitoring during therapy [1–7]. The 
analysis of cfDNA molecules carrying genomic aberra-
tions (i.e., somatic mutations or copy number alterations 
[CNAs]) is highly tumor-specific and allows accurate 
detection and longitudinal assessment of cancers. How-
ever, this approach poses several challenges, includ-
ing the low abundance of mutated cfDNA fragments, a 
lack of common mutations across patient groups and 
the necessity to have a priori knowledge of a tumor’s 
molecular profile [3, 8]. DNA methylation, occurring at 
the 5’-carbon of cytosines (5-mC), was demonstrated 
to be preserved in cfDNA [9–11] and represents a bio-
marker with the potential to overcome some of these 
limitations. Aberrant methylation at cytosine–guanine 
dinucleotides (CpGs) is central to carcinogenesis and 
usually occurs genome-wide [12–14]. This allows paral-
lel assessment of multiple 5-mC sites, thereby increas-
ing the probability to capture cancer-derived signals 
in the circulation. In addition, tumors without known 
genomic alterations (i.e., mutations or CNAs) may be 
detected utilizing cancer-specific 5-mC signatures. With 
its gene regulatory function, 5-mC contains additional 
information about the tumor that cannot be derived 
from genomic cfDNA alterations. Its presence at regula-
tory regions, such as promoters or enhancers, represses 
transcription of associated genes. Previous reports were 
able to deduce silenced tumor suppressors [15] and cell 
type-specific gene regulation (i.e., tumor localization) 
from cell-free 5-mC profiles [9, 11, 16–19]. Cell-free 
methylation DNA immunoprecipitation followed by 
high-throughput sequencing (cfMeDIP-seq) is a sensi-
tive approach to detect 5-mC signals from low amounts 
of DNA (> 1  ng). The enrichment of methylated cfDNA 
molecules allows genome-scale 5-mC profiling without 
error-prone bisulfite conversion [10, 20]. In principle, 
cfMeDIP-seq enables concurrent assessment of numer-
ous 5-mC tumor biomarkers [10, 21–23]. Yet, their iden-
tification in cfDNA presents a challenge, because cfDNA 
is regarded as a mixture of DNA fragments released from 
various cell and tissue types. Most cfDNA is derived from 
hematopoietic cells, while tumor-derived DNA molecules 
commonly compose a minor fraction (< 1%) [11, 18, 19]. 
This poses the difficulty in identifying tumor-informative 

5-mC signals within the vast amount of non-cancer back-
ground DNA.

So far, few studies addressed the capability of cfMeDIP-
seq for the assessment of longitudinal therapy kinet-
ics [21, 24, 25]. Here, we applied cfMeDIP-seq to 
longitudinally sampled plasma of non-small cell lung 
cancer (NSCLC) patients with oncogenic rearrange-
ments of the anaplastic lymphoma kinase (ALK) gene. 
These patients are susceptible to ALK tyrosine kinase 
inhibitor (TKI) therapy and can experience long sur-
vival under serial treatment with multiple targeted drugs 
[26–28]. However, therapy failure due to acquired drug 
resistance is common [27]. Therefore, timely recognition 
of disease progression and consequential adaptation of 
therapy strategy is desirable for better disease manage-
ment. We implemented a strategy to identify tumor-spe-
cific 5-mC biomarkers from cfMeDIP-seq data of cancer 
patient cfDNA. Our approach uses public whole-genome 
bisulfite sequencing (WGBS) datasets of cell types com-
posing the non-tumor fraction of cfDNA [18] to iden-
tify and reduce confounding 5-mC background signals. 
We validated the tumor specificity of the resulting 5-mC 
biomarkers using lung cancer tissue methylation and 
gene expression data, systematically compared them to 
genomic alterations previously determined in matched 
plasma [2, 4], and followed their abundances in serial 
plasma samples taken during TKI therapy. The results of 
this study highlight the complementarity of epigenomic 
and genomic cfDNA analysis and, for the first time, dem-
onstrate the applicability of cfMeDIP-seq for longitudinal 
treatment monitoring in ALK-positive NSCLC. Addi-
tionally, we provide a strategy for 5-mC biomarker identi-
fication that can be applied in future studies.

Results
Patient characteristics
A total of 66 plasma specimens from 21 metastatic 
ALK-positive NSCLC lung adenocarcinoma (LUAD) 
patients were included in this study (Table  1). Longi-
tudinal plasma was available for eleven patients rang-
ing from 2 to 14 consecutive samples. Baseline tissue 
biopsies identified EML4-ALK fusion variant 1 (V1; 
E13:A20) in 43% (9/21), V2 (E20:A20) in 10% (2/21), V3 
(E6:A20) in 33% (7/21), and other variants in 10% (2/21) 
of patients. TP53 mutations were detected in baseline tis-
sue biopsies of 29% (6/21) of cases. All patients received 
one or multiple lines of ALK-directed TKI therapy, and 

of ALK-positive NSCLC patients, we highlighted the suitability of cfDNA methylation for prognosis and therapy 
monitoring.
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30 plasma samples were taken at time points of disease 
recurrence. At the last follow-up date, 10/21 patients 
had deceased (Additional file  1: Figure S1). Information 
on genomic alterations of all plasma samples was avail-
able from previously published work [2, 4]. This included 
cell-free abundances of the EML4-ALK fusion gene and 
somatic mutations, determined by hybrid-capture-based 
sequencing as well as genome-scale chromosomal insta-
bility assessment by shallow whole-genome sequencing 
(sWGS), summarized as trimmed median absolute devia-
tion from copy number neutrality (t-MAD) scores [29].

Identification of tumor‑informative cell‑free 5‑mC 
biomarkers
To identify tumor-associated 5-mC biomarkers 
in cfDNA, we first generated genome-wide DNA 

methylation profiles from 66 ALK-positive and 13 
healthy control plasma samples by cfMeDIP-seq. We 
chose 21 patient samples for the biomarker identification 
process by selecting one sample per individual in cases 
with available serial plasma. Hereby, longitudinal samples 
with detectable genomic alterations (previously meas-
ured in the same plasma [2, 4]) were favored, reasoning 
that these samples were expected to contain elevated 
amounts of tumor-derived cfDNA and were therefore 
well suited for biomarker identification (selected sam-
ples are specified in Additional file 1: Table S1). In addi-
tion to plasma, ALK-positive tumor (n = 15) and normal 
lung tissue (n = 10) samples were subjected to cfMeDIP-
seq. The marker identification strategy established in this 
study interrogated 5-mC coverage profiles at 7,264,350 
non-overlapping genomic windows [18] and selected 
tumor-informative regions by excluding non-tumor 
5-mC signals. This was followed by differential methyla-
tion analysis between cases and controls and biomarker 
validation in ALK-positive tumor tissues (Fig.  1A and 
Additional file 1: Fig. S2).

As most cfDNA molecules originate from various 
hematopoietic cells [11, 18, 19], we reasoned that fre-
quently methylated genomic regions in these cells con-
tain confounding background 5-mC signals rather than 
carrying information about a patient’s tumor. To test 
this, we used publicly available WGBS data of cell types 
described to compose cfDNA in healthy individuals (i.e., 
granulocytes, megakaryocytes, erythroid progenitors, 
monocytes, macrophages, lymphocytes, and other non-
hematopoietic cells) and combined them according to 
their relative contribution to cfDNA (Fig. 1A; Methods) 
[18]. We found that focusing on genomic regions com-
monly unmethylated in the combined ‘5-mC background’ 
(i.e., methylated in the combination of hematopoietic 
cells) increased the correlation between ALK-positive 
cfDNA and ALK tissue 5-mC signals compared to all 
evaluable regions. The highest correlation was observed 
at an exclusion threshold of β < 0.15 (Fig. 1B; Spearman, 
ρ = 0.307), indicating an enhanced tumor association 
of the 5-mC signals at the remaining 63,650 sites. Next, 
we identified cancer-derived differentially methylated 
regions (DMRs) from cfDNA at ‘5-mC background’-
depleted sites by comparing ALK-positive patients to 
healthy controls. 829 hyper- and 67 hypomethylated 
DMRs were detected in ALK-positive cfDNA (Fig.  1C). 
To validate their tumor association, we overlapped the 
cfDNA-derived DMRs to differentially methylated sites 
found by comparing ALK-positive tumor tissue to normal 
lung tissue (Additional file 1: Figure S3A). Two hundred 
and forty-five of 829 (29.6%) DMRs were concordantly 
hypermethylated in ALK-positive cfDNA and tumor tis-
sue samples (Fig.  1D), and the significance of overlaps 

Table 1  Patient characteristics

ALK anaplastic lymphoma kinase, EML4 echinoderm microtubule-associated 
protein-like 4, KCL1 kinesin light chain 1, NGS next-generation sequencing, PD 
progressive disease, PR partial response, SD stable disease, TP53 tumor protein 
53
1 Data available for 20/21 patients from NGS of tissue biopsies at diagnosis of 
stage IV disease
2 One patient with a K9A20 (KCL1) and one with an E9A10 fusion

ALK-positive NSCLC patients (n = 21; n = 66 plasma specimens)

Age, median (range) 56 (42–80)

Sex, male 11/21

Stage IV 21/21

ALK fusion variant, patient number1

EML4-ALK V1/V2 11

EML4-ALK V3 7

Other2 2

No data 1

TP53 status, patient number1

Positive 6

Negative 14

No data 1

Treatment, sample number

Crizotinib 19

Ceritinib, Alectinib, Brigatinib 27

Lorlatinib 5

Chemotherapy 10

Naïve 4

No data 1

Number of samples per patient, mean (range) 3.1 (1–14)

Radiological evaluation at sampling, number of samples

Extracranial PD 27

Intracranial PD 4

SD 30

PR 2

No data 3
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Fig. 1  Identification of tumor-informative 5-mC regions from ALK-positive cfDNA. A 5-mC biomarker identification workflow overview. B Density 
plot illustrating log2 5-mC differences between ALK-positive patient and healthy control cfDNA (y-axis) against ALK patient tissue versus healthy 
control cfDNA (x-axis). Healthy control cfDNA samples used as reference for log2(fold-change) calculation were split, using one half as reference for 
ALK cfDNA (n = 6) and the other for ALK tissue samples (n = 6). The left plot shows the correlation at all evaluable genomic regions (n = 2,596,067). 
The right one shows the correlation after exclusion of ‘5-mC background ‘signals (n = 63,650). C Volcano plot of 63,650 genomic regions remaining 
after ‘5-mC background ‘exclusion. Significantly hyper- and hypomethylated sites, comparing 21 ALK-positive to 13 healthy control cfDNA 
samples, are highlighted in dark and light red, respectively. D Overlap of ALK cfDNA hyper-DMRs and hyper-DMRs detected in ALK tissue. E Scatter 
plots showing the correlation between 5-mC scores calculated from 245 ALK-specific hyper-DMRs and t-MAD scores (left) and EML4-ALK fusion 
abundances (right). Points represent individual samples and black line denotes fitted linear regression model with 95% confidence interval. ALK, 
anaplastic lymphoma kinase; cfDNA, cell-free DNA; DMR, differentially methylated region; EML4, echinoderm microtubule-associated protein-like 4; 
ns, not significant; NSCLC, non-small cell lung cancer; t-MAD, trimmed median absolute deviation from copy number neutrality
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was confirmed by permutation testing (p < 0.0001). 
Hypomethylated DMRs in cfDNA did not overlap with 
tumor tissue DNA hypomethylation, most likely due to 
the limitation of cfMeDIP-seq to detect hypomethylated 
regions in cfDNA samples. Importantly, we found that 
differential methylation analysis without prior ‘5-mC 
background’ depletion identified fewer DMRs whose 
methylation status could be confirmed in tumor tissue 
(65/3,948 [1.6%] hyper-DMRs). This suggested that the 
‘5-mC background’ depletion facilitates the detection 
of cancer-derived DMRs. We then developed a metric, 
termed ‘5-mC score,’ to quantitatively assess the extent 
of cancer-derived 5-mC changes in each cfDNA sample. 
The 5-mC score combined the 5-mC signal at the 245 
hyper-DMRs with confirmed tumor tissue association 
by calculating their absolute median coverage devia-
tion from a healthy cfDNA control panel (Methods). A 
high concordance between 5-mC scores and chromo-
somal instability (t-MAD score; Spearman, ρ = 0.609) as 
well as 5-mC scores and EML4-ALK fusion abundances 
(Spearman, ρ = 0.705) was observed, suggesting that 
cfMeDIP-seq profiles can inform about the abundance 
of tumor-derived cfDNA molecules in plasma samples 
(Fig. 1E). Similar correlations with the t-MAD score and 
the EML4-ALK fusion abundance were found when all 
829 hyper-DMRs were considered for the calculation of 
the 5-mC score (Additional file 1: Figure S3B; Spearman, 
ρ = 0.537 [t-MAD] and ρ = 0.657 [EML4-ALK fusion]). 
This suggested that the presented strategy allows the 
identification of 5-mC biomarkers from cfDNA alone, 
without additional information from tumor tissue.

Cell‑free 5‑mC markers are enriched for lung 
adenocarcinoma‑specific methylation and inform 
about tissue‑specific gene expression
DNA methylation occurs in a tissue-specific manner and 
plays a part in transcriptional regulation [12]. We used 
publicly available reference datasets (i.e., Illumina 450 k 
methylation array and RNA-seq data) from The Cancer 
Genome Atlas (TCGA) [30, 31] to investigate whether the 
identified 245 ALK-specific hyper-DMRs were informa-
tive on LUAD biology. In total, 189 of the 245 hyper-
DMRs were covered by at least one cytosine probed by 
the Illumina 450 k methylation array and 78/189 (41.3%) 
were concordantly hypermethylated in LUAD (n = 455) 
versus adjacent normal lung tissue (n = 75). Permutation 
testing confirmed significant enrichment of LUAD-spe-
cific hypermethylation within the hyper-DMRs identified 
from ALK-positive cfDNA (p < 0.0001). Interestingly, we 
observed a similar number of overlapping hyper-DMRs 
when TCGA-LUAD samples were stratified by patho-
logic stage or molecular driver (i.e., EGFR, KRAS, and 
EML4-ALK; Additional file  1: Table  S2). This suggested 

that some of the hyper-DMRs found in cfDNA might 
be informative of localized cancer in LUAD patients 
independent of the ALK-positive subtype addressed 
in this study. We next examined whether the identi-
fied hyper-DMRs were indicative of the transcriptional 
status of proximal genes. Thirty-five out of 189 (18.5%) 
hyper-DMRs, corresponding to 31/135 (23.0%) genes, 
demonstrated a significant inverse correlation between 
DNA methylation and gene expression in non-cancer 
TCGA tissue samples (n = 150), suggesting their 5-mC-
dependent transcriptional repression. The majority of 
genomic regions with gene regulatory 5-mC signals 
resided in CpG islands (31/35) and many were located 
proximal to promoters (24/35; i.e.,  ≤ 5  kb upstream of 
the transcription start site and 5’-untranslated regions). 
Among the associated genes, 23/31 (74.2%) were tran-
scriptionally downregulated in TCGA-LUAD (n = 507) 
versus normal lung tissues (n = 288) obtained from the 
Genotype-Tissue Expression project (GTEx; Additional 
file 1: Table S3). Promoter hypermethylation and/or tran-
scriptional silencing in NSCLC was previously reported 
for some of these genes (e.g., PCDH10, TBX2, CDO1, and 
HOXA9). Interestingly, PCDH10, TBX2, and CDO1 were 
described as potential biomarkers for early-stage lung 
cancers [32–34]. PCDH10 hypermethylation was associ-
ated with adverse disease outcomes after surgery of stage 
I NSCLC [33], while TBX2 expression was demonstrated 
to progressively decrease across premalignant lesions 
with respect to normal lungs [34]. Of note, promoter 
5-mC levels of CDO1 and HOXA9 were previously uti-
lized for plasma-based disease assessment in both early 
and advanced lung cancers [32, 35].

5‑mC profiling of cfDNA complements CNA and mutation 
analysis
Cancer-associated alterations of the methylome are 
prevalent and pervasive across patients [36]. This allows 
simultaneous profiling of multiple 5-mC biomarkers, 
potentially overcoming sensitivity limitations posed by 
the analysis of less abundant genomic alterations. Here, 
we assessed whether the combined evaluation of the pre-
viously identified 245 hyper-DMRs (5-mC score) could 
identify tumor-derived signals in cfDNA samples with-
out detectable genomic alterations (i.e., t-MAD score, 
focal amplifications, mutations, or fusions). To define 
a detection threshold, we calculated 5-mC scores from 
cfMeDIP-seq data of 13 healthy individuals and used 
the maximum value (median 0.0224; range 0–0.6870) 
to determine tumor DNA positivity. The t-MAD score 
detection threshold was established likewise using sWGS 
data of 16 healthy individuals (median 0.0051; range 
0.0028–0.0081). We identified tumor-derived 5-mC 
signals in 92.4% (61/66) of cfDNA samples and 90.5% 
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(19/21) of ALK-positive patients (Fig.  2 and Additional 
file  1: Table  S4). Hybrid-capture sequencing and sWGS 
found cancer-associated genomic alterations in 86.4% 
(57/66) of the samples, constituting 66.7% (14/21) of 
patients [2, 4]. The most recurrently altered genes were 
ALK (51.5%; 34/66 samples) and TP53 (39.4%; 26/66 sam-
ples). Focal amplifications were detected in 16.7% (11/66) 
and t-MAD scores exceeding the detection threshold in 
69.7% (46/66) of the samples. 5-mC analysis identified 
tumor-derived methylation changes in 6 samples from 6 
patients without reported genomic alterations, whereas 
tumor DNA in 2 samples (2 patients) was detectable by 
hybrid-capture sequencing and/or sWGS only. Compar-
ing the 5-mC analysis results to hybrid-capture sequenc-
ing or sWGS alone resulted in the identification of 14 and 
17 additional samples (14 and 11 patients), respectively, 
with detectable tumor-derived alterations. Combining 
all three analysis types, we found tumor DNA in 95.5% 
(63/66) of all cfDNA samples and in at least one sample 
in 90.5% (19/21) of patients. This highlighted the added 
value of a multimodal approach for the detection of can-
cer signals in cfDNA samples.

5‑mC score predicts poor overall survival and indicates 
molecular risk of ALK‑positive lung cancer
To investigate whether the 5-mC score holds prognos-
tic value, we compared it to the clinical outcomes in our 
ALK-positive patient cohort. Overall survival (OS) from 
the time of plasma sampling was significantly shorter in 
cases exceeding the cohort’s median 5-mC score (median 

7.7 vs. 14.0  months; p = 0.0253; Fig.  3A). EML4-ALK 
fusion abundances and t-MAD scores were also predic-
tive of OS (Additional file 1: Figure S4A/B and previously 
shown [4]). Recent studies identified the presence of the 
EML4-ALK fusion V3 and/or TP53 mutations as molecu-
lar risk factors associated with shorter progression-free 
survival and OS in ALK-positive patients [37–40]. We 
found significantly higher 5-mC scores in samples of 
EML4-ALK V3 compared to V1/2 patients (p = 0.0034; 
Fig.  3B), while no association between the 5-mC score 
and TP53 mutation status was observed (p = 0.5543; 
Additional file  1: Figure S4C). This was in contrast to 
the elevated EML4-ALK fusion levels and higher t-MAD 
scores detected in both V3 versus V1/2 and TP53-posi-
tive versus TP53-negative patients within a previous 
study [4].

5‑mC scores reflect disease kinetics under ALK TKI therapy 
in longitudinal cfDNA samples
Targeted treatment of ALK-positive patients is character-
ized by high incidences of acquired drug resistance and 
consequent patient relapse [41, 42]. Regular disease sur-
veillance is therefore instrumental for the early detection 
of tumor progression and guidance of subsequent ther-
apy decisions. We and others previously demonstrated 
the feasibility of cfDNA mutation and CNA profiling 
for the monitoring of ALK-positive NSCLC [2, 4, 43–
45]. In this study, we assessed whether the 5-mC scores 
reflected therapy-associated tumor DNA dynamics in 
the plasma of ALK-positive patients. Representative 

Fig. 2  Per-sample OncoPrint of genomic alterations and cancer-derived 5-mC signals. Plasma samples with 5-mC scores exceeding the maximum 
value in the healthy donor cohort (0.6870) were considered tumor DNA-positive. Positivity for copy number alterations was evaluated similarly 
(t-MAD score ≥ 0.0081). Mutations, fusions, and focal amplifications with a relative abundance or variant allele frequency ≥ 0.01% were deemed 
tumor DNA-positive. Percent of tumor DNA-positive samples per biomarker are indicated on the right. ALK, anaplastic lymphoma kinase; BRAF, 
B-raf proto-oncogene; EGFR, epidermal growth factor receptor; ERBB2, Erb-B2 receptor tyrosine kinase 2; KRAS, v-Kir-Ras2 Kirsten rat sarcoma viral 
oncogene homolog; MET, MET proto-oncogene; TP53, tumor protein 53; t-MAD, trimmed median absolute deviation from copy number neutrality
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cases of 5-mC-based therapy monitoring are illustrated 
in Fig.  4A and Additional file  1: Figure S5. 5-mC score 
kinetics reflected those found in the co-measured cell-
free genomic biomarkers and recapitulated radiologic 
tumor progression. Patients P012, P025, and P044 exem-
plified cases indicating TKI failure by rising 5-mC scores, 
while decreasing 5-mC signals after administration of 
effective therapy regimens were observed in P007, P013, 
P025, and P028 (Fig. 4A and Additional file 1: Figure S5). 
Additionally, the cohort included cases without informa-
tive EML4-ALK fusion abundances (e.g., P012 and P007) 
or t-MAD scores (P007). 5-mC scores were detectable 
in both cases and indicated disease progression, high-
lighting the value of 5-mC profiling. Our cohort com-
prised 13 instances (in 7 patients) with available plasma 
at the start of a therapy line and at disease progression 
from the same line with consequential therapy switch or 
patient death. Compared to the therapy baseline, 5-mC 
scores were elevated at the progressive disease (PD) time 
point in 13/14 cases (Wilcoxon paired test, p = 0.0023; 
Fig.  4B). EML4-ALK fusion abundances and t-MAD 
scores increased at PD in 10/14 and 11/14 cases, respec-
tively (Wilcoxon paired test, p = 0.0367 and p = 0.0419; 
Additional file 1: Figure S6A). Interestingly, we observed 
rising 5-mC scores in samples taken prior to disease pro-
gression at radiologically stable disease (SD), potentially 
marking the development of drug resistance (Fig. 4C and 
Additional file 1: Figure S5). The plasma sampling scheme 
of this study allowed detecting early molecular signs of 

PD at 8 instances (6 patients). Defining a ≥ 25% increase 
from the therapy line nadir as an indication of molecular 
progression, we identified 7/8 instances in which 5-mC 
profiling preceded radiographic determination of TKI 
failure. The median lead time to radiological progression 
was 89 days (range 0 to 345 days), allowing significantly 
earlier relapse identification compared to imaging (Wil-
coxon paired test, p = 0.0225; Additional file  1: Figure 
S6B). EML4-ALK fusion abundances denoted lead times 
in 6/8 instances (median 66  days [range 0 to 150  days]; 
Wilcoxon paired test, p = 0.0360) and t-MAD scores were 
not informative of early molecular progression (Addi-
tional file 1: Figure S6B).

Copy number alteration estimation from cfMeDIP‑seq data
The assessment of copy number changes by sWGS of 
cfDNA demonstrates a cost-effective method for mini-
mally invasive estimation of tumor burden [2, 4, 29, 
46]. Here, we evaluated whether cfMeDIP-seq data 
can be used to infer chromosomal instability, allowing 
simultaneous genomic and epigenomic tumor assess-
ment from the same dataset. We generated global copy 
number profiles from cfMeDIP-seq data at 1-Mb bins 
[47] and compared them to CNAs detected by sWGS 
of matched plasma. The resulting CNA profiles were 
highly concordant between both datasets (Additional 
file  1: Figure S7A). For quantitative CNA detection 
comparison, we downsampled both datasets to a com-
mon read coverage of 5 M paired reads per sample and 

Fig. 3  Association of 5-mC scores to overall survival and molecular risk factors. A Overall survival of ALK-positive NSCLC from the time point of 
plasma sampling according to the median 5-mC score of all evaluable patient samples (0.1447). B 5-mC scores in samples from patients with 
EML4-ALK fusion variant V1/2 and V3 detected in tissue biopsies. Each dot represents one plasma sample, and the number of samples and patients 
(in brackets) are given per group. Box plot center lines indicate the median, and boxes illustrate the interquartile range with Tukey whiskers. ALK, 
anaplastic lymphoma kinase; EML4, echinoderm microtubule-associated protein-like 4
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calculated t-MAD scores for all patient samples. The 
resulting t-MAD scores were highly correlated (Pear-
son, r = 0.9360; p < 2.2e−16; Additional file  1: Figure 
S7B), showing that cfMeDIP-seq could be used for both 
5-mC profiling and genome-wide copy number estima-
tions. In this way, the utility of sequencing data could 
be increased without additional costs and using fewer 
resources (i.e., patient material).

Discussion
In this study, we showed that cancer-derived changes 
of the methylome can be detected in cfDNA samples of 
ALK-positive NSCLC patients. We implemented a work-
flow to identify cell-free 5-mC biomarkers, validated 
their tumor specificity using in-house and external ref-
erence datasets, and demonstrated the utility of these 
markers for prognosis and therapy monitoring.

Fig. 4  DNA methylation-based therapy monitoring of ALK-positive NSCLC patients. A Longitudinal cell-free biomarker kinetics of three 
representative patients. 5-mC scores, t-MAD scores, and EML4-ALK fusion abundances are illustrated from top to bottom. White dots mark data 
points below the markers respective limit of detection. Therapy regimens are given by the shaded color backgrounds and radiologic disease 
assessments are highlighted above individual graphs. B 5-mC score comparison in cases (n = 13) with available plasma samples at therapy line start 
and at disease progression from the same line. Shaded area illustrates the limit of detection. C Representative cases of detectable early molecular 
progression. Longitudinal profiles show 5-mC score kinetics from therapy line start to disease progression with resultant treatment switch or patient 
death. Time points of first molecular indication of PD are highlighted, and percent 5-mC score increase from therapy line nadir is illustrated. ALK, 
anaplastic lymphoma kinase; EML4, echinoderm microtubule-associated protein-like 4; PD, progressive disease; SD, stable disease
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Tumor-derived DNA can be detected in plasma cfDNA 
of cancer patients and allows minimally invasive disease 
assessment [1–7]. Previous reports showed that genome-
wide 5-mC profiles can be derived from cfDNA of cancer 
patients and carry information about the tumor [10, 21–
23, 25, 48]. However, a major challenge of liquid biop-
sies is the detection of minute amounts of tumor DNA 
molecules within a vast cfDNA background derived from 
hematopoietic cells. A pivotal element of our 5-mC bio-
marker identification approach was the initial reduction 
of 5-mC signals derived from blood cells (Fig.  1A). We 
found that this step increased the association between 
ALK cfDNA and ALK tumor tissue 5-mC signals and 
therefore reduced the number of genomic regions with-
out tumor-informative DNA methylation. Additionally, 
the number of DMRs concordantly hypermethylated in 
cfDNA and tumor tissue increased after the exclusion 
of the signals derived from hematopoietic cells. This 
emphasized that the employed background suppres-
sion enriches genomic regions containing tumor-derived 
5-mC signals and facilitates their detection from cfDNA. 
Similar observations were made by others showing that 
the selection of tumor DNA molecules in cfDNA via 
fragment characteristics (e.g., fragment length) allows the 
identification of genomic aberrations otherwise missed 
[29, 49]. Our approach differs from previously reported 
methods for 5-mC background exclusion [15, 21] in two 
major points. First, we used public WGBS reference data 
of individual cell types [18], rather than bulk peripheral 
blood mononuclear cells, to infer the cfDNA background. 
Thereby, we were able to account for the relative contri-
bution of each cell type to the cfDNA composition, which 
has been described to deviate from their abundance in 
blood [18, 19]. Second, we segmented the genome based 
on methylation blocks (i.e., adjacent CpG sites with con-
cordant methylation status) [18], instead of continuous 
300-bp windows. The assessment of coordinated meth-
ylation blocks was reported to reflect fundamental func-
tional 5-mC units and increased the robustness as well as 
the sensitivity of liquid biopsy assays [9, 50]. Additionally, 
the evaluation of methylation blocks is well suited to the 
resolution of cfMeDIP-seq, interrogating 5-mC signals at 
genomic regions rather than individual CpGs.

Another key advantage of the presented study was the 
availability of various in-house reference datasets for 
marker validation (i.e., cfMeDIP-seq data of ALK tumor 
tissue and cell-free genomic alterations determined in 
matched plasma). The concordance of hyper-DMRs 
found in both ALK cfDNA and cancer tissue confirmed 
their tumor specificity, which was further validated by the 
correlation of the 5-mC score to cancer-specific genomic 
alterations. External datasets (TCGA and GTEx) illus-
trated the biological plausibility of the identified 5-mC 

markers and provided insights into transcriptional dys-
regulation of LUAD-specific genes. Of note, the compari-
son with TCGA data suggested that many of the cell-free 
5-mC marker regions represent methylome alterations 
found in various molecular LUAD subtypes. Hence, 
these biomarkers might be applicable to a wider range 
of patients beyond the ALK-positive subtype addressed 
in this study. Furthermore, some of the 5-mC biomark-
ers were present in TCGA-LUAD patients with localized 
disease, indicating their potential applicability for early 
disease detection. This was corroborated by the identifi-
cation of methylation-regulated genes (PCDH10, TBX2, 
and CDO1) recently described as biomarkers in localized 
lung cancers and premalignant lesions [32–34]. These 
observations are in line with the early occurrence of 
5-mC changes during tumorigenesis and the pervasive-
ness of 5-mC patterns across tumor types [12, 51–53].

The combined analysis of 5-mC and genomic biomark-
ers within this study highlighted their complementa-
rity for the detection of tumor-derived DNA in plasma 
cfDNA samples. We found that 5-mC markers, summa-
rized as the 5-mC score, detected tumor DNA in more 
samples (n = 61) compared to hybrid-capture sequencing 
(n = 49) for mutation analysis or chromosomal instabil-
ity assessment via the t-MAD score (n = 46). A plausible 
explanation for this finding is the increased number of 
loci covered (245 tumor-informative 5-mC signals). It has 
previously been shown that the breadth can supplant the 
depth of sequencing and increases the sensitivity of liq-
uid biopsy assays [10, 54]. However, 5-mC analysis failed 
to detect tumor DNA in some samples in which genomic 
markers were informative and vice versa. In addition, we 
demonstrated that the 5-mC score is indicative of OS in 
a per-sample survival analysis. We and others reported 
similar results for the detectability of tumor DNA by 
genomic markers (i.e., mutations, EML4-ALK fusion or 
t-MAD scores) [4, 55–57]. In this study, both EML4-ALK 
fusion abundances and t-MAD scores were superior in 
predicting OS compared to the 5-mC score. This might 
be explained by their association with TP53 mutations, 
a well-described molecular risk factor in ALK-positive 
NSCLC [37, 39], which was not found for the 5-mC score. 
The high dynamic range of the 5-mC score in TP53-neg-
ative samples might render 5-mC-based disease assess-
ment more suitable for this patient subgroup instead of 
the analysis of less abundant genomic markers [4].

Through 5-mC analysis in sequential plasma sam-
ples, we highlighted that the 5-mC score reflects tumor 
dynamics associated with TKI therapy response. We 
showed that 5-mC signals indicated disease progression 
and were informative in cases in which the EML4-ALK 
fusion abundance or the t-MAD score remained unde-
tectable. Importantly, we observed several instances of 
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rising 5-mC scores prior to radiologically apparent dis-
ease progression which marked early signs of molecular 
progression. With the high incidence of disease relapse 
under ALK TKI therapy, early identification of disease 
progression is of particular importance for prolonged 
therapeutic benefit as we highlighted previously [2].

The main limitations of this study were its retrospec-
tive design with heterogeneous sampling time points 
and administered therapy lines. The varying number 
of plasma samples per patient might have introduced 
errors due to the overrepresentation of certain individu-
als. Corresponding findings should ideally be validated in 
a larger, prospective study with defined sampling inter-
vals. Moreover, the limited number of samples impeded 
the definition of robust 5-mC score thresholds, both 
for the assignment of tumor DNA positivity and for the 
presence of early molecular progression, and precluded 
the application of machine learning for 5-mC biomarker 
identification. In addition, technical restraints of the 
cfMeDIP-seq method, such as its limited capability to 
assess DNA hypomethylation, precluded the evaluation 
of the entire methylome.

Conclusion
To our knowledge, this is the first study that analyzed 
5-mC alterations in cfDNA of ALK-rearranged NSCLC 
and comprehensively monitored their targeted TKI ther-
apy using 5-mC biomarkers. We demonstrated that the 
employed biomarker identification approach could reli-
ably identify tumor-associated 5-mC signals and might 
be used as a blueprint for 5-mC marker detection in 
future studies. We established a quantitative measure for 
the assessment of cancer-derived 5-mC changes (5-mC 
score) and demonstrated its suitability for prognostica-
tion and longitudinal therapy monitoring.

Methods
Patients
All individuals provided written informed consent and 
the study was approved by the ethics committee at Hei-
delberg (S-270/2001, S-296/2016, S-435/2019) and 
Lübeck Universities (AZ 12-238). Patients were screened 
for ALK rearrangements in tissue using at least two of 
the following approaches: ALK immunohistochemis-
try (D5F3 clone, Roche, Mannheim, Germany), ALK 
fluorescence in situ hybridization (ZytoLight SPEC ALK 
probe, ZytoVision GmbH, Bremerhaven, Germany), and 
RNA-based next-generation sequencing (NGS, Thermo 
Fisher Lung Cancer Fusion Panel, Waltham MA, USA). 
Plasma samples from 21 ALK-positive metastatic NSCLC 
patients and 13 healthy donors (i.e., subjects without 
known current disease) were provided by the Lung 
Biobank Heidelberg, member of the Biomaterial Bank 

Heidelberg (BMBH), and LungenClinic Grosshansdorf. 
Serial plasma throughout TKI therapy was available for 
eleven patients resulting in a total of 79 collected plasma 
specimens (patient samples, n = 66; healthy donor sam-
ples, n = 13). Additionally, 15 tissue samples from ALK-
positive metastatic NSCLC patients and 10 distant 
normal lung tissue specimens (> 5  cm) from NSCLC 
patients who underwent resection of primary lung can-
cer at the Thoraxklinik at the University Hospital Hei-
delberg were provided by the Lung Biobank Heidelberg. 
For 6 patients, matched plasma and tumor tissue samples 
were available. The remaining 9 tumor tissue samples 
were taken from patients not included in the ALK-pos-
itive cfDNA cohort. All diagnoses were made accord-
ing to the 2004 WHO classification for lung cancer by 
at least two experienced pathologists. Tumor histology 
was classified according to the third edition of the World 
Health Organization classification system. Clinical data, 
relevant molecular information (i.e., information about 
ALK fusion variants and TP53 mutation positivity), and 
radiographic assessments by chest/abdominal computed 
tomography and brain magnetic resonance imaging 
were collected based on patient records with a cutoff on 
March 3, 2020.

Blood processing and cfDNA isolation
Peripheral blood was collected in K2EDTA tubes and 
subjected to plasma isolation within one hour of veni-
puncture employing the previously described centrifuga-
tion protocol [4]. Plasma samples were stored at − 80 °C 
in the Lung Biobank Heidelberg until further processing. 
cfDNA isolation was performed from 2  mL of plasma 
using the QIAamp MinElute ccfDNA Kit (Qiagen, 
Hilden, Germany). The concentration and integrity of 
cfDNA were assessed by the Qubit dsDNA High Sensi-
tivity Kit (Thermo Fisher Scientific, Waltham MA, USA) 
and the Bioanalyzer 2100 System with DNA High Sen-
sitivity reagents (Agilent Technologies, Santa Clara CA, 
USA), respectively.

Tissue collection and DNA extraction
Tissues were snap-frozen within 30  min after resec-
tion and stored at − 80 °C until the time of analysis. For 
nucleic acid isolation, 10 to 15 tissue cryosections (10 
to 15 µm each) were prepared for each patient. The first 
and the last sections in each series were stained with 
hematoxylin and eosin (H&E) and tumor samples were 
reviewed by an experienced lung pathologist to deter-
mine the proportions of viable tumor cells, stromal 
cells, normal lung cell cells, infiltrating lymphocytes 
and necrotic areas. Only samples with a viable tumor 
content of ≥ 50% were used for subsequent analyses. 
Frozen tumor cryosections and matched normal lung 
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tissue pieces were homogenized using the TissueLyser 
mixer-mill disruptor (2 × 2  min at 25  Hz, Qiagen, 
Hilden, Germany). Total DNA was isolated with the 
AllPrep DNA/RNA Universal Kit (Qiagen, Hilden, Ger-
many) following the manufacturer’s instructions. DNA 
was stored at − 80 °C until further use.

cfMeDIP‑seq library preparation and sequencing
5-mC-enriched sequencing libraries were generated 
employing a previously published protocol designed 
for small DNA input quantities (cfMeDIP-seq; [20]). 
In brief, 2 to 10 ng cfDNA was subjected to end-repair 
and A-tailing followed by sequencing adapter ligation 
at 16  °C for 15  h using the KAPA HyperPrep Kit with 
KAPA Dual-Indexed Adapters (Roche, Mannheim, 
Germany). Prior to immunoprecipitation, libraries 
were purified by bead-based double-sided size selection 
and spiked with methylated and unmethylated control 
DNA fragments (prepared as described in Song et  al. 
[58]) for assessment of 5-mC enrichment efficiency. 
Additionally, λ phage filler DNA was added to bring 
the DNA amount to a total of 100 ng. The MagMeDIP 
qPCR and iPure v2 Kits (Diagenode, Seraing, Bel-
gium) were used for methylation immunoprecipitation 
and DNA purification, respectively. Enrichment effi-
ciency was assessed by means of qPCR quantification 
of methylated and unmethylated spike-ins and library 
amplification was carried out using 12 PCR cycles, 
followed by another bead clean-up. The final libraries 
were quantified using the Qubit DNA High Sensitivity 
Kit and checked for appropriate adapter ligation with 
the Bioanalyzer 2100 System. Libraries were pooled 
equimolarly and sequenced in 8-plexes on an Illumina 
NextSeq550 instrument with high-output reagents (75-
bp paired-end reads). Sheared genomic DNA from tis-
sue specimens was processed using the same protocol 
with two exceptions: (1) 250 ng of DNA input was used 
per sample and (2) library preparation was performed 
without the addition of λ phage filler DNA.

Fastq raw reads were adapter trimmed by Cutadapt 
v3.7 [59] and aligned to the human reference genome 
GRCh37/hg19 using bowtie2 v2.3.5.1 [60] in paired 
mode. Aligned reads were indexed, sorted, and filtered by 
samtools v1.9 [61], retaining only properly paired reads 
with MAPQ > 10. Duplicate reads were marked with 
Picard v2.25.1 (MarkDuplicates) and collapsed to allow 
one read per alignment position. Sequencing data qual-
ity was assessed with fastqc v0.11.5 and the MEDIPS R 
package [62], evaluating coverage saturation (MEDIPS.
saturation), CpG enrichment (MEDIPS.CpGenrich), and 
CpG coverage (MEDIPS.seqCoverage). Per-sample qual-
ity metrics are summarized in Additional file 1: Table S5.

Identification of ALK‑associated DMRs
Paired fragments were counted by Subread v1.5.3 (fea-
tureCounts) [63] at 7,264,350 non-overlapping windows 
previously described to span CpGs with concordant 
5-mC signals (methylation blocks) [18]. Windows cover-
ing < 3 CpG sites, mapping to chromosomes X, Y or the 
mitochondrial genome were excluded. To enrich for win-
dows with cancer-informative 5-mC signals, we inferred 
regions frequently hypermethylated in plasma cfDNA 
of healthy individuals and excluded those from further 
analyses. In brief, whole-genome bisulfite sequencing 
data of cell types composing healthy donor cfDNA was 
downloaded (GSE186458 [18] and BLUEPRINT [64]) and 
processed with the wgbstools suite (https://​github.​com/​
nloyf​er/​wgbs_​tools), averaging beta values falling into the 
same window. Beta values of each cell type were weighted 
according to their predicted abundance in healthy cfDNA 
[18] and summed to yield total DNA methylation. Win-
dows with β values > 0.15 in the combined dataset were 
excluded.

To identify ALK-associated DMRs, we performed dif-
ferential methylation analysis between cfDNA from 
healthy donors (n = 13) and ALK-positive NSCLC 
patients (n = 21). For patients with longitudinal plasma 
available, we only considered the sample with the high-
est t-MAD score, reasoning that these contain elevated 
quantities of cancer-derived cfDNA. Differential analy-
sis was limited to cancer-informative genomic windows 
remaining after the filtering steps described before. Addi-
tionally, windows with low read counts across all samples 
were excluded (i.e.,  < 20% of the total number of sam-
ples). Trimmed mean of M values (TMM)-normalized 
counts [65] were subjected to differential methylation 
analysis using the limma package in R [66]. Following 
variance smoothing, a linear model using weighted least 
squares was fit for each genomic region. P values 
between cancer and control conditions were calculated 
by empirical Bayes smoothing. Significantly hyper- or 
hypomethylated regions were called at adjusted p values 
(Benjamini-Hochberg) < 0.1 and |log2FC|> 1. ALK tis-
sue DMRs (i.e., ALK tissues vs. normal lung tissues) were 
identified likewise, omitting the exclusion of genomic 
regions hypermethylated in healthy plasma cfDNA.

5‑mC score calculation
Aligned bam files of 13 healthy control samples were 
downsampled to a common read coverage and merged, 
yielding a combined read depth of 28 million paired-
reads (median read depth across all cfDNA cfMeDIP-seq 
datasets). The resulting normal reference file was used as 
a baseline to quantitatively assess the extent of cancer-
derived 5-mC changes in our patient plasma samples. 

https://github.com/nloyfer/wgbs_tools
https://github.com/nloyfer/wgbs_tools
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The median absolute RPKM (reads per kilobase per mil-
lion mapped reads) deviation from this baseline at rele-
vant hyper-DMRs was calculated per sample and defined 
as ‘5-mC score.’

Processing of publicly available DNA methylation and gene 
expression data of tissue samples
Illumina 450  k methylation array and RNA sequencing 
data of primary tumor tissues from lung adenocarcinoma 
patients—alongside various adjacent normal tissues 
(breast, bladder, colon, endometrium, head and neck, 
kidney, liver, lung, prostate, and thyroid gland)—was 
obtained from TCGA [30, 31]. Additional gene expres-
sion data of normal lung tissues (n = 288) were retrieved 
from the GTEx [67]. All datasets, alongside clinical and 
molecular annotations, were downloaded from the Xena 
platform [68]. DNA methylation array data were adjusted 
to the genomic regions used for DMR calling from 
cfMeDIP-seq datasets by averaging β values of CpGs fall-
ing into the same region. Differential methylation analysis 
between LUAD (n = 455) and normal lung tissue sam-
ples (n = 75; taken from LUAD and LUSC cohorts) was 
performed using limma [66], only considering genomic 
regions with healthy cfDNA 5-mC signals β ≤ 0.15. 
Regions with |∆β ≥ 0.25|and adjusted p value < 0.01 were 
deemed significantly hyper- or hypomethylated. Fur-
ther differential methylation analyses, stratifying patient 
samples by pathologic stage and molecular driver event, 
are summarized in Additional file  1: Table  S3. ALK-
positive patients within the TCGA-LUAD cohort were 
determined using the TumorFusions data portal [69]. To 
identify genomic regions with gene regulatory 5-mC sig-
nals, we correlated matched DNA methylation and gene 
expression data of adjacent normal tissues (n = 15 per 
tissue type). 5-mC signals demonstrating a significant 
negative correlation (Spearman, p < 0.05) to the expres-
sion level of its associated gene were considered to be 
involved in transcriptional regulation. Genomic feature 
annotation was performed using the annotatr R package 
[70].

Genomic cfDNA biomarkers
Information on cancer-specific genomic alterations of 
the patient plasma samples profiled in this study was 
obtained from previously published work (for detailed 
descriptions see [2, 4]). Somatic mutations and EML4-
ALK fusion abundances were determined by hybrid-
capture sequencing using the AVENIO ctDNA Library 
Preparation Kit followed by sequencing with the Targeted 
or Surveillance Panel (Roche, Mannheim, Germany). 
Mutations with variant allele frequencies (VAFs)≥ 30% 
were considered germline mutations and consequen-
tially excluded from further analyses. VAFs < 0.01% were 

deemed undetectable. Genome-wide copy number pro-
files and t-MAD scores were estimated from sWGS data 
using the ichorCNA algorithm [47] and t-MAD score cal-
culation documentation (https://​github.​com/​sdcha​ndra/​
tMAD) [29], respectively. CNA calling was carried out 
at 1-Mb bin sizes using sWGS data of 16 healthy control 
samples as copy number neutral references. The sequenc-
ing data was downsampled to 5 M paired reads prior to 
t-MAD score calculation. The maximal t-MAD score 
across all healthy control samples (0.0081) was set as 
the detection threshold. Chromosomal instabilities were 
similarly assessed from cfMeDIP-seq data with 5-mC-
enriched sequencing data of healthy controls (n = 13) as 
copy number neutral reference for normalization.

Statistical analyses and data visualization
A comparison between independent and paired data was 
made using the Mann–Whitney U test and Wilcoxon’s 
paired test, respectively (as labeled in graphs). Spearman’s 
correlation was used to test the association between ALK 
cfDNA and ALK tissue 5-mC signals as well as 5-mC 
scores and genomic biomarker abundances. T-MAD 
scores inferred from sWGS and cfMeDIP-seq were com-
pared by Pearson’s correlation. Permutation testing to 
estimate the significance of the overlap between tissue 
and cfDNA DMRs was performed with the regioneR R 
package [71], comparing the observed overlap to a null 
distribution of 10,000 random samplings. The permuta-
tion test p value represents the number of random sam-
plings with overlaps greater or equal to the observed 
overlap divided by the number of random permutations. 
Survival data were analyzed according to Kaplan–Meier 
using the log-rank test for OS comparison. Statistical 
analyses were performed in R (version 3.6.2) [72] and rel-
evant graphs were generated using the ggplot2 R package 
[73].
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