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Abstract 

Epigenome-wide association studies (EWAS) assessing the link between DNA methylation (DNAm) and phenotypes 
related to structural brain measures, cognitive function, and neurodegenerative diseases are becoming increasingly 
more popular. Due to the inaccessibility of brain tissue in humans, several studies use peripheral tissues such as blood, 
buccal swabs, and saliva as surrogates. To aid the functional interpretation of EWAS findings in such settings, there is 
a need to assess the correlation of DNAm variability across tissues in the same individuals. In this study, we performed 
a correlation analysis between DNAm data of a total of n = 120 matched post-mortem buccal and prefrontal cortex 
samples. We identified nearly 25,000 (3% of approximately 730,000) cytosine-phosphate-guanine (CpG) sites showing 
significant (false discovery rate q < 0.05) correlations between buccal and PFC samples. Correlated CpG sites showed 
a preponderance to being located in promoter regions and showed a significant enrichment of being determined 
by genetic factors, i.e. methylation quantitative trait loci (mQTL), based on buccal and dorsolateral prefrontal cortex 
mQTL databases. Our novel buccal–brain DNAm correlation map will provide a valuable resource for future EWAS 
using buccal samples for studying DNAm effects on phenotypes relating to the brain. All correlation results are made 
freely available to the public online.
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Introduction
DNA methylation (DNAm) is an epigenetic mechanism 
in vertebrate genomes that most often refers to the addi-
tion of a methyl-group to cytosine nucleotides within the 
DNA sequence. Most DNAm in somatic cells occurs in 
stretches of cytosine-phosphate-guanine (CpG) sites, 
where they typically, but not always, represent an epi-
genetic mark of translational repression [1]. Owing to 
the relative technical ease to generate high-resolution 

DNAm data for thousands of CpG sites simultaneously, 
it currently represents one of the most frequently studied 
epigenetic marks. Accordingly, study designs exploiting 
DNAm profiles on a genome-wide scale—often referred 
to as epigenome-wide association studies (EWAS)—
are becoming increasingly popular. Many EWAS aim to 
assess the relationship between DNAm patterns and cer-
tain brain-related phenotypes [2, 3], such as neuropsy-
chiatric traits [4, 5], cognitive functions [6, 7], and risk 
for neurodegenerative diseases [8–10], with the goal to 
better understand the biology and pathophysiology of 
the traits of interest. However, given that the primary 
organ of interest, the brain, is typically inaccessible in liv-
ing individuals, many studies use tissues that are more 
readily available. While most DNAm studies use blood 
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samples [3, 6, 7, 10], it has been hypothesized that buccal 
[11] or saliva [12] samples may be more informative for 
EWAS of psychiatric phenotypes. One key advantage of 
using peripheral tissues as surrogates is that samples can 
be obtained from living individuals and do not require 
post-mortem sampling. This also allows for study designs 
using longitudinal sampling and analysis. However, 
DNAm patterns are largely cell type- and tissue-depend-
ent [13, 14], and therefore, it remains unclear how well 
peripheral DNAm patterns can be used to infer biological 
processes in the brain.

In the recent past, several attempts have been made to 
compare DNAm profiles between brain and peripheral 
tissues within the same individuals. However most stud-
ies focused on the comparison of blood and brain tissues 
[15, 16]. Only two reports recently compared buccal and 
brain samples, but sample sizes were very small with 
12 and 27 matched sample pairs, respectively [17, 18]. 
One additional study used brain, thyroid, and heart tis-
sue samples, each representing one developmental germ 
layer lineage, from ten individuals to identify so-called 
correlated regions of systemic interindividual variation 
(CoRSIV) [19]. Interestingly and perhaps not unexpect-
edly, most of the cited studies report a significant enrich-
ment of methylation quantitative trait loci (mQTL), i.e. 
DNAm variations that are associated with genetic vari-
ants, among CpG sites correlated between tissues or cell-
types [13, 15–17, 19].

Despite this recent progress, there currently remains a 
significant lack of studies systematically assessing DNAm 
patterns in paired buccal and brain specimen in suffi-
ciently sized datasets. To close this gap, we here report 
the results of comprehensive and systematic correlation 
analyses of genome-wide DNAm patterns in 120 paired 
prefrontal cortex (PFC) and buccal swab samples. We 
identified 24,980 significantly correlated CpGs between 
both tissues and found a significant enrichment of both 
buccal and dorsolateral prefrontal cortex (DLPFC) 
mQTLs among the correlated CpG sites. All genome-
wide DNAm correlation results are made freely available 
online (http://​www.​liga.​uni-​luebe​ck.​de/​buccal_​brain_​
corre​lation_​resul​ts/), as we anticipate that the buccal–
brain DNAm correlation map we generated in this study 
will provide a valuable resource for the interpretation of 
EWAS/DNAm studies for brain-related phenotypes.

Material and methods
Human samples
Matched prefrontal cortex (PFC) and buccal samples 
were obtained in two batches from the neuropathology 
unit at the Massachusetts Alzheimer’s Disease Research 
Center (MADRC), Boston, MA, USA. Samples were 
shipped to our laboratory in two batches: “MADRC-1” 

and “MADRC-2”, encompassing 48 and 80 matched 
brain–buccal pairs, respectively. Buccal swabs were 
obtained from patients with neurodegenerative disease 
conditions and controls at the time of autopsy following 
an IRB-approved informed consent with specific inclu-
sion of genetic studies. Consent forms were completed by 
next-of-kin or other legal representatives as specified by 
Massachusetts state law. Buccal-Prep Plus DNA Isolation 
Kit (Isohelix, UK) swabs were utilized to obtain buccal 
swabs; these were held at −  80  °C without dehydration 
until DNA extraction (see below). One hemisphere of 
each harvested brain was coronally sectioned, flash-fro-
zen on dry ice, cryopreserved at −  80  °C, and used for 
subsequent PFC isolation and DNA methylation (DNAm) 
profiling (see below). The remaining hemisphere was 
fixed in 10% weight/volume formalin and subjected to 
detailed neuropathologic evaluation. Detailed descrip-
tions of all MADRC buccal–brain samples used in this 
study can be found in Additional file 1: Table 1.

DNA extraction and processing
DNA was extracted and processed in two labora-
tory batches according to their shipment charge (i.e. 
MADRC-1 and MADRC-2; Additional file  1: Table  1). 
Importantly, paired brain and buccal samples from the 
same shipment were processed simultaneously (incl. 
DNAm profiling, see below). For brain samples, genomic 
DNA was extracted from approximately 50  mg of fro-
zen tissue using the DNeasy Blood & Tissue Kit (Qiagen, 
Hilden, Germany), while DNA from the buccal swabs 
was extracted using Buccal-Prep Plus DNA Isolation Kit 
(Isohelix, UK). All steps in the extraction procedure were 
conducted according to manufacturer’s instructions. The 
quantity and the quality of obtained DNA were assessed 
using a NanoDrop ONE spectrophotometer (Thermo 
Fisher Scientific, USA).

EPIC array profiling
DNAm profiling was performed using the “Infinium 
MethylationEPIC” array (Illumina, Inc., USA), as 
described previously [8]. In brief, experiments were per-
formed on aliquots of DNA extracts diluted to ~ 50  ng/
µl concentration. Bisulphite conversion of DNA samples 
was performed using the EZ DNA Methylation kit (Zymo 
Research, USA), following the alternative incubation 
conditions for the Illumina Infinium MethylationEPIC 
Array as recommended by the supplier. After hybridiza-
tion to the EPIC array, scanning was performed on an 
iScan instrument (Illumina, Inc.) according to the manu-
facturer’s instructions (Document#1000000077299v0). 
DNA samples from both shipment charges (MADRC-1 
and MADRC-2) were processed in consecutive labora-
tory experiments to minimize batch effects. Raw DNAm 
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intensities were determined using the iScan control soft-
ware (v2.3.0.0; Illumina, Inc.) and exported in .idat for-
mat for downstream processing and analysis.

DNA methylation data processing and quality control
DNAm data from each batch (MADRC-1 and MADRC-
2) and tissue (PFC and buccal) were loaded into R and 
pre-processed separately. DNAm data pre-processing 
and quality control (QC) was performed using the same 
procedures as described previously [8] unless noted 
otherwise. In brief, this entailed using the R (v. 3.6.1) 
package bigmelon with default settings [20]. Samples 
were excluded when bisulphite conversion efficiency 
was below 80%. Outliers were removed using the outlyx 
function in bigmelon applying a threshold of 0.15. CpG 
sites on the X or Y chromosome, or those aligning to 
SNPs [21] or multiple locations in the genome [22] were 
removed from the analysis. The final analysis included a 
total of 120 matched PFC and buccal samples, with 44 
samples from MADRC-1, and 76 samples from MADRC-
2. Overall, a total of 730,157 QC’ed CpG sites were avail-
able in all four datasets and were used for the analyses.

To compare our results with those from the Braun et al. 
study evaluating the correlation of DNAm between buc-
cal and brain samples [17], we downloaded the publicly 
available .idat files of that study (GEO accession number 
GSE111165), and loaded and pre-processed them with 
the R-package ChAMP [23] using default settings unless 
otherwise noted. Brain and buccal samples were loaded 
and pre-processed separately. Briefly, DNAm values with 
a detection p-value above 0.01 were set to N/A and CpG 
sites were completely removed if there were less than 3 
beads in more than 5% of the samples, if they were on an 
X or Y chromosome, or if they aligned to SNPs [21] or 
multiple locations in the genome [22]. Normalization was 
performed with the BMIQ method. The analysis of this 
dataset comprised 21 pairs of matched buccal and brain 
samples, with 740,507 CpG sites. We note that 1,513 
(65%) of the 2,367 significantly correlated CpGs accord-
ing to the Braun et al. study [17] were not included in our 
reanalysis of the dataset as they were removed during 
QC (Additional file 1: Table 2). Almost 50% of excluded 
CpGs (n = 931) were removed from our re-analysis of 
the data due to aligning to or being influenced by SNPs 
according to Zhou et al. [21], while ~ 350 CpG sites (23%) 
were removed due to their location on the X- or Y-chro-
mosome. Despite these differences, we note that the vast 
majority (713; 83%) of the 854 remaining correlated CpG 
sites from Braun et al. [17] were also significantly corre-
lated in our re-analysis of the Braun et al. data after mul-
tiple testing adjustment using a false discovery rate (FDR) 
q-value threshold of 0.05 (Additional file 1: Table 2).

Determination of and correction for DNAm covariates
First, cell-type composition estimates were obtained with 
the R package EpiDISH [14] for buccal samples and the 
estimateCellCounts function in the R package Minfi [24] 
for brain samples. Next, to assess the effects of potential 
confounders on the DNAm data, we used an adaptation 
of the singular value decomposition (SVD) approach 
described previously [25]. In short, SVD attempts to 
identify and correct for relevant variables that have a 
significant impact on genome-wide DNAm patterns and 
could act as confounders in subsequent analyses. Accord-
ingly, we tested whether variation in cell type composi-
tion, bisulphite conversion efficiency, EPIC array ID, 
diagnosis, extraction date, and position on the EPIC array 
significantly associated with the variance in DNAm data 
in our data (as determined by principal component anal-
ysis [PCA], see below). These analyses were performed 
separately for buccal and brain datasets. To this end, we 
performed a PCA on the DNAm beta values after QC 
using the R base function prcomp. For this PCA, we first 
generated a subset of uncorrelated CpG sites by divid-
ing the genome into 100 kb bins and using one random 
CpG site from each bin, resulting in 25,746 CpG sites 
included in each PCA. For the determination of relevant 
covariates for subsequent analyses, PCs explaining a sub-
stantial amount of variance in the DNAm data, as deter-
mined by scree plots (MADRC: Additional file 2: Fig. 1; 
Braun et al. data: Additional file 2: Fig. 2) were used. For 
numerical variables (bisulphite conversion efficiency 
and cell type composition estimates), a Pearson correla-
tion test between the centred variables and the centred 
DNAm PCs was calculated with the R base function cor.
test. For categorical variables (extraction date, EPIC array 
ID, position on the EPIC array, and diagnosis), a one-way 
ANOVA between the covariates and the DNAm PCs was 
performed with the R base function aov. Effects of vari-
ables explaining variance of at least one included DNAm 
PC with a p-value < 0.01 were removed from the DNAm 
beta values using the removeBatchEffect function in the R 
package limma [26]. The results of these analyses, as well 
as the number of DNAm PC eigenvalues (PCs) included 
for each dataset, can be found in Additional file  1: 
Table  3. The covariate-adjusted DNAm beta values of 
the two batches of PFC samples and buccal samples were 
combined in a “brain” and “buccal” data matrix, respec-
tively. Lastly, the batch-defining variable (i.e. indicating 
either dataset MADRC-1 or MADRC-2) was removed 
from these combined matrices with the removeBatchEf-
fect function in the R package limma [26]. All subsequent 
analyses were performed on these combined DNAm val-
ues adjusted for both covariates and batch.

To ensure that our results were not impacted by con-
founders not included in our adaptation of the SVD 
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method described above, we repeated our analyses by 
correcting the DNAm-values directly for the first three 
DNAm PCs. We used the DNAm PCs as described above 
and corrected the DNAm-values using the removeBatch-
Effect function in the R package limma [26].

Identification of CpG sites with correlated DNAm values 
between paired brain and buccal samples
Spearman rank correlations were calculated for each 
CpG site in a pair-wise manner across buccal and PFC 
samples using the R base function cor.test. The resulting 
p-values were adjusted for multiple testing using the FDR 
approach with the R base function p.adjust. FDR q-val-
ues < 0.05 were considered genome-wide significant in 
the context of this study. These analyses were performed 
for the matrices with the two batches (MADRC-1 and 
MADRC-2) combined, and for each batch separately. 
Our choice of using nonparametric Spearman rank (as 
opposed to parametric Pearson’s correlation analyses) 
was motivated by the fact that neither the buccal nor the 
brain derived DNAm data were normally distributed, and 
computation of Pearson’s r assumes linearity of the corre-
lation, an assumption that is not necessarily fulfilled here 
in all instances.

Identification of mQTLs in buccal and blood samples 
from an independent dataset
To check for buccal-specific mQTLs, we used an inde-
pendent in-house dataset with 837 buccal samples and 
1,058 blood samples ascertained from the Berlin Aging 
Study II (BASE-II) [27, 28]. These data are referenced 
here as “unpublished data”, since a manuscript from our 
group with more details on this analysis is in preparation. 
In brief, for the buccal dataset both genome-wide QC’ed 
DNAm profiles (761,034 CpG-sites) and SNP genotyping 
data (7,663,257 SNPs) were available for mQTL analy-
sis. DNAm data were derived from buccal-swab samples 
and generated and processed using the same procedures 
described above. For the blood dataset, genome-wide 
QC’ed DNAm profiles (763,828 CpG-sites) and SNP gen-
otyping data (7,663,257 SNPs) were available for mQTL 
analysis. DNAm data was derived from blood samples 
which were extracted using commercial kits (Plus XL 
manual kit, LGC, UK). Genome-wide SNP genotyp-
ing data were generated from the same samples using 
the “Global Screening Array” (GSA) with shared cus-
tom content (Illumina, Inc.) using procedures outlined 
in Hong et  al. [29]. To compute cis mQTLs (defined as 
within ± 1 Mb of the CpG site) in this dataset we used the 
matrix eQTL software [30], which performed an additive 
linear model with sex, genetic PC 1 to 5, DNAm PCs 1 
to 10, and genotyping batch as covariates. Before associa-
tion analysis, genome-wide DNAm profiles were adjusted 

for cell type composition estimates. Only the DNAm and 
SNP effects that were below a p-value of 5.00E-02 were 
reported. Cis mQTLs with FDR q < 0.05 were defined as 
genome-wide significant for this arm of our analyses. 
Enrichment analyses for mQTLs within CpG sites cor-
related between PFC and buccal-swab samples were per-
formed with the R base function chisq.test, using a subset 
of uncorrelated CpG sites according to 100  kb bins, as 
described above for the PCA.

Annotation of genomic regions to CpG sites
To assess whether there was a significant enrichment 
or depletion of CpG sites located in specific genomic 
regions, we used the annotation from the R package Illu-
minaHumanMethylationEPICmanifest to assign CpG 
sites to one of the following genomic regions: 1st exon, 
3’ untranslated region (UTR), 5’-UTR, gene body, exon 
boundary, intergenic region (IGR), the region from tran-
scription start site (TSS) to 200 nucleotides upstream 
(TSS200), and the region from 200 nucleotides upstream 
of the TSS to 1500 nucleotides upstream (TSS1500). 
Enrichment analyses were performed with the R base 
function chisq.test.

Gene ontology (GO) analysis
To further characterize the correlated CpG sites, a Gene 
Ontology (GO) enrichment analysis was performed with 
the gometh function in the R package missMethyl [31] 
using the significantly correlated (FDR q < 0.05) CpGs 
between PFC and buccal samples. We hypothesized that 
correlated CpG sites between buccal and brain might 
show an enrichment for “housekeeping” functions, which 
would explain the correlated DNAm-values. Nominally 
significant GO terms were subsequently submitted to the 
REViGO tool (http://​revigo.​irb.​hr/) [32] to identify and 
remove redundancy using Resnik’s measure while allow-
ing a terms similarity of 0.7.

Results
Spearman rank correlation analysis highlights 24,980 
CpG sites showing significant correlation between PFC 
and buccal samples
Out of the 730,157 CpG sites that were tested, 3% 
(n = 24,980) showed significant Spearman rank correla-
tions of DNAm beta values between paired PFC and buc-
cal samples after adjustment for multiple testing (FDR 
q < 0.05). Most of the significantly correlated CpG sites 
(n = 24,636; 99%) had a positive Spearman rank cor-
relation coefficient (Fig.  1), which means that DNAm 
patterns were consistent in both tissues. The remain-
der (n = 344; 1%) showed negative correlations, mean-
ing that the effect direction was opposite in buccal and 
brain samples. Furthermore, correlated CpG sites were 

http://revigo.irb.hr/
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evenly distributed across the genome and showed no 
obvious preponderance for any significant genomic 
location (Additional file  2: Fig.  3). Lastly, the majority 
of significantly correlated CpG sites was also correlated 
between PFC and buccal samples at p < 0.05 in analyses 
that were performed for each batch (“MADRC-1” and 
“MADRC-2”) separately (Additional file 2: Fig. 4). These 
latter computations were performed to check for spuri-
ous correlations that may have resulted from undetected 
confounding after merging both laboratory batches. To 
ensure that our analyses were not influenced by unknown 
confounders, we repeated the pair-wise Spearman 
rank correlation with DNAm data which were directly 
adjusted for the first three DNAm PCs. This analysis 
resulted in 34,392 significantly correlated CpGs (q < 0.05). 
This included 20,914 of 24,980 (~ 84%) of the CpGs that 
were also identified in the main analysis. These findings 
suggest that the results of our study are not substantially 
impacted by confounding due to unknown factors.

Correlated CpG sites are enriched for both buccal and brain 
mQTLs
We next looked up our ~ 25  K correlated brain–buccal 
CpGs in two mQTL databases: Firstly, in an mQTL data-
base (https://​eqtl.​brain​seq.​org/​WGBS_​meQTL/) for dor-
solateral prefrontal cortex (DLPFC) [33] mQTLs based 
on 165 samples, and secondly, in an in-house mQTL 
database for buccal samples that we generated in 839 
individuals analysed as part of the Berlin Ageing Study 

II (BASE-II; unpublished data). The look-up resulted in 
an enrichment of cis mQTLs in the fraction of CpG sites 
that were correlated between PFC and buccal samples 
when compared to all analysed CpGs (p = 4.34E-225 for 
DLPFC mQTLs and p = 1.16E-300 for buccal mQTLs 
using a Chi-squared test, Fig.  2). Overall, 22,368 CpG 
sites (90%) that were significantly correlated between 
PFC and buccal samples in our dataset were identified in 
mQTL analyses in either buccals (n = 21,430) or DLPFC 
(n = 12,888). Of these, 11,950 CpG sites were identified 
in mQTL analyses in both tissues. This also resulted in 
the identification of 2612 CpGs (10.46% of all correlated 
CpGs) which were neither buccal nor brain mQTLs, 
therefore providing potentially valuable information 
about the DNAm status in both tissues not determined 
by the DNA sequence.

Correlated CpG sites show good concordance with results 
from published datasets using matched brain 
and peripheral tissues
We compared our results to those of two previous pub-
lications evaluating the correspondence of DNAm 
between tissues [17, 19]. The first study by Braun et  al. 
[17] correlated DNAm-values between brain tissues 
obtained during a surgery of epilepsy patients and buc-
cal samples from the same individuals. Overall, they 

Fig. 1  Histogram of Spearman rank correlation coefficients. 
Significantly correlated CpG sites between PFC and buccal samples 
after multiple testing adjustment (FDR q < 0.05) are highlighted in red

Fig. 2  Venn diagram showing significantly correlated CpG sites 
between PFC and buccal samples after multiple testing correction in 
the MADRC dataset (n = 24,980); overlap of significantly correlated 
CpG sites between PFC and buccal samples (FDR q < 0.05; green) with 
mQTLs according to the DLPFC mQTL database (FDR q < 0.05; orange) 
[33] and the buccal mQTL database generated from an independent 
dataset ([unpublished data], FDR q < 0.05; violet)

https://eqtl.brainseq.org/WGBS_meQTL/


Page 6 of 10Sommerer et al. Clinical Epigenetics          (2022) 14:139 

identified 2367 CpGs (i.e. 0.29% of all tested) as signifi-
cantly correlated [17]. To increase comparability between 
our and the Braun et al. dataset [17], we reprocessed the 
DNAm raw data from that study including covariate 
adjustment and Spearman rank correlations as applied 
to the MADRC datasets. Our re-analysis of the Braun 
et  al. data (for details of the analysis see methods sec-
tion) resulted in 27,796 CpGs showing significant (FDR 
q < 0.05) correlation between buccal and brain tissue. 
While this number is comparable to the 24,980 correlated 
probes identified in the analyses of the MADRC data, it 
still represents a nearly tenfold difference as compared 
to the numbers originally published by Braun et al. [17]. 
This (stark) difference can likely be attributed to a more 
stringent multiple testing correction procedure (i.e. Bon-
ferroni [Braun et  al.] vs. FDR [here]) and differences in 
data processing and analysis strategies (Methods). Over-
all, a total of 5918 (24%) of the 24,980 correlated CpGs in 
our data also represented correlated CpGs in the Braun 
et al. data.

The second dataset used for comparison was recently 
published by Gunasekara et al. [19] who identified 9926 
significant CoRSIVs across three different tissues (brain, 
thyroid, and heart) from 10 matched individuals. A total 
of 1311 (13%) of all CoRSIVs also had at least one CpG 
probe on the EPIC array, with some regions being repre-
sented by more than one CpG site. This resulted in a total 
of 1,684 individual CpG sites in the MADRC analysis that 
were located in a CoRSIV and could be used for compari-
son. A total of 897 CpG sites (53%) showed a significant 
correlation at FDR q < 0.05 in our data, too. For a depic-
tion of the three-way comparisons of the Braun et  al., 
Gunasekara et  al., and our MADRC data, see the Venn 
diagram in Fig. 3.

Genomic location of correlated CpG sites shows 
an enrichment in gene promoters and depletion in gene 
bodies
Next, we assessed whether there was an enrichment or 
depletion of correlated CpG sites in specific genomic 
regions in comparison to all CpGs. We noted a statisti-
cally significant change of the genomic region distribu-
tion within the CpG sites that were correlated between 
PFC and buccal sample DNAm in the MADRC data-
set compared to the expected distribution in our data 
(Chi-squared test with p < 2.20E-16, Fig.  4). Specifically, 
we observed an enrichment of CpG sites located in the 
1st exon, intergenic regions, regions 1,500 nucleotides 
upstream of transcription start sites, and regions 200 
nucleotides upstream of transcription start sites, and a 
depletion in the 3′-UTR, 5′-UTR, gene bodies, and exon 
boundaries within the correlated CpG sites (Fig. 4). The 

enrichment in IGRs and depletion in gene bodies is in 
line with previous observations made for CoRSIVs [19].

GO analysis of genes annotated to correlated CpG 
sites highlights cellular functions relating to major 
histocompatibility complex (MHC)
Next, we aimed to assess whether the correlated buccal–
brain CpG sites fell into specific functional pathways and 
tested for an enrichment of specific gene ontology (GO) 
terms. Upon including all 24,980 significantly correlated 
(FDR q < 0.05) CpG sites, this analysis revealed only one 
statistically significant GO term (GO:0007156, “homo-
philic cell adhesion via plasma membrane adhesion mol-
ecules”, FDR q = 0.04). In order to remove redundant 
terms, all nominally significant GO terms (p < 0.05) were 
submitted to REViGO, which resulted in 246 nominally 
significant GO terms (Additional file 1: Table 4). Among 
the top GO terms showing at least a nominally signifi-
cant enrichments were many terms related to “house-
keeping” functions, such as peptide antigen binding, 
MHC protein complex, ion binding, cell–cell adhesion 
via plasma-membrane adhesion molecules, transferase 
activity, manganese ion binding, and nucleoside-triphos-
phatase regulator activity (Additional file  1: Table  4). In 
general, this is in line with the GO results presented in 
the Gunasekara et  al. [19] publication (using GO terms 
associated with the CoRSIVs). One noteworthy overlap-
ping annotation was observed with the “MHC protein 

Fig. 3  Venn diagram comparing significantly correlated CpG sites 
between buccal and brain samples in our analysis (MADRC; green), 
the analysis using Braun et al. [17] data (orange), and CoRSIVs (violet) 
[19]
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complex” likely highlighting the central role of MHC-
mediated immune response in both tissues.

Look‑up of Alzheimer’s disease EWAS results as an example 
of application for the buccal–brain correlation map
As a first “practical” application of our buccal–brain cor-
relation results, we looked up top-hits from the hitherto 
largest EWAS across several brain regions [9] and for the 
entorhinal cortex (EC) for Alzheimer’s disease (AD) [8]. 
This look-up revealed that five of the CpGs that were pre-
viously highlighted in the context of AD also showed sig-
nificant correlations at FDR q < 0.05 and all correlations 
were positive (cg05030077 [MLST8/chr16:2255199], 
cg05923197 [BMP4/chr14:54418804], cg23950714 
[DOK3/chr5:176935364], cg04252044 [chr3:188664747], 
cg24569831 [RGMA/chr15:93617168], Additional file  1: 
Table  5). Probe cg05923197 is also an mQTL according 
to the DLPFC mQTL database [33] and all five of them 
were identified as mQTLs in our buccal and blood mQTL 
databases (unpublished results). Furthermore, lower-
ing the significance threshold to correlations significant 
at a nominal p-value of 0.05 increased this number to 29 
CpGs showing association in one of the AD brain EWAS. 
Among these 29, 8 CpG sites were reported to be mQTLs 
in the DLPFC and 28 in both blood and buccal mQTL 
databases. Interestingly, all but two showed positive cor-
relations in DNAm beta values between brain and buccal 
tissues (Additional file  1: Table  5). Based on these data, 
we predict that all 29 overlapping CpGs should show at 
least some degree of association evidence in AD EWAS 
performed in buccal samples. Even though there was a 

large overlap between mQTLs in brain, buccal, or blood 
tissue (Additional file 1: Table 5), we note that assessing 
DNAm at these CpGs may still yield additional infor-
mation beyond the variance explained by the genetic 
variants. Therefore, their potential for representing early 
biomarkers of AD should be the focus of future work.

Discussion
In this study, we generated high-resolution genome-
wide DNAm profiles from brain and buccal samples 
collected post-mortem from the same individuals at the 
same timepoint. Comparing CpG sites across both tis-
sues revealed ~ 25 K sites showing significant correlations 
in DNAm levels. This is in line with a previous study 
assessing the correlation of DNAm between brain and 
blood samples, which reported moderate to strong cor-
relations for 1% to 6% of CpG sites [16]. Correlated CpGs 
showed an enrichment for being regulated by mQTLs 
using both buccal and brain databases, which is in line 
with results from previous publications [13, 15–17, 19]. 
In terms of physical location, correlated CpGs showed a 
significant enrichment in promoter regions and a signifi-
cant depletion in gene bodies. A GO enrichment analysis 
highlighted terms related to molecular “house-keeping” 
functions, including several significant GO terms linked 
to the MHC protein complex, confirming previous find-
ings [19]. To our knowledge, our study has generated the 
largest buccal–brain DNAm correlation map available to 
date and will hopefully prove to be a valuable resource 
for the interpretation of EWAS for brain-related pheno-
types. Furthermore, other applications of our resource 

Fig. 4  Enrichment of genomic regions within the significantly correlated CpGs between buccal and brain samples in the MADRC dataset; Panel A: 
Distribution of genomic regions in all tested CpG sites on the EPIC array; B: Distribution of genomic regions in significantly correlated (FDR q < 0.05) 
CpG sites; Panel C: Pearson’s residuals of the Chi-squared test, blue indicates an enrichment and red a depletion of the respective genomic region
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relate to using it to aid the design of EWAS analyses, e.g. 
by focusing only on correlated CpGs highlighted in this 
work thereby increasing statistical power by reducing the 
multiple testing burden. To this end, we made all of our 
genome-wide DNAm correlation results freely available 
online (http://​www.​liga.​uni-​luebe​ck.​de/​buccal_​brain_​
corre​lation_​resul​ts/).

Comparing our correlation results with those from a 
previous publication from Braun et al. [17] using matched 
brain and buccal samples resulted in an overall good cor-
respondence in results (Additional file  1: Table  2). Dif-
ferences in findings across both studies can likely be 
attributed to differences in clinical diagnoses of included 
individuals, as well as differences in technical aspects 
such as study design and QC procedures. For instance, 
the brain samples from Braun et  al. [17] were obtained 
from living individuals during epilepsy surgery, whereas 
the MADRC samples were collected post-mortem and 
included individuals with different neurodegenerative 
diseases (Additional file 1: Table 1; see below). As a result, 
the brain samples from the Braun et al. study [17] were 
from many different brain regions, whereas the MADRC 
brain samples were all obtained from the PFC. In addi-
tion, in the MADRC dataset the extraction of brain and 
buccal samples was performed at the same time, i.e. at 
the time of autopsy, whereas brain and buccal samples 
in the Braun et  al. study [17] were not always collected 
at the same time point (time range 0–638 days). The sec-
ond comparison with published data was performed with 
the CoRSIVS from Gunasekara et al. [19]. Although the 
CoRSIV assessments from that study and buccal–brain 
correlation analyses performed here differed in many 
important aspects, the overlap between both analyses 
was more than 50% of all CpGs on the EPIC array that are 
located in CoRSIVs. We suggest that this number, rather 
than the 21% overlap with Braun et al., be considered as 
the lower bound of “true” correlations in DNAm patterns 
in human buccal vs. brain samples.

The strengths of our study are its pair-wise design (i.e. 
simultaneous collection and analysis of all paired buccal 
and brain samples), the use of the most current DNAm 
microarray (i.e. the EPIC array with ~ 730 K CpG probes 
available for analyses as opposed to the predecessor array 
with 450  K CpGs), our stringent QC and data process-
ing procedures (e.g. to eliminate bias due to undetected 
confounding by certain biological or technical vari-
ables), and the comparatively large size of our sample 
(i.e. n = 120 here versus n = 21 in Braun et  al. [17] and 
n = 10 in Gunasekara et al. [19]). Furthermore, we make 
use of a novel and hitherto unpublished buccal and 
blood tissue mQTL database from our group, allow-
ing to determine the impact of genetics in the greatest 
detail possible. Despite these strengths, our study is also 

subject to several limitations. First and probably most 
importantly, all DNAm profiles obtained from this study 
are from bulk tissue samples. While all DNAm data were 
corrected for cell type composition estimated from cur-
rent reference panels, it cannot be excluded that unde-
tected difference in cell type composition across samples 
has created a bias in results. Conceptionally, however, 
this bias (if it existed) should have increased the number 
of false-negative findings but would not invalidate our 
findings, i.e. it would result in a bias towards the null. 
Only studies applying single-cell sequencing could shed 
more light on the impact of cell-type specific differences 
in DNAm profiles. Second, we note that the majority of 
individuals used in this study were not “healthy controls” 
but had received some type of neuropathological diag-
nosis, mostly due to the presence of some neurodegen-
erative disorder (Additional file  1: Table  1). Since these 
underlying disease conditions likely had an impact on 
DNAm patterns in the brain and treatment regimens may 
have affected methylation in the brain and elsewhere, it 
cannot be excluded that the buccal–brain correlation 
results reported here were at least partially influenced by 
diagnosis status. In a similar vein, all subjects included 
here were relatively old, with a mean age of ~ 72 years. It 
is well known that DNAm patterns change over time and 
are different in aged vs. non-aged individuals [34–36], 
so use of our buccal–brain correlation map may be less 
informative for EWAS of younger individuals. Third, as 
described above, both types of sampled biospecimen (i.e. 
brain and buccal swabs) were collected post-mortem, i.e. 
with a specific and varying time interval (post-mortem 
interval; PMI) between death and sampling (Additional 
file 1: Table 1). It is difficult to predict whether and how 
DNAm patterns were affected by differing PMIs across 
individuals and tissues. However, evidence from previ-
ous work suggests that DNAm appears to be a rather sta-
ble epigenetic marker under varying conditions in brain 
samples collected post-mortem [37]. Fourth, we note the 
large overlap of correlated CpGs across brain and buccal 
tissue with mQTLs in buccal, brain, and blood samples. 
In theory, these could also be assessed in conventional 
GWAS designs which typically include much larger sam-
ple sizes. However, we emphasize that at least 10% of 
the correlated CpGs were neither identified as buccal or 
brain mQTLs. Especially for these CpGs our correlation 
map may be a useful tool for the interpretation of analy-
sis results. Furthermore, even though specific genetic 
variants show association with DNAm levels at specific 
CpGs, for many sites there may still be components 
of variance in DNAm that are not explained by genetic 
variation, making a direct assessment of DNAm at these 
positions potentially useful and informative. Fifth, most 
of the CpGs highlighted by this study as significantly 

http://www.liga.uni-luebeck.de/buccal_brain_correlation_results/
http://www.liga.uni-luebeck.de/buccal_brain_correlation_results/
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correlated between buccal and brain samples are char-
acterized by low Spearman rank correlation coefficients, 
starting at 0.28. To investigate CpGs showing stronger 
correlations, we re-evaluated our results using a more 
stringent threshold, i.e. using correlation coefficients 
smaller than −  0.5 or larger than 0.5. This resulted in 
4070 CpGs showing significant correlations of DNAm-
values between brain and buccal samples. These CpGs 
displayed similar distributions regarding mQTLs (Addi-
tional file  2: Fig.  5), comparison with previous studies 
(Additional file  2: Fig.  6), and gene region enrichment 
(Additional file  2: Fig.  7), as compared to the full set of 
24,980 CpGs. Lastly, despite stringent QC of the DNAm, 
including adjustment for covariates that may have had 
a substantial influence on DNAm (Methods) we cannot 
exclude that some correlations reported in this study are 
the result of some unknown and undetected confound-
ing. However, given the pair-wise design of our study 
where we used matched buccal and brain samples from 
the same individuals, it appears unlikely that undetected 
confounding has led to a substantial and systematic infla-
tion of our results. Notwithstanding, future studies are 
needed to verify and replicate the findings we present 
here, ideally using single-cell DNAm assessments in suf-
ficiently sized samples.

In summary, our study on genome-wide DNAm 
patterns in paired buccal and brain samples high-
lighted ~ 25  K sites showing significant correlations in 
DNAm levels across both tissues. To our knowledge, our 
study is the largest buccal–brain DNAm correlation map 
available to date and will hopefully prove to be a valuable 
resource for the interpretation of EWAS/DNAm studies 
for brain-related phenotypes. To this end, we made all of 
our genome-wide DNAm correlation results freely avail-
able online (https://​www.​liga.​uni-​luebe​ck.​de/​buccal_​
brain_​corre​lation_​resul​ts/).
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