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Abstract 

Background:  The associations between blood lipids and DNA methylation have been investigated in epigenome-
wide association studies mainly among European ancestry populations. Several studies have explored the direction of 
the association using cross-sectional data, while evidence of longitudinal data is still lacking.

Results:  We tested the associations between peripheral blood leukocytes DNA methylation and four lipid measures 
from Illumina 450 K or EPIC arrays in 1084 participants from the Chinese National Twin Registry and replicated the 
result in 988 participants from the China Kadoorie Biobank. A total of 23 associations of 19 CpG sites were identified, 
with 4 CpG sites located in or adjacent to 3 genes (TMEM49, SNX5/SNORD17 and CCDC7) being novel. Among the 
validated associations, we conducted a cross-lagged analysis to explore the temporal sequence and found temporal 
associations of methylation levels of 2 CpG sites with triglyceride and 2 CpG sites with high-density lipoprotein-cho-
lesterol (HDL-C) in all twins. In addition, methylation levels of cg11024682 located in SREBF1 at baseline were tem-
porally associated with triglyceride at follow-up in only monozygotic twins. We then performed a mediation analysis 
with the longitudinal data and the result showed that the association between body mass index and HDL-C was 
partially mediated by the methylation level of cg06500161 (ABCG1), with a mediation proportion of 10.1%.

Conclusions:  Our study indicated that the DNA methylation levels of ABCG1, AKAP1 and SREBF1 may be involved in 
lipid metabolism and provided evidence for elucidating the regulatory mechanism of lipid homeostasis.
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Background
An abnormal blood lipid profile, also known as dys-
lipidemia, is a major risk factor for atherosclerotic car-
diovascular diseases such as myocardial infarction and 
stroke [1, 2], which mainly manifests as elevated plasma 

triglyceride (TG), total cholesterol (TC), low-density 
lipoprotein-cholesterol (LDL-C) levels and decreased 
high-density lipoprotein-cholesterol (HDL-C) levels. The 
prevalence of dyslipidemia contributes to a great global 
burden of disease. For example, elevated LDL-C levels 
were one of the top 10 risk factors for all-cause mortality 
and disability-adjusted life-years worldwide in 2019 [3].

Blood lipid levels are a complex trait regulated by vari-
ous genetic and environmental factors [4–9], with DNA 
methylation being a potential regulatory mechanism. 
DNA methylation is the "annotation system" of gene 
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sequences and affects gene expression by dynamically 
modifying the methylation or demethylation state of 
CpG sites on DNA. The methylation status of the same 
individual and the same CpG site may change over time. 
DNA methylation modification is related to the physi-
ological effects of environmental factors on the human 
body and is also involved in the pathological process of 
disease occurrence and progression [10]. Therefore, DNA 
methylation may play an important role in maintaining 
blood lipid homeostasis.

Several epigenome-wide association studies (EWAS) 
have been conducted in predominantly European popu-
lations to explore the association between DNA meth-
ylation and blood lipid levels and have identified CpG 
sites on genes such as ABCG1, CPT1A, and SREBF1 [11–
15]. However, most existing studies have mostly been 
based on cross-sectional data to analyze the association 
between DNA methylation and blood lipids, which makes 
it difficult to assess the causal relationship between them. 
Mendelian randomization (MR) is an effective method 
for causal inference with cross-sectional data [16]. Some 
studies have used MR to estimate the causal relation-
ships between DNA methylation levels and blood lipid 
levels [17–19]. However, the application of MR is limited 
because of the sample size and strict assumptions. Due to 
the variability of DNA methylation, studies based on lon-
gitudinal data are the best approach for causal inference.

As one of the risk factors for dyslipidemia, body mass 
index (BMI) is also associated with DNA methylation, 
and several CpG sites are associated with both BMI and 
blood lipids [20]. Previous studies proved that BMI could 
influence the methylation level of certain CpG sites [21–
23], but whether DNA methylation mediates the associa-
tion between BMI and blood lipids remains unclear.

Thus, we performed an EWAS of blood lipids with a 
discovery stage and independent replication in partici-
pants from the Chinese National Twin Registry (CNTR) 
and China Kadoorie Biobank (CKB). We assessed the 
temporal association between replicated CpG sites and 
lipids using the cross-lagged panel model (CLPM) in 308 
participants with follow-up data from CNTR. For the 
CpG sites influencing blood lipids, we further conducted 
a mediation analysis with the CLPM to examine the role 
of DNA methylation in the association between BMI and 
blood lipids.

Results
Demographic
After quality control, 1060 participants in CNTR and 
948 participants in CKB were retained in the EWAS 
(see Additional file 1: Table S1 for further details). The 
characteristics of the EWAS participants were shown 
in Table  1. The mean age of the two populations was 

around 50  years old (49.90 ± 12.15 and 50.56 ± 7.48). 
Males or never smokers accounted for more than half 
of the participants. In the discovery stage, approxi-
mately half of the people had never consumed alcohol, 
while in the replication stage, approximately 60% of the 
participants were current drinkers. Participants in the 
replication stage were more likely to have lower BMI, 
higher TG levels, and lower TC, HDL-C, and LDL-C 
levels than those in the discovery stage.

EWAS
For Model 1, the genomic inflation factors (λ) ranged 
between 1.009 and 1.049. We identified 26 CpG-lipid 
associations in the discovery stage, and methylation 
levels of 17, 3, 5, and 1 CpG sites were associated with 
TG, TC, HDL-C, and LDL-C, respectively (Additional 
file 1: Figure S1). A total of 23 associations of 19 CpG 
sites were replicated in the replication stage, and 15, 
3, 5, and 0 CpG sites remained significant for the four 
lipid measures, respectively (Table 2). The direction of 
the effect was consistent in the two stages. cg06500151 
(ABCG1), cg11024682 (SREBF1), cg19693031 (TXNIP) 
and cg27243685 (ABCG1) were associated with two 
lipid measures. In addition, we identified 4 novel CpG 
sites located in 2 genes (cg12054453 and cg18942579 in 
TMEM49 and cg17507897 in SNX5/SNORD17) and 1 
intergenic region (cg05176551 adjacent to CCDC7).

When we further adjusted for BMI in Model 2, only 
1/3 (8/23) of the associations were robust. The num-
ber of significant CpG sites was reduced by half for TG 
(7/15) and TC (1/3), and no CpG site was associated 
with HDL-C (Additional file  1: Table  S2). The effect 
estimates were attenuated except for cg05176551. Two 
of the four novel CpG sites (cg05176551 for TG and 
cg12054453 for TC) remained significant.

Enrichment analysis
The results of enrichment analyses based on the 
EWAS from model 1 were shown in Additional file  1: 
Table S3–S6. GO enrichment analysis for TG revealed 
lipid and cellular ketone metabolic pathways. Insulin 
and glucose metabolism, peptide synthesis, and regu-
latory processes were also enriched in the analysis, 
which appeared to be related to TG homeostasis. Sterol 
signaling pathway, as well as alcohol signaling pathway, 
were enriched in the GO enrichment analysis for HDL. 
KEGG and Reactome analysis suggested enrichment for 
pathways associated with liver disease, lipid metabo-
lism, and antioxidants such as PPARalpha and HMOX1, 
although the pathways did not survive after multiple 
comparisons (FDR > 0.05).
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Cross‑lagged analysis
Our cross-lagged analysis showed that two CpG sites 
had significant temporal associations with TG and two 
had significant temporal associations with HDL-C in 
all twins (Table  3). The paths of TG at baseline to the 
methylation levels of cg27243685 and cg05778424 at 
follow-up (ρ1) were significant, suggesting that the TG 
level had an effect on these CpG sites. We observed the 
same direction of association between HDL-C and the 
methylation level of cg11024682. The reverse path (ρ2) 
was significant for cg06500161 and HDL-C, suggesting 
that this CpG site could influence HDL-C levels. We 
did not detect any temporal associations between CpG 
sites and TC.

We then performed a stratification analysis and 
revealed some new temporal associations. In monozy-
gotic (MZ) twins, the methylation level of cg11024682 
at baseline showed a significant association with TG at 
follow-up (ρ2). In dizygotic (DZ) twins, cg17507897 also 
showed an association between HDL-C at baseline and 
methylation level at follow-up (ρ1). The associations 
between cg05778424, cg06500161, and cg11024682 

with TG or HDL-C could still be observed in only DZ 
twins (Additional file 1: Table S8).

Mediation analysis
According to the results of the cross-lagged analy-
sis, cg06500161 and cg11024682, which had effects on 
HDL-C or TG, were selected as potential mediators 
in the mediation analysis. We first estimated the tem-
poral association between BMI and lipid or CpG sites 
using the CLPM. In all twins, BMI at baseline was 
associated with TG, HDL-C, and the methylation level 
of the two CpG sites at follow-up (Table  4). We then 
performed a mediation analysis with the methylation 
level of CpG sites as the mediator, BMI as exposure, 
and lipid measures as the outcome, and only the medi-
ating effect of cg06500161 was observed. The results 
are shown in Fig.  1. BMI was associated with HDL-C 
with a significant direct effect, indirect effect, and total 
effect (all P < 0.05). The methylation level of cg06500161 
explained 10.1% (P < 0.05) of the association between 
BMI and HDL-C.

Table 1  Characteristics of participants in the EWAS phase

Continuous variables are expressed as mean ± SD and categorical variables are expressed as n (%)

EWAS, epigenome-wide association study; MZ, Monozygotic twins; BMI, body mass index; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein-
cholesterol; LDL-C, low-density lipoprotein-cholesterol

EWAS Temporal association

Discovery stage Replication stage Baseline Follow-up

N 1060 948 288

Age, yrs 49.90 ± 12.15 50.56 ± 7.48 49.60 ± 10.05 54.26 ± 10.02

Sex, n (%)

Female 337 (31.8) 416 (43.9) 110 (38.2)

Male 723 (68.2) 532 (56.1) 178 (61.8)

MZ, n (%) 748 (70.6) – 174 (60.4)

Fasting status, n (%)

≥ 8 h – 123 (13.0) –

< 8 h – 825 (87.0) –

Smoking status, n (%)

Never 575 (54.2) 514 (54.2) 175 (60.8) 162 (56.3)

Former 136 (12.8) 51 (5.4) 25 (8.7) 45 (15.6)

Current 349 (32.9) 383 (40.4) 88 (30.6) 81 (28.1)

Alcohol consumption, n (%)

Never 539 (50.8) 365 (38.5) 134 (46.5) 125 (43.4)

Former 73 (6.9) 15 (1.6) 9 (3.1) 82 (28.5)

Current 448 (42.3) 568 (59.9) 145 (50.3) 81 (28.1)

BMI, kg/m2 24.83 ± 3.91 23.57 ± 3.49 24.35 ± 3.56 24.46 ± 3.55

TG, mmol/L 1.85 ± 2.00 1.94 ± 1.18 1.86 ± 1.60 1.81 ± 1.34

TC, mmol/L 4.88 ± 1.04 4.58 ± 1.01 4.71 ± 0.98 4.79 ± 0.89

HDL-C, mmol/L 1.36 ± 0.38 1.21 ± 0.30 1.37 ± 0.32 1.29 ± 0.36

LDL-C, mmol/L 2.50 ± 0.77 2.28 ± 0.73 2.13 ± 0.61 2.72 ± 0.81
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Discussion
In the current study, we reported the associations 
between lipid measures and DNA methylation and 
inferred the potential causal direction of the associations. 

To our knowledge, this is the first EWAS of blood lipids 
reported in the Chinese population. We identified 23 
associations of 19 CpG sites, and 4 CpG sites located in 
or adjacent to 3 genes were novel. With the cross-lagged 

Table 2  Associations between DNA methylation and lipid measures (Model 1)

The novel CpG sites are in bold font. P-values are adjusted for FDR

β, regression coefficient; SE, standard error; TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein-cholesterol

CpG Discovery stage Replication stage Position Gene

β SE Padj β SE Padj

TG

cg06500161 0.0130 0.0013 2.41E−14 0.0088 0.0013 1.51E−10 21:43,656,587 ABCG1

cg00574958 − 0.0074 0.0008 3.63E−12 − 0.0084 0.0010 1.20E−14 11:68,607,622 CPT1A

cg11024682 0.0085 0.0011 1.77E−09 0.0059 0.0011 9.33E−08 17:17,730,094 SREBF1

cg19693031 − 0.0211 0.0027 2.41E−09 − 0.0110 0.0022 1.15E−06 1:145,441,552 TXNIP

cg17058475 − 0.0084 0.0011 4.34E−08 − 0.0100 0.0012 5.70E−16 11:68,607,737 CPT1A

cg07504977 0.0102 0.0014 6.70E−07 0.0066 0.0016 3.47E−05 10:102,131,012 OLMALINC

cg27243685 0.0090 0.0013 3.88E−06 0.0084 0.0014 4.42E−09 21:43,642,366 ABCG1

cg01176028 0.0055 0.0009 5.82E−04 0.0047 0.0010 1.88E−06 21:43,653,234 ABCG1

cg05778424 0.0078 0.0014 7.36E−04 0.0057 0.0012 7.46E−06 17:55,169,508 AKAP1

cg08857797 0.0087 0.0016 3.16E−03 0.0073 0.0016 5.06E−06 17:40,927,699 VPS25

cg26403843 0.0108 0.0020 3.96E−03 0.0062 0.0024 1.11E−02 5:158,634,085 RNF145

cg06690548 − 0.0089 0.0017 1.44E–02 − 0.0037 0.0013 6.10E−03 4:139,162,808 SLC7A11

cg09737197 − 0.0059 0.0012 2.13E−02 − 0.0068 0.0012 7.32E−08 11:68,607,675 CPT1A

cg20544516 0.0054 0.0011 2.40E−02 0.0066 0.0011 7.27E−09 17:17,717,183 MIR33B; SREBF1

cg05176551 0.0079 0.0016 3.24E−02 0.0064 0.0014 5.83E−06 10:32,701,586 CCDC7

TC

cg12054453 0.0395 0.0060 5.95E−05 0.0154 0.0059 1.22E−02 17:57,915,717 TMEM49

cg19693031 − 0.0416 0.0078 2.76E−02 − 0.0286 0.0062 1.62E−05 1:145,441,552 TXNIP

cg18942579 0.0278 0.0053 4.23E−02 0.0138 0.0055 1.22E−02 17:57,915,773 TMEM49

HDL-C

cg06500161 − 0.0218 0.0031 4.23E−06 − 0.0204 0.0032 9.44E−10 21:43,656,587 ABCG1

cg17901584 0.0243 0.0043 3.01E−03 0.0305 0.0048 9.44E−10 1:55,353,706 DHCR24

cg11024682 − 0.0138 0.0024 3.01E−03 − 0.0122 0.0027 6.44E−06 17:17,730,094 SREBF1

cg27243685 − 0.0167 0.0030 6.39E−03 − 0.0166 0.0034 2.05E−06 21:43,642,366 ABCG1

cg17507897 − 0.0179 0.0033 1.07E−02 − 0.0093 0.0034 5.96E−03 20:17,943,694 SNX5; SNORD17

Table 3  Cross-lagged association between lipid measures and DNA methylation

Adjusted P-values less than 0.05 are in bold font

β, regression coefficient; SE, standard error; TG, triglyceride; HDL-C, high-density lipoprotein-cholesterol; SRMR, standardized root mean squared residual; CFI, 
comparative fit index

CpG Gene Lipidbaseline → Methylationfollow-up Methylationbaseline → Lipidfollow-up Model fit

β SE Padj β SE Padj SRMR CFI

TG

cg27243685 ABCG1 0.3884 0.1426 0.0483 0.0264 0.0220 0.6682  < 0.001 1

cg05778424 AKAP1 0.5423 0.1660 0.0163 0.0147 0.0209 0.9468  < 0.001 1

HDL-C

cg06500161 ABCG1 − 0.5781 0.5812 0.3999 − 0.0320 0.0088 0.0014  < 0.001 1

cg11024682 SREBF1 − 1.4046 0.4655 0.0127 − 0.0193 0.0121 0.1837  < 0.001 1
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panel model, we found potential causal relationships 
of 2 CpG sites with TG and 2 CpG sites with HDL-C 
among all the significant associations and a relationship 
of cg11024682 with TG in only MZ twins. In addition, 
we conducted a mediation analysis and found that BMI 
has an effect on HDL-C, and the methylation level of 
cg06500161 partially mediates this effect.

In our EWAS, we confirmed that the widely validated 
CpG sites in European populations, such as cg06500161 
in ABCG1, cg00574958 in CPT1A, and cg11024682 
in SREBF1, were also associated with lipid measures 
robustly in East Asian populations and the direction of 
the associations were consistent. This complemented 
the findings of Jhun et  al. [24] that the associations 
between blood lipids and DNA methylation have consist-
ency across ethnic groups, including Europeans, African 
Americans, and Hispanics. Another study compared dif-
ferences in DNA methylation patterns of multiple traits 
related to non-communicable diseases between black 
South Africans and Europeans and found that 95% con-
fidence intervals for effect estimates overlapped for more 

than 85% of the shared lipid-related CpG sites [25]. How-
ever, we still identified 3 novel genes with TG (CCDC7), 
TC (TMEM49), and HDL-C (SNX5/SNORD17) with 
moderate sample size, and the latter two remained 
robust after adjustment for BMI. The differences in the 
methylation patterns may be associated with the genetic 
background of different ethnic groups [25], but the exact 
mechanisms need to be further explored.

Two CpG sites located in TMEM49 were related to 
TC. TMEM49, also known as VMP1, encodes an endo-
plasmic reticulum (ER) transmembrane protein that 
regulates the formation of autophagosomes, lipid drop-
lets, lipoproteins, and other ER-derived structures [26, 
27]. TMEM49 has been reported to affect the activity of 
lipoprotein-associated phospholipase A (2) (Lp-PLA2) 
[28], an inflammatory enzyme that is a risk factor for cor-
onary heart disease and in which lipids may play a role 
[29, 30]. Lp-PLA2 was bound to serum cholesterol, and 
in vitro experiments showed that elevated LDL-C levels 
result in upregulation of Lp-PLA2 [31]. All these findings 
indicated a potential role for TMEM49 in TC homeosta-
sis. In addition, the methylation level of TMEM49 was 
also associated with waist circumference [32], survival of 
cancer overall [33], and chemotherapy in breast cancer 
patients [34].

SNX5, short for sorting nexin 5, is a key regulator of 
endosomal trafficking [35], and SNX5 has been identified 
as an LDL-C-associated gene [36]. Elevated or decreased 
expression of SNX5 was found in multiple cancers [37, 
38], and renal SNX5 was reported to positively regu-
late insulin-degrading enzyme expression and function 
[39]. Noncoding small nucleolar RNA SNORD17 is also 
related to carcinogenesis, including hepatocellular car-
cinoma [40], cervical cancer [41], and colon adenocar-
cinoma [42]. The association of SNX5/SNORD17 with 
HDL-C needs to be further investigated.

Previous studies have reported an association between 
BMI and some lipid-related CpG sites [20, 43, 44], which 

Table 4  Cross-lagged association between BMI and lipid measures or between BMI and DNA methylation

Adjusted P-values less than 0.05 are in bold font

β, regression coefficient; SE, standard error; TG, triglyceride; HDL-C, high-density lipoprotein-cholesterol; SRMR, standardized root mean squared residual; CFI, 
comparative fit index

Lipid measures or CpG Gene BMIbaseline → Traitfollow-up Traitbaseline → BMIfollow-up Model fit

β SE P β SE P SRMR CFI

BMI and lipid measures

TG – 0.0675 0.0199 0.0007 0.0698 0.1133 0.5376  < 0.001 1

HDL – − 0.0467 0.0113  < 0.0001 − 0.0009 0.2667 0.9972  < 0.001 1

BMI and CpG sites

cg06500161 ABCG1 0.1853 0.0558 0.0018 − 0.0019 0.0387 0.9600  < 0.001 1

cg11024682 SREBF1 0.1062 0.0512 0.0380 0.0237 0.0428 0.9600  < 0.001 1

Fig. 1  Cross-lagged panel model about the mediation effect of 
cg06500161 between BMI and HDL-C. The subscript t indicates traits 
at baseline, and the subscript t + 1 indicates traits at follow-up. Model 
fit: SRMR = 0.004, CFI = 1.000. *P < 0.05; **P < 0.01; ***P < 0.001
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was validated to some extent in our Model 2 results. The 
magnitude of the association between lipid measures 
and methylation was attenuated when adjusting for BMI, 
indicating that BMI may partially influence the asso-
ciation. None of the HDL-C-related CpG sites remained 
significant. Given that these CpG sites were also BMI-
related, we hypothesized that BMI might affect HDL-C 
through the CpG sites. This hypothesis was partially con-
firmed by the subsequent mediation analysis.

Based on the results of the cross-lagged analysis, we 
found that the methylation levels of ABCG1 could influ-
ence HDL-C levels and be influenced by TG levels. Previ-
ous studies have explored the causal relationship between 
ABCG1 methylation and TG and HDL-C using MR and 
gene expression analysis methods and obtained oppo-
site directions [17, 45, 46]. Min et al. and Dekkers et al. 
[17] both found that the methylation level of ABCG1 was 
influenced by TG or HDL-C using MR analysis, while 
Pfeiffer et  al. [46] suggested that the methylation level 
of ABCG1 could regulate TG and HDL-C levels through 
gene expression. Since our study used longitudinal data 
while the three studies above were based on cross-sec-
tional data, we believe that our results are more credible. 
The ATP-binding cassette transporter (ABCG1) is the 
critical mediator of reverse cholesterol transport (RCT) 
and mediates cellular cholesterol efflux to HDL particles 
[47–50]. The methylation level of cg06500161 (ABCG1) 
was correlated with the ABCG1 transcript level, which in 
turn had an impact on HDL-C [46].

Our results also showed that the methylation level of 
AKAP1 might be influenced by TG. A-kinase anchoring 
protein 121 (AKAP1) binds protein kinase A and anchors 
it to the mitochondrial outer membrane to maintain 
mitochondrial function [51]. Animal experiments have 
demonstrated that AKAP1 is involved in the regulation 
of endothelial cell behavior [52], oxidative stress, and 
apoptosis [53] and plays a role in multiple metabolism-
related diseases. For instance, researchers observed that 
energy expenditure and thermogenesis were significantly 
enhanced in brown adipose tissue of AKAP1 knockout 
obese mice, which could attenuate diet-induced obesity 
and insulin resistance [54]. DNA methylation may be an 
intermediate link in the association of AKAP1 with these 
diseases, and TG, as one of the important metabolic indi-
cators, may have a similar regulatory mechanism.

In the stratification analysis, a noteworthy result was 
that cg11024682 located in SREBF1 had a potential influ-
ence on TG levels only in MZ twins. The direction of the 
association between TG and SREBF1 in our results was 
not completely consistent with a previous study, which 
found that the methylation level of SREBF1 was influ-
enced by TG using MR analysis [17]. We hypothesize that 
the inconsistent results are due to genetic and early-life 

environmental factors. MR analysis used genetic vari-
ants as instrumental variables and could not exclude con-
founding from genetic factors. Since MZ twins share 
almost 100% genetic background and early-life environ-
ment, our result, which was found only in MZ twins, sug-
gests that genetic and early-life environmental factors 
may influence the effects of the CpG site on TG. SREBF1 
encodes sterol regulatory element-binding protein 1, 
which can activate and synthesize cholesterol and fatty 
acids [55]. MicroRNA (miR)-33b, located in the intron 
region of SREBF1, can also act as an important regula-
tor of lipid metabolism [56, 57]. Antagonism of miR-33 
inhibited the expression of genes involved in fatty acid 
synthesis, such as SREBF1, and thus reduced plasma very 
low-density lipoprotein triglyceride levels [58].

Our mediation analysis supported that cg06500161 
(ABCG1) partially mediated the effect of BMI on HDL-C. 
Previous studies have reported that the methylation level 
of cg06500161 could be influenced by BMI [21–23] and 
mediate the effect of BMI on the expression of ABCG1 
[59]. Johansson and his colleagues found that ABCG1 
and CETP were the most upregulated genes that were 
differentially expressed in obese patients during weight 
loss and weight maintenance after weight loss, and the 
prevailing HDL concentration was correlated with the 
expression of ABCG1 [60]. Similar results were observed 
in morbidly obese women [61]. However, the above two 
studies only analyzed ABCG1 expression levels in adipose 
tissue rather than blood samples. Therefore, the mediat-
ing role of ABCG1 and its methylation level between BMI 
and HDL-C remains to be further explored.

The strength of our study is that we explored the tem-
poral association between CpG sites and blood lipids 
using longitudinal data and corresponding analysis, cir-
cumventing the limitations of cross-sectional data in 
causal inference. In addition, the analysis in twins, espe-
cially MZ twins, provides a natural matched design to 
present causal inference while controlling for genetic and 
early family environmental factors [62].

There are also some limitations of our study. In the 
EWAS phase, to maximize the sample size, only probes 
common to both the 450 K and EPIC methylation arrays 
were included in our study, while other probes pre-
sent in only one methylation array were excluded. Some 
potential lipid-associated CpG sites may not have been 
identified. In addition, the CKB cohort did not require 
participants to fast prior to blood sample collection, 
which may have affected the validation results. Therefore, 
we adjusted the fasting status in our analysis and used 
SmartSVA to control for potential confounding, avoid-
ing the interference of fasting time on the results to some 
extent. In the cross-lagged analysis phase, the power of 
the stratification analysis was limited due to the moderate 
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sample size. However, we still found some evidence that 
the association between TG and SREBF1 may be influ-
enced by genetic and early-life environmental factors.

Conclusions
We identified 4 novel CpG sites related to lipid measures 
in the Chinese population. Based on the longitudinal twin 
data, we found the temporal sequence of DNA methyla-
tion levels of ABCG1, AKAP1, and SREBF1 with TG and 
HDL-C. In addition, we observed a potential mediation 
role of cg06500161 (ABCG1) in the temporal association 
between BMI and HDL-C. Our study provides evidence 
to elucidate the underlying biological mechanisms of 
DNA methylation in lipid metabolism, and future stud-
ies should continue to explore the biological role of DNA 
methylation in lipid metabolism and downstream effects 
on disease.

Method
Study population
The discovery stage of the EWAS phase and cross-lagged 
analysis phase was based on CNTR. Established in 2001, 
CNTR is a population-based twin registry, and the details 
of CNTR have been reported previously [63]. The cur-
rent study included participants who participated in the 
follow-up surveys in 2013–2014 and 2017–2018. A total 
of 1392 blood specimens were collected for methylation 
measurements from 1084 participants, including 308 
participants with repeated measurements. The replica-
tion stage of EWAS was based on CKB, a prospective 
cohort of more than 0.5 million adults in 10 geographi-
cally defined regions across China since 2004–2008 [64, 
65]. DNA methylation data were available for 988 par-
ticipants selected for a case‒control study nested within 
CKB [66]. Information from the two cohorts was col-
lected via standardized questionnaires, physical examina-
tions, and blood biochemical examinations.

Data measurements
Lipid measures, including TG, TC, HDL-C, and LDL-
C, were measured in blood samples. Participants were 
asked to fast for at least 8 h in CNTR, while fasting was 
not mandatory in CKB. The fasting time for each partici-
pant was recorded and adjusted in the subsequent analy-
sis in CKB. Other covariates, such as age, sex, smoking 
status, and alcohol consumption, were collected using 
the interview-administered questionnaire. Smoking sta-
tus and alcohol consumption were divided into three 
categories: never, former and current. Height and weight 
were collected in the physical examination to calculate 
BMI, which was defined as weight in kilograms divided 
by the square of height in meters. Medication history 
was also recorded, and participants taking lipid-lowering 

medicine were excluded. Outliers that were three stand-
ard deviations from the mean of lipid measures in each 
cohort were removed. Blood samples with missing bio-
chemical parameters or moderate to severe lipemia were 
also excluded. All lipid measures were natural log-trans-
formed to approximate a normal distribution.

The zygosity of twins was determined based on the cor-
relation of 59 SNPs in both the 450  K and EPIC meth-
ylation arrays. It was shown that the possible cutoff point 
was between 0.84 and 0.90 [67], which was set to 0.90 in 
the current study. Twin pairs with a correlation coeffi-
cient higher than 0.90 were considered MZ twins; other-
wise, they were considered DZ twins.

DNA methylation and quality control
Genomic DNA was extracted from peripheral blood 
leukocytes and bisulfite-converted using the EZ DNA 
methylation kit (Zymo Research, Orange, CA, USA). 
Epigenome-wide DNA methylation levels were meas-
ured using the Infinium HumanMethylation450 Bead-
Chip assay (Illumina, San Diego, CA, USA) or Infinium 
HumanMethylationEPIC BeadChip assay (Illumina, 
San Diego, CA, USA), and only the overlapping CpG 
sites of the two assays were included in the subsequent 
procedure.

DNA methylation measurement and preprocessing 
were conducted independently in the two cohorts. In 
CNTR, we applied the R package minfi [68] to process 
and combine the raw methylation data of two assays and 
obtained the β-value of each CpG site to report the meth-
ylation level. For quality control, we removed the probes 
if they (1) had detection p values > 0.05 in more than 1% 
of samples or had bead counts < 3 in more than 5% of 
samples; (2) were non-CpG or multi-hit probes; (3) were 
related to SNPs with MAF > 0.05 in the 1000 Genomes 
Project for the East Asian population; and (4) were 
located in sexual chromosomes. We excluded samples 
if they (1) were sex mismatched and (2) had a detection 
P-value greater than 0.01. The details of quality control of 
the raw methylation data in CKB can be found in a pre-
vious study [66]. The stratified quantile normalization 
method [69] in the minfi package was used for preproc-
essing and normalization. The cell proportions for each 
cell type were estimated using Houseman’s method [70] 
and adjusted using the champ.refbase function in the R 
package ChAMP. To correct batch effects, we performed 
an optimized surrogate variable analysis (SVA) with the 
package SmartSVA [71] in the EWAS phase. SmartSVA 
provided a fast and robust method to remove potential 
confounding factors for epigenetic or other genomic 
studies and was developed based on the linear model. In 
the cross-lagged analysis phase, batch effects were cor-
rected using the Combat method instead.
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Finally, 378,654 CpG sites were retained in the discov-
ery stage of EWAS. We annotated CpG sites to genes 
with the manifest file provided on the Illumina website. 
The CpG sites located in the intergenic region would be 
annotated to the nearest gene using the R package match-
Genes or genome browser (https://​genome.​ucsc.​edu/).

Statistical analysis
EWAS
We implemented a two-stage EWAS with participants 
in CNTR and CKB. For Model 1, linear mixed regres-
sion models were fitted with β-value at a CpG site as 
the dependent variable and each lipid measure (TG, TC, 
HDL-C, and LDL-C) as the independent variable using 
the R package nlme, adjusting for age, sex, smoking sta-
tus, alcohol consumption, and all surrogate variables 
generated above as fixed effects. Due to the correlation 
within twin pairs, the unique ID of each twin pair was 
added to the model as a random effect in the discovery 
stage. The fasting status was further adjusted as a fixed 
effect (< 8 or ≥ 8 h) in the replication stage. BMI was fur-
ther adjusted in Model 2.

Enrichment analysis
For all CpG sites associated with lipid measures, we then 
performed Gene Ontology (GO) term analyses, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses, and Reactome pathway enrichment analy-
sis with the R package "methylGSA" [72].

Cross‑lagged analysis
We conducted a cross-lagged analysis based on partici-
pants with repeated measurements in CNTR, of whom 
the average follow-up duration was 4.67 ± 0.22  years. 
A residual analysis was performed first. Lipid measures 
were adjusted for age, sex, smoking status, and alcohol 
consumption as fixed effects at the corresponding time 
point and twin number as a random effect using the lin-
ear mixed regression model. The β-value of significant 
CpG sites was further adjusted with the blood cell pro-
portions and batch effects. Residuals from the regres-
sion model were used in the subsequent cross-lagged 
analysis, and residuals of CpG sites were normalized 
using Z-transform. The CLPM simultaneously estimated 
the autoregressive and cross-lagged regressive effects of 
lipid measure and methylation data at two-time points, 
including (1) autoregression of lipid measure at follow-
up on lipid measure at baseline, (2) autoregression of 
β value at follow-up on β value at baseline, (3) cross-
lagged regression of β-value at follow-up on lipid meas-
ure at baseline (ρ1), and (4) cross-lagged regression of 
lipid measure at follow-up on β-value at baseline (ρ2). 
The significance and magnitude of ρ1 and ρ2 reflected 

the temporal associations of the two variables. We fitted 
a structural equation model to estimate all the parame-
ters and statistics above using the R package lavaan and 
set the cluster argument to adjust for the correlation of 
twins. We also reported model fit indexes to evaluate 
model fit, including standardized root mean squared 
residual (SRMR) and comparative fit index (CFI), and 
models with SRMR < 0.08 and CFI > 0.95 were considered 
good fits [73]. We repeated the steps above in only MZ or 
DZ, and only twin pairs with complete data at two-time 
points were included.

Mediation analysis
Since BMI was associated with DNA methylation and 
could affect blood lipids, we performed mediation anal-
ysis to assess whether CpG sites were the mediator of 
the effect of BMI on lipids. Only CpG sites that showed 
a potential effect on lipid measures in the cross-lagged 
analysis were included.

The temporal associations between BMI and lipid 
measures and between BMI and CpG sites were assessed 
with the CLPM first to deduce the potential media-
tor. The relationships among exposure X, mediator M 
and outcome Y at baseline (b) and follow-up (f) were as 
follows:

where β is the autoregressive coefficient, ε is the residual 
item, ab is the direct effect, and c′ is the indirect effect. 
The model fitting and parameter estimation method was 
similar to that of the cross-lagged analysis.

The false discovery rate (FDR) was used for multiple 
comparisons, and the threshold of significance was con-
sidered to be less than 0.05. Statistical analysis was per-
formed using R version 4.0.2 or 4.0.3.
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