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Differentially hypomethylated cell‑free DNA 
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Abstract 

Background:  The factors affecting cardioprotective collateral circulation are still incompletely understood. Recently, 
characteristics, such as CpG methylation of cell-free DNA (cfDNA), have been reported as markers with clinical utility. 
The aim of this study was to evaluate whether cfDNA methylation patterns are associated with the grade of coronary 
collateral circulation (CCC).

Result:  In this case–control study, clinical and angiographic data were obtained from 143 patients (mean age, 58 
years, male 71%) with chronic total coronary occlusion. Enzymatic methyl-sequencing (EM-seq) libraries were pre‑
pared using the cfDNA extracted from the plasma. Data were processed to obtain the average methylation fraction 
(AMF) tables of genomic regions from which blacklisted regions were removed. Unsupervised analysis of the obtained 
AMF values showed that some of the changes in methylation were due to CCC. Through random forest preparation 
process, 256 differentially methylated region (DMR) candidates showing strong association with CCC were selected. 
A random forest classifier was then constructed, and the area under the curve of the receiver operating characteristic 
curve indicated an appropriate predictive function for CCC. Finally, 20 DMRs were identified to have significantly dif‑
ferent AMF values between the good and poor CCC groups. Particularly, the good CCC group exhibited hypomethyl‑
ated DMRs. Pathway analysis revealed five pathways, including TGF-beta signaling, to be associated with good CCC.

Conclusion:  These data have demonstrated that differential hypomethylation was identified in dozens of cfDNA 
regions in patients with good CCC. Our results support the clinical utility of noninvasively obtained epigenetic signa‑
tures for predicting collateral circulation in patients with vascular diseases.
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Background
The development and presence of coronary collateral cir-
culation (CCC) has great clinical importance in patients 
with ischemic heart disease. Good CCC can reduce 
adverse cardiovascular events and infarct size when 
coronary arteries are occluded [1]. The involvement of 
growth factors, cytokines, and shear stress in collateral 
circulation development has been previously reported [1, 

2]. However, the factors and predictors associated with 
collateral circulation are incompletely understood, with 
limited evidence on epigenetic impact. Human DNA 
methylation refers to the methylation of the C5 posi-
tion of cytosine in CpG dinucleotides [3]. DNA methyla-
tion plays an important role in regulating transcription, 
embryonic development, genomic imprinting and stabil-
ity, and chromatin structure. Thus, human diseases are 
often accompanied by changes in methylation patterns [4, 
5]. Although the associations of DNA methylation with 
angiogenesis and vascular growth have been analyzed 
in mice [6, 7], related human studies have not been con-
ducted. Cell-free DNA (cfDNA) refers to the circulating 
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DNA released into the plasma through various mecha-
nisms, including cell death [8]. The methylation pat-
terns of organ-related cfDNA were recently detected in 
patients with sepsis and cancer [8]. Thus, researchers aim 
to aid diagnosis of disease like cancers based on the char-
acteristics of noninvasively collected human cfDNA [9]. 
However, the clinical application of cfDNA methylation 
patterns remains limited as it is difficult to interpret due 
to its complex composition [8]. The amount of cfDNA 
is generally insufficient to maintain bisulfite conversion 
quality [9, 10], which is a gold standard in analysis. For-
tunately, recent studies using enzymatic methyl-sequenc-
ing (EM-seq) presented promising results with limited 
cfDNA, using an enzymatic approach instead of harsh 
bisulfite conversion [11, 12]. Another study simplified 
the complex methylation patterns by introducing values 
such as the average methylation fraction (AMF) [9]. CpG 
methylation varies regionally according to the presence 
of adjacent CpG methylation and CpG density, enabling 
the implementation of these methods [13, 14]. These 
reports suggested using noninvasively obtained cfDNA to 
assess methylation characteristics, and its clinical use was 
also recently investigated [15, 16]. The aim of this study 
was to evaluate whether cfDNA methylation patterns are 
associated with the CCC status in patients with chronic 
total coronary occlusion [17]. In addition, the biological 
pathways associated with characteristic cfDNA methyla-
tion were analyzed. For the study, EM-seq and a series 
of data processing methods, including machine learning 
[18], were used.

Result
Unsupervised analyses reveal the methylation 
characteristics of cfDNA associated with CCC​
DNA methylation data were obtained in 143 patients 
(109 in the good CCC group and 34 in the poor CCC 
group) using EM-seq (Table  1). All samples passed the 
quality control process. No significant correlations 
were identified between CCC and clinical variables. As 
DNA methylation can be affected by various factors, we 
used PCA to identify the methylation characteristics. 
Rather than using the traditional subjective PC selec-
tion through the ‘elbow’ observation of the scree plot 
[19], we selected 15 PCs that exceeded the cutoff by 
estimating the maximum noise level [20, 21] (Fig.  1A). 
PC1 (Pearson’s correlation coefficient [PCC], 0.34), PC3 
(PCC, −0.32 ), and PC8 (PCC, −0.36 ) showed significant 
(p < 1E-4) correlations with CCC (Fig. 1B). The correla-
tions between PC and CCC were reproduced using the 
nonparametric method (Additional file  1: Fig. S1A). 
Based on these results, we confirmed that the distribu-
tions of PC1, PC3, and PC8 were associated with CCC. 
The PC1 samples of the good CCC group showed a 

wide distribution, whereas those of the poor CCC group 
showed a relatively narrow distribution (Fig. 1C). A few 
PC3 samples from the poor CCC group were outliers, 
with no differences in the overall distribution between 
the two groups (Fig. 1C). The overall distribution of the 
PC8 samples differed between the good and poor CCC 
groups, although with a much smaller distribution than 
that of the major component, PC1 (Fig.  1D). Differen-
tial component clustering was observed with the PCA of 
each group, despite the absence of pre-assigned labels. 
This was repeated in t-SNE using the same input values 
as the PCA (Additional file 1: Fig. S1B). The unsupervised 
analyses showed that methylation characteristics were 
associated with CCC. Furthermore, differential methyla-
tion was observed in cfDNA.

DMR search identifies predominant hypomethylation, 
while the filtered DMRs show reproducibility of grouping 
in CCC​
We selected methylation marker regions that could be 
used to predict good CCC. We first reduced the num-
ber of variables through pre-screening prior to marker 
screening using machine learning. This was based on a 
previous observation that an increase in unnecessary var-
iables lowers prediction accuracy [22]. The pre-screening 
process consisted of CCC-associated DMR screening and 
the screening of candidate markers among the selected 
DMRs. The training and test sets were divided for veri-
fication, and screening was only performed in the train-
ing set. DMR searches were conducted for each of the 
three resampled subsets in the CCC-related DMR detec-
tion training set to prevent overfitting. The difference 
in means between the good and poor CCC groups in 
the same bin appeared to be a mixture of two aspects 
(Additional file 1: Fig. S2). Methylation differences were 
observed in some bins, and hypomethylation tended to 
be more common. Bins with significantly differing AMF 
distributions between the good and poor CCC groups 
were selected using Welch’s t-test (Additional file 1: Fig. 
S3). As significant methylation differences between the 
two groups were observed in the unsupervised analysis, 
we assumed that the Welch’s t-test result was significant 
and conducted the subsequent analysis. DMRs were 
selected based on the differences in means and distri-
butions (Fig.  2A). Hypomethylation (z-score < − 2) was 
more common and more variable than hypermethylation 
(z-score > 2) in the selected DMRs. Although the num-
ber of hypomethylated and hypermethylated DMRs was 
different in each set, the predominance of hypometh-
ylation and low CpG density was consistent (Additional 
file  1: Fig. S4). Thereafter, we selected the most repro-
ducible DMRs from those identified in each subset. Only 
DMRs observed in all three subsets were selected in 
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the screening process for reproducible DMRs that were 
not sample-specific, and 1430 DMRs met this criterion 
(Fig.  2B). The 1430 intersection DMRs were ordered 
according to the q values of each subset. Pathway analysis 

of the 1430 DMRs did not (1) reveal a clear association 
with previously known CCC-related pathways, or (2) 
match the predicted results based on other databases 
(Additional file 1: Fig. S5). Only 256 in the top 500 DMRs 

Fig. 1  Correlation between DNA methylation and CCC. A PCA was conducted on data from all participants with good ( n = 109) and poor CCC 
( n = 34). A Scree plot of the proportion of variance (y-axis) explained using the 30 PCs from a PCA on the AMF data table (black line). To determine 
effective PC values, the maximum value among the proportions of variance calculated from the random permutation AMF table is indicated using 
the red line; 15 PCs exist with observed variance higher than expected by the background. B Heatmap of the p values of associations between the 
15 significant PCs and clinical variables. All p values were estimated with the Pearson’s correlation coefficient analysis. The numbers in each block 
represent the Pearson’s correlation coefficient. C PCA plots for PC1 and PC3 estimated to correlate with CCC. D PCA plots for PC1 and PC8 estimated 
to correlate with CCC​
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in all subsets were selected as candidate marker DMRs 
strongly associated with CCC (Fig. 2C). Pathway analysis 
of the 256 DMRs identified factors reported to be related 

to CCC, including TGF-beta, G-protein, and eosinophils 
(Additional file 1: Fig. S6) [23–25]. The PCA of the entire 
training set using 256 selected DMRs identified separa-
tion that depended on the CCC group (Fig.  2D). This 
confirmed the potential of the selected 256 DMRs to pre-
dict good CCC. PCA prediction was then performed by 
replacing the input data with a test set not used for DMR 
screening. Group clustering was observed, although with 
some overlap (Fig. 2E). Taken together, these 256 candi-
date DMRs demonstrated the potential to be used as uni-
versal CCC markers rather than overfitting the training 
set.

Random forest classifier selects the marker DMRs of CCC​
Finally, we performed marker selection using machine 
learning. We trained a classifier using the random for-
est method of learning algorithms and used the 256 
selected DMRs as input. Repeated cross-validation was 
performed using the training set (Fig.  3A). The predic-
tion performance of the classifier was measured using the 
AUC of the ROC curve for the test set (Fig. 3B). The AUC 
values of the test set resembled those of the training set, 
and we assumed that the measured importance was valid. 

Table 1  Characteristics of the study participants

Data are presented as the mean ± standard deviation or number (%)

Total Good CCC​ Poor CCC​
(n =  143) (n =   109) (n =   34) p

Age, years 57.8 ± 10.6 57.0 ± 11.2 59.7 ± 9.9 0.25

Male 102 (71.3) 78 (71.6) 24 (70.6) >0.99

Risk factors

Hypertension 68 (47.6) 54 (49.5) 14 (41.2) 0.44

Diabetes mellitus 34 (23.8) 26 (23.9) 8 (23.5) >0.99

Smoking 19 (13.3) 13 (11.9) 6 (17.6) 0.39

Hypercholesterolemia 11 (7.7) 8 (7.3) 3 (8.8) 0.72

Acute coronary syndrome 89 (62.2) 65 (59.6) 24 (70.6) 0.31

Body mass index, kg/m2 25.2 ± 3.0 25.3 ± 3.1 24.6 ± 3.0 0.31

Number of diseased vessels

 1 49 (34.3) 38 (34.9) 11 (32.4)

 2 30 (21.0) 24 (22.0) 6 (17.6) 0.82

 3 64 (44.8) 46 (42.2) 17 (50.0)

Fig. 2  Screening process for DMRs potentially associated with CCC. Selection of DMR candidates in each of the three subsets sampled by 
replacement from the training sets. A Volcano plots examining associations between mean differences in AMF and q values. p values are calculated 
using Welch’s t-test on 600,000 bins for which >90% AMF values could be calculated in each subset. Negative log-transformed q values generated 
using FDR correction of p values plotted for the differences in AMF between good and poor CCC groups (converted to z-scores via standardization). 
The area above the dashed horizontal line indicates q values <0.05. The dashed vertical line indicates the absolute z-score value |z| of 2. When the 
mean AMF value is significantly lower in the good CCC group than in the poor CCC group, it is indicated as hypomethylation (blue). Conversely, 
a high mean AMF value is indicated as hypermethylation (red). B DMRs selected from each of the three subsets. A total of 1430 DMRs commonly 
included in the three subsets were used in additional filtering processes. C Top 500 DMRs in each subset selected from 1430 DMRs based on the 
significance of the q-value. A total of 256 DMRs included in top 500 of all subsets were selected as input values for the additional random forest 
classifier step. D PCA results of the 256 DMRs using the AMF values of all training set samples (poor CCC: n = 29; good CCC: n = 93). E PCA results 
of the 256 DMRs using the AMF values of the test set samples (poor CCC: n = 5; good CCC: n = 16). The PCA results of the test set were predicted 
using the learning test results based on the training set
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Based on the importance given in the final model, we 
selected the top 20 DMRs as markers and evaluated the 
AMF distribution of each DMR (Fig. 3C). Among these 

20 DMRs, five were located in the exon region, eight in 
the intron region, and seven in the intergenic region. The 
poor CCC group generally showed a narrow distribution 

Fig. 3  Selection of major DMRs related to good CCC using a random forest classifier. A Flowchart of random forest classifier training and validation 
through repeated cross-validation using good CCC-related DMR candidates. For the entire training set (poor CCC: n = 29; good CCC: n = 93), 
AMF values of 256 pre-screened CCC-related DMR candidates were used for training. To validate the training results, predictions were made on 
pre-separated test set samples (poor CCC: n = 5; good CCC: n = 16). B ROC curves for the learning test results of the training set (blue) and the 
prediction results of the test set (red). C A box plot of the AMF distribution and annotations of good (red: n = 109) and poor CCC (violet: n = 34) 
groups. These correspond to the top 20 DMRs determined from the random forest classifier training results. D Pathway analysis results of the 20 
DMRs associated with CCC​
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of AMF values close to 1, whereas the good CCC group 
presented a wide AMF distribution. This AMF pattern 
suggested that the selected DMRs showed differences in 
methylation and were suitable as markers for good CCC. 
We further performed a pathway analysis to investigate 
the biological relevance of the 20 selected marker DMRs 
(Fig.  3D, Additional file  1: Fig. S7). In all databases, the 
TGF-beta-associated pathway was repeatedly observed 
to be associated with selected DMRs. These results prove 
that the association observed between the selected DMRs 
and the TGF-beta pathway was not biased by the data-
base, a well-known problem [26]. Finally, we validated 
our selected markers using data from a public dataset. 
We have obtained CpG methylation data from previously 
published cfDNA from healthy subjects [27]. We evalu-
ated the AMF distribution at the remaining 18 DMRs, 
with the exception of two DMRs not included in the pub-
lication data (Additional file 1: Fig. S8). In all 18 DMRs, 
the AMF distribution in the healthy group was similar 
to or more stringent than that of the poor CCC group. 
These observations support that hypomethylation of our 
selected markers is CCC-specific.

Discussion
The major findings of the present study include the fol-
lowing: (1) EM-seq-based methylation profiling produced 
good quality data, even with limited human cfDNA quan-
tities; (2) samples from patients with good CCC exhibited 
a wide distribution of AMF in selected DMRs, whereas 
those from patients with poor CCC presented a nar-
row distribution; (3) distinct CpG methylation of human 
DNA associated with good or poor CCC was identified 
and validated using this noninvasive cfDNA analysis 
method, where patients with good CCC presented pre-
dominantly hypomethylated cfDNA; and (4) the identifi-
cation of pathways, such as TGF-beta signaling, that were 
associated with selected DMRs indicated the biological 
relevance of the marker DMRs. Taken together, these 
results suggest the utility of cfDNA methylation as a pre-
dictive tool for cardiovascular conditions such as collat-
eral circulation.

Until recently, similar bisulfite conversion studies 
required relatively large amounts of DNA due to DNA 
degradation. Of note, this study was performed using 
limited cfDNA quantities obtained using a noninvasive 
approach. Maintaining data quality with the recently 
introduced EM-seq method [12] contributed to our 
results. We performed unsupervised and supervised 
analyses separately to avoid confirmation bias. In both 
assays, differences in DNA methylation were clearly 
observed between the two CCC groups. Comparison 
with published cfDNA data from healthy subjects also 
supports that our selected markers are specific to good 

CCC. The broad AMF distribution of the good CCC 
group and the narrow AMF distribution of the healthy 
group are interesting observations, considering that the 
cfDNA data were obtained from a combination of mul-
tiple sources. A recent murine study revealed that DNA 
methyltransferase 1-dependent endothelial DNA meth-
ylation constrains arteriogenic capacity [27]. Thus, DNA 
methylation could impact collateral circulation that was 
verified in human samples for the first time in the current 
study. Another recent study analyzed DNA methylation 
in human carotid plaques, but could not replicate the 
differential methylation of shear stress-associated genes 
discovered in mouse models [28]. Therefore, our results 
on human samples provide rare evidence of distinct DNA 
methylation-associated vascular conditions.

Among the selected DMRs, SKI [29] and SMURF2 [30] 
are directly related to TGF-beta, and their hypomethyla-
tion may also be biologically relevant to CCC develop-
ment. Various DMRs were located in the intron regions 
of several genes, including the two aforementioned 
genes. Differential methylation in introns can affect 
specific genes and change their expression [31]. Several 
other genes with DMRs identified in our analyses showed 
potential biological relevance in CCC. Epsin1, encoded 
by EPN1, is related to angiogenesis in cancer patients 
[32]. SENP3, which encodes a redox-sensitive enzyme, 
mediates vascular remodeling [33].

The 20 marker DMRs identified in the present study 
showed common associations with the TGF-beta path-
way in multiple databases. TGF-beta expression is 
induced under hypoxic conditions and it mediates angio-
genesis in infarcted hearts [34]. This signaling pathway 
increases the expression of an endothelial receptor and 
contributes to vascular structural change [35]. Thus, the 
association of TGF-beta signaling in our analyses may 
indicate a plausible CCC-promoting mechanism. In 
addition, G-protein [25] and eosinophil [24] pathways 
found in DMR screening (Additional file  1: Fig. S5) are 
associated with arteriogenesis or collateral circulation. 
Abundance of a G-protein signaling-related protein was 
previously found to be increased in the vascular smooth 
muscle cells of collateral arterioles [25]. Conversely, the 
eosinophil count independently predicted high-grade 
CCC in individuals with unstable angina [24]. Thus, the 
DMRs identified in the present study could be linked to 
biological pathways related to CCC. Further studies and 
verification of their biological relevance may strengthen 
the implications of our results.

Our study had several limitations. We used AMF val-
ues of bins with high CpG densities for reproducibility at 
low-sequencing depths. In addition, the limited number 
of patients with poor CCC might have biased the patient 
grouping used for machine learning. When the sample 
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size is large enough, a simple comparison is often suffi-
cient. However, in our case the sample size was not suf-
ficient to correct for bias, leading to overfitting with a 
simple comparison (data not shown). Therefore, we tried 
to discover valid markers by verifying reproducibility in 
a separate test set after training and validation. A larger 
sample size might have helped enhance the value of the 
validation results; therefore, cross-validation with exter-
nal study populations or other experimental methods 
should be used in future studies to increase reliability. 
Importantly, despite these limitations, our study is signif-
icant due to the novelty of being the first to identify dis-
tinct methylation of cfDNA predicting good CCC using 
human samples obtained with noninvasive methods.

Conclusion
In conclusion, distinct CpG methylation dependent on 
the CCC grade was identified in human cfDNA. The asso-
ciation between biological pathways including TGF-beta 
signaling and selected DMRs, indicated the biological rel-
evance of these methylated regions. These results suggest 
the utility of differential cfDNA methylation as a predictor 
of cardiovascular conditions, such as collateral circulation.

Methods
Study population and clinical data collection
All patients included in this study visited the Severance 
Hospital from January 2001 to August 2009 and received 
coronary angiography for chest discomfort or pain [36]. 
We used the patient data deposited in the Cardiovascular 
Genome Center database of the Yonsei University College 
of Medicine, Korea. Patients who presented with chronic 
total occlusion of at least one epicardial coronary artery 
were selected for this study. This study conformed to the 
Declaration of Helsinki and obtained approval from the 
Institutional Review Board of Severance Hospital, Seoul, 
Korea (4-2019-0880). Trained nurses collected clinical 
data, including demographic variables and risk factors. 
Blood samples were obtained from all study subjects 
immediately before or within 24 h post-angiography and 
stored at -80◦ C. The majority of patients had blood drawn 
before angiography, and only a few patients had blood 
collected afterward. Patients were given oral aspirin and 
5,000 U of intravenous heparin, followed by angiography. 
Coronary artery disease and CCC were confirmed by two 
interventional cardiologists, who were blinded to other 
patient data. CCC was assessed according to the Rentrop 
classification: grade 0, no filling; grade 1, filling of the side 
branches via the collateral channels without epicardial 
filling; grade 2, partial filling of the epicardial coronary 
artery via the collateral channels; and grade 3, complete 
filling of the epicardial coronary artery [37]. Patients were 

classified based on the collateral grades as having poor 
(grade 0 or 1) or good (grade 2 or 3) CCC.

Cell‑free DNA preparation and EM‑seq library production
cfDNA was extracted from plasma using the QIAamp Min-
Elute ccfDNA Kit (Qiagen, Hilden, Germany) and stored at 
−20  ◦ C. The cfDNA concentrations and size distributions 
were assessed using TapeStation (Agilent, Santa Clara, CA, 
USA) before library preparation. EM-seq libraries were pre-
pared using 1-100 ng of cfDNA and an EM-seq kit (New 
England Biolabs, Ipswich, MA, USA) without fragmentation. 
Library concentrations and distributions were also deter-
mined using TapeStation. Paired-end 150-bp sequencing was 
performed using the NovaSeq 6000 S4 platform (Illumina).

Data preprocessing and average methylation fraction 
(AMF) table creation
All sequencing data were trimmed using fastp (version 
0.20.1) [38]. Adapter-trimmed reads were aligned onto 
the hg19 reference genome using bitmapperBS (version 
1.0.2.3) [39]. The output bam file was sorted using Sam-
tools (version 1.11) [40]. PCR and optical duplicates were 
removed using the GATK (version 4.1.9.0) MarkDupli-
cates module [41] (Additional file 2: Table S1). The black-
listed genomic regions in ENCODE [42] and the repeat 
element regions screened using RepeatMasker (http://​
www.​repea​tmask​er.​org) were obtained to remove align-
ment artifacts. Reads overlapping these regions were 
filtered out prior to the analysis. A final, filtered BAM 
file was used to calculate the methylation levels at each 
cytosine locus using MethylDackel (https://​github.​com/​
dprya​n79/​Methy​lDack​el). The conversion rate was calcu-
lated with an in-house Python program (version 2.7.17) 
using the MethylDackel CHH output as the input. Sam-
ples were excluded if the conversion rate did not exceed 
99% or if the median of average depth was < 3. The hg19 
reference genome was partitioned into 100-bp bins for 
all regions. AMF values were obtained for the filtered 
BAM file for each sample in  1.2 million bins with high 
CpG density containing five or more CpGs to increase 
reliability at a low-read depth. AMF was defined based 
on a previous report [9] as follows: AMF is the ratio of 
the number of methylated CpG among all the aligned bin 
reads at known CpG positions in the reference genome. 
AMF values of each bin were obtained, and the samples 
were divided into good and poor CCC groups. Only 
bins with null values of < 10% were selected. A total of 
606,483 bins fit the criteria and were used for subsequent 
analyses. The table is publicly accessible at https://​osf.​io/​
fw2zq. The above process was performed using R (ver-
sion 4.0.3).

http://www.repeatmasker.org
http://www.repeatmasker.org
https://github.com/dpryan79/MethylDackel
https://github.com/dpryan79/MethylDackel
https://osf.io/fw2zq
https://osf.io/fw2zq
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Unsupervised analysis
The standard deviation (SD) of each bin was calculated 
using the AMF table. The SD was standardized and bins 
with a z-score of > 2 were selected, excluding background 
fluctuations. A total of 42,092 bin positions were selected. 
The missing values were replaced with the means of the 
good and poor CCC groups in which they were catego-
rized. Principal component analysis (PCA) was also per-
formed; PCA of large-sized tables was performed using R 
package flashpcaR (version 2.1) [43]. The PCA values of 
the top 30 components were calculated by setting k = 30. 
To obtain effective principal components (PCs), sam-
ples were randomly shuffled 1000 times. The maximum 
total variance obtained through the PCA of 1000 shuf-
fled tables was considered the effective PC cutoff. The 
selected 15 PCs were analyzed for correlations with clini-
cal variables. The Rtsne package (https://​github.​com/​jkrij​
the/​Rtsne) was used for t-SNE analysis. The Pearson and 
Spearman correlation coefficients and p values between 
the PC values and clinical variables were calculated. Cat-
egorical variables were converted to 0 and 1 and then 
computed as point-biserial correlation coefficients. The 
cor.test function in R was used for all calculations.

Differentially methylated region (DMR) selection
For the previously constructed AMF table with bins con-
taining < 10% missing values, samples were partitioned 
into training and test sets at a ratio of 85:15. Set separa-
tion was performed using the createDataPartition func-
tion included in the caret package (version 6.0.86) [44] in 
R. The Welch’s unequal variances t-test [45] was applied 
to retrieve CCC-associated DMRs because of the hetero-
scedasticity of DNA methylation variance according to 
the genomic position [3]. Welch’s t-test was performed on 
each of the three sampled subsets sampled with replace-
ment from training set to select bins with AMF differences 
between good and poor CCC groups. The actual process 
was performed using the row_t_welch function in the 
matrixTests package (https://​github.​com/​karol​iskon​cevic​
ius/​,versi​on 0.1.9) in R. The results included the mean dif-
ferences and p values between the two groups for each bin. 
The p value was converted to a q value using the R package 
fdrtool (version 1.2.16) [46]. Bins that satisfied the absolute 
value of the mean difference |z| > 2 and q value < 0.05 were 
selected as DMRs. The intersection of the DMRs in each 
of three subsets was found, and 1430 shared DMRs were 
confirmed. The rankings of the q values in each subset 
were then considered. The 1430 DMRs were sorted based 
on the q values calculated in each subset. Only the top 500 
DMRs in all subsets were selected, with a final selection 
of 256 DMRs. A PCA of the training and test sets in the 
256 DMRs was performed using the prcomp function in 
R with a 70% confidence interval to draw the core region.

Random forest process
The full training set of 256 DMRs was used as input for 
the random forest analysis. Cross-validation of the train-
ing and validation sets was performed using the ‘repeat-
edcv’ option of the trainingControl function in the caret 
package. A tenfold cross-validation was repeated 10 
times. Random forest classifier construction was per-
formed using the caret train function by selecting the ‘rf ’ 
option. The prediction effect of the model on the train-
ing and test sets was evaluated using the area under the 
curve (AUC) of the receiver operating characteristic 
(ROC) curve. The optimal ROC curve was selected using 
the pROC (version 1.17.0.1) package [47] in R to calculate 
the corresponding specificity and sensitivity. The impor-
tance of individual variables was evaluated based on the 
‘MeanDecreaseGini’ value in the importance of the final 
constructed random forest model.

Annotation and pathway analysis
A list of DMRs for pathway analysis was created in BED 
format using R. The DMR-related gene list was created 
using HOMER (version 4.11) genomic annotation [48]. 
Deduplication was performed, and a list of related genes 
was inputted into Enrichr (https://​maaya​nlab.​cloud/​
Enric​hr/) [49] for pathway analysis. Primary results 
based on the WikiPathways 2021 [50] and the Elsevier 
pathway and Panther 2016 [51] databases were further 
considered.

Comparison of AMF patterns with healthy human cfDNA 
in screening DMRs
Healthy human cfDNA data from previous published 
papers [52] were downloaded from the GEO database 
(GSE164600) in bed file format. The bed file lists the 
number of mappings and methylations at individual CpG 
locations. The AMF was obtained as previously described 
by filtering the CpG information overlapping with the 
previously selected DMR using the bedtools (version 
2.29.2) intersect function. Of the total 12 healthy human 
cfDNA datasets, 11 patients were included, excluding 
one with very low coverage. Of the 20 DMRs, 2 DMRs 
were not covered, and the values in the remaining 18 
DMRs were compared with the AMF distributions of the 
good CCC and poor CCC groups.
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