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Abstract 

Background:  There has been extensive scrutiny of cancer driving mutations within the exome (especially amino 
acid altering mutations) as these are more likely to have a clear impact on protein functions, and thus on cell biology. 
However, this has come at the neglect of systematic identification of regulatory (non-coding) variants, which have 
recently been identified as putative somatic drivers and key germline risk factors for cancer development. Compre-
hensive understanding of non-coding mutations requires understanding their role in the disruption of regulatory 
elements, which then disrupt key biological functions such as gene expression.

Main body:  We describe how advancements in sequencing technologies have led to the identification of a large 
number of non-coding mutations with uncharacterized biological significance. We summarize the strategies that 
have been developed to interpret and prioritize the biological mechanisms impacted by non-coding mutations, 
focusing on recent annotation of cancer non-coding variants utilizing chromatin states, eQTLs, and chromatin confor-
mation data.

Conclusion:  We believe that a better understanding of how to apply different regulatory data types into the study of 
non-coding mutations will enhance the discovery of novel mechanisms driving cancer.

Keywords:  Cancer, Non-coding mutation, Somatic mutation, Germline mutation, GWAS, eQTL, Chromosome 
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Introduction: the search for germline and somatic 
variants in cancer has led to an unprecedented 
generation and sharing of high‑quality genomic 
data
The cells which comprise a malignant tumor carry both 
germline (inherited) and somatic (acquired) genetic 
variants within their genome, some of which may be 
pathogenic. Germline variants are inherited from an 

individual’s parents and therefore are present in every 
cell, not just malignant cells. A subset of these germline 
variants affects cellular mechanisms that alter an individ-
ual’s lifetime risk (predisposition) of developing cancer 
[1]. In contrast, somatic mutations accumulate through-
out an individual’s lifetime and are acquired de novo by 
each cell through exposure to various endogenous and 
exogenous factors [2]. Importantly, a subset of somatic 
mutations alters cellular mechanisms in such a way as to 
grant cells an increased ability to survive and/or prolif-
erate, which is one of the hallmarks of cancer [3]. There 
is a greater likelihood that cells that harbor the right set 
of these “advantageous” germline and somatic mutations 
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will be positively selected and undergo tumorigenesis. 
However, not every mutation is implicated in tumor 
development. Overall, the typical tumor contains two to 
eight such “advantageous” mutations, with all remaining 
mutations as passengers that confer no selective growth 
advantage [4]. Therefore, identifying key cancer-associ-
ated germline and somatic variants has been the primary 
goal for many past and present cancer studies, putting 
together patterns of mutational signatures into clues that 
infer ideal treatment strategies.

Heritable cancer risk genes were initially discovered in 
the 1980s and 1990s through genetic linkage studies in 
families with a clear tumor inheritance pattern. Within 
these genes, early mutations act as dominant Mendelian 
mutations, where a single mutant copy of the disease-
associated gene is enough to confer cancer risk. These 
early studies identified high-penetrance susceptibility 
genes for breast cancer (BRCA1 and BRCA2) [5–7], colo-
rectal cancer (APC, MLH1, MSH2) [8–12] and melanoma 
(CDKN2A) [13–15]. However, mutations in these high-
penetrance genes only account for a small fraction of the 
total heritability of their respective cancer types [16–18]. 
For example, less than 25% of breast cancer inherit-
ance is due to known high-penetrance genes (including 
BRCA1 and BRCA2) [19]. This leaves much cancer her-
itability to be explained by the combined effect of many 
low-penetrance germline variants (polygenic inheritance 
model) [20]. Unfortunately, while linkage study is appro-
priate for identifying high-penetrance genes like BRCA1 
and BRCA2, it lacks the power to detect low-penetrance 
alleles [21]. Thus, methods beyond linkage analysis are 
needed to identify polygenic germline susceptibility 
variants.

Technical limitations also hampered the early identi-
fication of somatic mutations linked to cancer. Despite 
this, low-throughput techniques such as targeted 
Sanger-based sequencing and cytogenetics have suc-
cessfully identified many recurrent somatic mutations 
[4, 22, 23] and have led to the development of successful 
targeted therapies [24, 25]. However, these early meth-
odologies were nonetheless limited by cost and through-
put: only a limited number of genes can be analyzed, 
and these genes must be targeted a priori. From 2005 
onward, advancements in genotyping and next-genera-
tion sequencing technologies accelerated the search for 
germline and somatic variants in cancer. For germline 
mutations, the ability to conduct large case–control 
studies (i.e., genome-wide association studies; GWAS) 
to systematically assay millions of common genetic vari-
ants across hundreds of thousands of individuals led to 
the discovery of hundreds of new susceptibility loci for 
many cancer types [26]. Similarly, high-throughput DNA 
sequencing revolutionized the identification of somatic 

mutations by enabling the sequencing of normal versus 
tumor exomes [27–31] and whole genomes [32–35]. For 
both germline and somatic variants, large collaborations, 
including the Cancer Genome Atlas (TCGA) [36] and the 
International Cancer Genome Consortium (ICGC) [37], 
have facilitated the sequencing and sharing of thousands 
of normal and tumor genomes. This unprecedented data 
access has further accelerated the discovery and analysis 
of malignancy-driving mutations by enabling individual 
labs to access tumor genomic data without the need to 
perform sequencing.

The misunderstanding of the non‑coding genome 
as merely passenger events has led to a gap 
in functional interpretation
Despite the success of variant identification over the past 
two decades, there is still a sizeable gap in our under-
standing of how germline variants influence cancer sus-
ceptibility. Arguably, one of the biggest contributing 
factors to this knowledge gap is the finding that > 90% of 
identified GWAS variants lie in the non-coding regions 
of the genome [38], making their direct functional inter-
pretation difficult.

Similarly, most somatic variants identified through 
whole-genome sequencing of tumor samples lie outside 
of known protein-coding regions [39]. Due to the lack 
of a causative change in protein structure, non-coding 
somatic variations are traditionally seen as neutral or 
“passenger” events (as opposed to “driver”), with no 
function in driving tumorigenesis. However, recent find-
ings have challenged this view and have highlighted the 
importance of non-coding aberrations in driving tumo-
rigenesis through the targeting of a diverse set of func-
tional elements [40–45].

The most characterized somatic non-coding muta-
tion in human cancer is the TERT (telomerase reverse 
transcriptase) promoter, which is recurrently mutated 
in more than 50 individual cancer types [46]. In mela-
noma, mutations in the TERT promoter occur in ~ 80% of 
cases [40] and are associated with poor patient outcome 
[47]. TERT promoter mutations drive carcinogenesis by 
creating de novo binding sites for ETS (E26 transforma-
tion-specific) transcription factors, leading to increased 
transcription of the catalytic subunit TERT [48, 49]. In 
turn, this activates the telomerase complex, which is nor-
mally deactivated in somatic cells. The reconstitution of 
telomerase activity enables cells to maintain telomere 
length and thus escape telomere-initiated cellular senes-
cence. As a consequence, the mutated cells can divide 
and proliferate indefinitely, one of the hallmarks of can-
cer [3].

Recurrent non-coding mutations have also been 
identified in enhancer sequences 4 kb upstream of the 
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transcriptional start site of the LMO1 oncogene in T 
cell acute lymphoblastic leukemia [50]. These muta-
tions generate a new binding site for the MYB tran-
scription factor, enhancing expression of LMO1 [50].

Despite their abundance, few other non-coding 
mutations have had such clear interpretations of their 
biological consequences. As such, there has been an 
increasing interest in the identification and interpreta-
tion of non-coding variants in cancer. For example, the 
Pan-Cancer Analysis of Whole Genomes (PCAWG) 
has recently conducted an ambitious re-analysis of 
ICGC and TCGA whole-genome sequencing (WGS) 
data from more than 2600 cancer patients across 38 
different primary tumors [51]. This resulted in the dis-
covery of novel non-coding driver mutations in 25% 
of tumor samples, with one third of those affecting 
the TERT promoter (237 of 785). Additional identified 
drivers include non-coding point mutational hotspots 
near TP53, TOB1, NFKB1Z, and the RMRP promoter 
[44]. However, the vast majority of these non-coding 
modifications result in loss of function, which is inher-
ently more difficult to therapeutically target than gain 
of function. Thus, better molecular understanding is 
required to identify treatments which interfere with 
these adaptive processes, such as targeting of germline 
non-coding variants as both a preventive and a thera-
peutic strategy.

Strategies for resolving the gap in functional 
interpretation of cancer variants
Mutation prioritization strategies
Previously referred to as “junk” [52], the non-coding 
genome is now recognized as containing a large num-
ber of functional elements known as cis-regulatory ele-
ments (CREs) [53]. CREs are functional elements within 
the non-coding genome that can regulate the transcrip-
tion of genes. The main types of CREs include promoters 
and enhancers [54]. Due to their role in regulating gene 
expression, CREs provide discrete intervals in which to 
search for functionally important mutations. Thus, the 
most straightforward way of gaining functional insight is 
by overlapping non-coding mutational data with known 
CREs. This approach prioritizes mutations that are most 
likely to have a functional effect and thus infers a likely 
biological function of the non-coding mutations (“muta-
tion prioritization”).

Many experimental methods are available to identify 
putative CREs in a given tissue or cell type (Fig. 1). These 
methods typically exploit different features of active 
CREs. For example, active regulatory elements are known 
to reside in open chromatin regions to allow for tran-
scription factor binding. As such, methods that detect 
open chromatin regions (e.g., DNase-seq [55], FAIRE-seq 
[56], and ATAC-seq [57]) or transcription factor binding 
(ChIP-seq [58]) can be used as a proxy to identify active 
regions, which are a necessary condition for identifica-
tion of putative active CREs. In addition, active enhancer 

Fig. 1  An overview of cis-regulatory elements and the experimental methods to identify them
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regions are marked by a specific combination of histone 
modifications (e.g., H3K27ac, H3K4me1, and H3K4me3 
[59]), which can be detected using ChIP-seq. Finally, 
methods that capture transcriptional activity such as 
CAGE [60], GRO-seq [61], and PRO-seq [62] can quan-
tify the transcription of genes and enhancers to identify 
transcriptionally active regions. Vast volumes of such 
genome-annotation datasets across many different cell 
types are available through public databases such as the 
NIH Roadmap consortium [63], IHEC consortium [64], 
ENCODE [53], and FANTOM5 [65]. With the availability 
of so many different types of annotation data, computa-
tional tools can combine annotation data from different 
databases to intersect non-coding variants with identi-
fied regulatory elements. Examples of such tools include 
Ensembl Variant Effect Predictor [66] and FunciSNP [67]. 
Importantly, each of these tools uses a different subset of 
available annotation data and thus may come to a differ-
ent conclusion as to which mutations should be prior-
itized for follow-up. Recent tools such as GWAVA [68], 
DeepSEA [69], and Sei [70] use machine learning classi-
fication models to prioritize non-coding mutations. For 
example, based on a modified random forest algorithm, 
GWAVA prioritized five SNPs inside the 3’UTR of the 
caveolin 2 gene, CAV2 [71]. Through further investiga-
tions, one of the SNPs (rs10249656) was found to abolish 
an miRNA (miR-548s) binding site, leading to increased 
CAV2 expression, thus providing a plausible explanation 
for its association with pancreatic cancer [71]. However, 
comparison across different machine learning models 
can become problematic since these tools uses different 
datasets to train their algorithms, which can affect the 
prioritized variants [72]. Overall, there is currently no 
consensus as to which prioritization tools are best.

Gene prioritization strategies
While informative, mutation prioritization strategies 
which rely on identification of regulatory elements only 
identify the putative ability of a genetic variant/muta-
tion to dysregulate gene expression. To fully elucidate the 
underlying mechanism of its involvement in tumorigen-
esis, the next step is to identify the transcripts that are 
affected by this disruption. This task is much more chal-
lenging for enhancers as, unlike promoters which are typ-
ically located immediately upstream of their target gene 
[73], enhancers can be located upstream, downstream, 
within the intron of a gene, or even thousands of base 
pairs away [74].

Several methods are available to prioritize candidate 
genes in order of their potential to be targeted by an 
enhancer mutation. Such “gene prioritization” methods 
can include a multitude of data types, but current tools 
are largely confined to: (1) nearest gene, usually based 

on correlation to coding mutations using linkage dis-
equilibrium (proximity-based association); (2) nearest 
gene on the basis of prior knowledge about the biologi-
cal function (functional association); (3) target gene on 
the basis of a statistical association between the muta-
tion and gene expression levels (expression quantitative 
trait loci; eQTL); or (4) target gene based on physical 
looping of the mutated region to a gene promoter (chro-
mosome conformation capture; 3C). The fundamental 
limitation with the first two strategies is that enhancers 
do not necessarily target the nearest genes but can bypass 
neighboring genes to regulate genes located further away 
on the linear genome [75] (Fig. 2). As such, assigning tar-
get genes based on linear proximity is not ideal and can 
lead to false assignments. This is exemplified by studies 
of obesity and body mass index GWAS variants that are 
located at the intron of FTO. Due to its linear proximity, 
FTO was initially thought to be the target gene of these 
regulatory variants [76, 77]. However, expression level, 
chromosome conformation, and other experimental evi-
dence later indicated that IRX3, a distal gene, was the 
likely target gene [78, 79].

Many computational tools can be used to aid in gene 
prioritization. These tools usually incorporate additional 
data sources in the form of eQTL data (e.g., eCAVIAR 
[80], RegulomeDB [81], HaploReg [82], CADD [83], 
ANNOVAR [84], Sherlock [85], coloc [86], GPRM [87], 
and PINES [88]), chromosome conformation data (e.g., 
GWAS3D [89], H-MAGMA [90]), or both (CoDeS3D 
[91], FUMA [92]) to arrive on potential target genes in 
addition to providing functional annotation. As with 
the mutational prioritization tools, the varying annota-
tion datasets used by each gene prioritization tool means 
that these tools often do not agree with each other. These 
inconsistencies have been addressed by tools that use 
machine learning to combine features/scores from mul-
tiple tools into a single score for easier interpretation 
and benchmarking. For example, SURF [93] combines 
features from RegulomeDB and DeepSEA to predict the 
effect of regulatory variants on gene expression using a 
random forest algorithm.

Taken together, eQTL and chromosome conformation 
are powerful resources that can help to resolve the gap in 
functional interpretation by linking non-coding variants 
to their target genes. The following sections will discuss 
these concepts in more detail.

Leveraging expression quantitative trait loci 
(eQTL) associations to identify the target genes 
of non‑coding variants
Intermediate phenotypes lie between genetic varia-
tion and disease. The expression level of a protein-
coding gene is an intermediate phenotype that may be 
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responsible for mediating the connection between a 
non-coding genetic variant and its association with dis-
ease susceptibility [94]. Therefore, understanding the 
relationship between non-coding genetic variants and 
gene expression levels may shed light into the mecha-
nisms that drive tumorigenesis.

An expression quantitative trait locus (eQTL) is a 
genetic locus (usually marked by single nucleotide pol-
ymorphism; SNP) where genotype associates with a 
fraction of the variability of a gene (or transcript) expres-
sion phenotype [95] (Fig.  3A). Thus, to find eQTLs, 
two sources of information are needed: genotype and 

Fig. 2  Methods to link enhancers to their target genes

Fig. 3  Expression quantitative trait locus. A An expression QTL arises due to DNA variation (single nucleotide polymorphism; SNP) modifying the 
transcription level of target gene X in an allele-specific manner. B Association between a SNP’s genotype and the expression level of target gene X 
in hundreds of individuals
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matched gene expression data. Using these datasets, it is 
possible to perform association tests between each SNP-
gene pair in many individuals by regressing the number 
of alternative alleles versus gene expression using a linear 
model (where significance of the slope is the significance 
of the eQTL) (Fig.  3B). Therefore, significant eQTLs 
identify a target gene and can lead to better functional 
interpretation of the mechanism underlying a significant 
SNP-disease association. For example, using pan-cancer, 
donor-matched expression data, an eQTL between non-
coding SNP rs2142833 and APOBEC3B expression levels 
(β = 0.19, P = 2 × 10−6) confirmed germline risk as arising 
from alteration of expression within the APOBEC3 fam-
ily of cytidine deaminases [51].

Tissue and cell‑type specificity of eQTLs
Early eQTL mapping studies mainly focused on finding 
eQTLs in whole blood or blood-derived cells due to sam-
ple accessibility [96, 97]. However, subsequent compara-
tive studies have revealed that eQTLs can be highly tissue 
specific [98–102]. For example, a comparison between 
cortical tissue and peripheral blood mononucleated cells 
showed less than 50% overlap in regulatory associations 
[100]. In addition, recent evidence points to blood eQTLs 
having a weak correlation with the eQTLs discovered in 
other tissues, especially neural [101]. Therefore, a genetic 
variant may be an eQTL to a particular target gene in one 
tissue but not in other tissues. Thus, it is imperative that 
the eQTL data be matched to the tissue or organ relevant 
to the disease state, something available in publicly avail-
able databases such as the genotype-tissue expression 
(GTEx), which contains eQTLs from hundreds of indi-
viduals across 54 healthy human tissue types [102].

Beyond tissue specificity, capturing cell-type-specific 
eQTLs requires going beyond bulk tissue samples [103–
109]. Identifying cell-type-specific eQTLs (ct-eQTL) and 
single-cell eQTLs (sc-eQTL) requires cell-type isolation 
or single-cell RNA-seq across thousands of cells per indi-
vidual, such as that generated by Fairfex et al. for B cells 
and monocytes [108]. Indeed, bulk approaches can be 
less effective if the tissue of interest is composed of highly 
heterogeneous cell types [110]. This is especially relevant 
for melanoma, which arises from melanocytes: a cell type 
that typically accounts for less than 5% of cells captured 
by human skin biopsies. Recently, the first melanocyte-
specific eQTL dataset was published by Zhang et  al 
[109]. Through ct-eQTL analysis, Zhang and colleagues 
were able to identify melanocyte-specific regulation 
between SNPs in five known melanoma GWAS loci and 
their target driving genes [109]. For example, PARP1 was 
identified as the target gene regulated by the melanoma-
associated locus 1q42.12, agreeing with previous reports 
of PARP1 acting as a melanoma susceptibility gene in a 

melanocyte lineage-specific manner [111]. Similarly, 
SLC45A2, a gene known to be involved in the melanin 
synthesis pathway [112], was also prioritized through ct-
eQTL analysis. Importantly, these associations could not 
be captured using the two available GTEx bulk skin data-
sets, thus highlighting the value of ct-eQTL analysis in 
capturing associations that would otherwise be masked 
using bulk approaches [109].

Leveraging eQTL datasets to prioritize functional genes 
at GWAS loci through gene‑based association testing
Leveraging the growing number of eQTL datasets (e.g., 
GTEx [102], GEUVADIS [113], DGN [114], and Braineac 
[115]), transcriptome-wide association studies (TWAS) 
identify the gene–trait associations underlying GWAS 
variant–trait associations [116] (Fig.  4). TWAS hypoth-
esize that the expression level of each gene is modulated 
by one or multiple eQTLs, and that the genetically altered 
expression level of genes underlies specific traits (i.e., dis-
ease risk). For example, using melanocyte ct-eQTL data 
as a reference dataset, TWAS allowed the prioritization 
of genes at three known melanoma GWAS susceptibility 
loci [109].

Due to the nature of TWAS, which combines the effect 
of multiple regulatory variants into a single testing unit 
(a gene), an increase in power is achieved compared to 
traditional GWAS. For example, using melanocyte ct-
eQTL data, TWAS also successfully prioritized five genes 
at four novel melanoma susceptibility loci, which were 
later verified as genome-wide significant in a larger and 
more recent melanoma GWAS meta-analysis [121] or 
melanoma and nevus count pleiotropic analysis [122]. As 
such, TWAS can nominate not only functional genes at 
known GWAS loci but also discover new loci previously 
unidentified by GWAS.

As with standard eQTL analysis, the use of non-trait-
relevant tissues/cell types can introduce bias. However, 
using slightly less related tissues in TWAS to consider-
ably increase sample size was shown in melanoma (using 
three non-melanocyte tissues: GTEx sun-exposed and 
not sun-exposed skin and transformed skin fibroblast) 
to successfully identify a novel melanoma susceptibility 
locus [121]. While the use of melanocyte-specific data 
still yields better results (identified six novel loci), using 
non-melanocyte data supplemented the findings of mel-
anocyte data [121]. Overall, the trade-off between tis-
sue bias and information loss due to smaller sample size 
should be evaluated on a case-to-case basis [123].

Genomic clumping to detect somatic eQTLs
Unlike germline SNPs, the number of somatic mutations 
occurring at the same genomic location across a study 
population is expected to be low [124]. Therefore, to infer 
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a correlation between a non-coding somatic mutation 
and gene expression level (somatic eQTLs), researchers 
take a collapsing strategy whereby nearby variants are 
grouped together into a single “locus” for burden testing. 
This technique has the advantage of increasing the effec-
tive mutation minor allele count and, thereby, increasing 
statistical power. This merging is effective because multi-
ple alterations from different genomic locations can con-
sistently affect regulation of a particular gene [41]. For 
example, somatic single nucleotide variants (SNVs) from 
930 TCGA tumor samples within 50  bp of each other 
were grouped together to define recurrently mutated 
loci that could act as somatic eQTLs [125]. This identi-
fied somatic eQTLs frequently mutated in melanoma, 

including 12 that were almost exclusively mutated in 
melanoma, and two loci that regulate the expression of 
DAAM1 (191  bp downstream) and HYI (95  kb away) 
[125].

DAAM1 is a protein that plays a vital role in the 
recruitment of actin cytoskeleton and is thought to con-
tribute to cancer invasiveness by increasing cell motil-
ity [126–128]. The HYI somatic eQTL was proposed to 
associate with increased HYI expression by altering an 
ETS binding motif [125]. HYI encodes a hydroxypyru-
vate isomerase [129] and thus may contribute to cancer 
by affecting the transport and metabolism of carbo-
hydrates. These associations were confirmed through 
experimental validation, indicating a causal relationship 

Fig. 4  An overview of TWAS pipeline (PrediXcan [116]). The general method of TWAS is composed of three steps. First, using individual-level 
genotype and matching gene expression data from a reference eQTL dataset, predictive models are trained to estimate the expression level of 
each gene based on local genotype. Second, the models are used to predict (or “impute”) the expression level of genes (normally not captured in 
GWAS) for each individual-level genotype in a GWAS dataset. Third, an association test is conducted for each predicted expression with the trait to 
elucidate gene–trait associations. The first step has been improved by subsequent methods, which allow summary-level GWAS data as input (e.g., 
FUSION [117], S-PrediXcan [118], MOSTWAS [119], and UTMOST [120]). For example, UTMOST takes summary-level data and simultaneously trains 
models across multiple tissues to increase power [120]
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[125]. Thus, through genomic clustering, non-coding 
mutations were attributed to alteration of melanoma-
relevant gene expression in several important gene loci.

Considerations for somatic and germline eQTLs
Both germline and somatic eQTLs have specific weak-
nesses in identifying functional non-coding mutations. 
Like GWAS, the study of germline eQTLs is compli-
cated by population-based study weaknesses such as 
co-inheritance and population stratification. There is 
a strong tendency of nearby SNPs to be co-inherited, 
leading to blocks of genomic variants inherited together 
across a population (in strong linkage disequilibrium; 
LD). If a genomic region contains multiple co-inher-
ited variants, then variants in strong LD will be indis-
tinguishable between marker variants and the variant 
truly causative of the gene expression changes (causal 
variant). To address this, fine-mapping approaches can 
disentangle the causal variant from those merely in 
LD with it. For example, CAVIAR [130], CAVIARBF 
[131], FINEMAP144 [132], CaVEMaN145 [133], and 
SuSiE146 [134] use a Bayesian approach to elucidate 
a “credible set” of variants containing the true causal 
variant with high probability (e.g., 95%). An extension 
of CAVIAR, called eCAVIAR80 [80], is a gene prior-
itization tool that uses the same Bayesian principle to 
estimate the probability of the same GWAS and eQTL 
variants being causal given the uncertainty of LD. This 
type of gene prioritization approach, leveraging two 
data types together, is called colocalization. For exam-
ple, Zhang et al. [109] used eCAVIAR in their ct-eQTL 
analysis to find the causal eQTL variants that colocal-
ize with melanoma GWAS signals to identify the likely 
functional genes on the two GWAS loci (PARP1 and 
SLC45A2).

In contrast, somatic variants are not inherited and 
thus, by definition, arise independently from each 
other. Therefore, controlling for LD is not a concern 
in somatic eQTL analysis. However, identification 
of somatic eQTLs is challenging due to the depend-
ence on the availability of tumor and matched normal 
samples. The use of cancer samples as a control set is 
unfavorable since other cancer events can influence 
the expression of target genes. Thus, paired statistical 
tests between tumor and matched normal samples are 
required to detect significant associations. Secondly, 
somatic variants arise de novo, meaning that a com-
prehensive method like whole-genome sequencing is 
needed to identify them. This contrasts with common 
germline variants that can be catalogued and put into 
SNP arrays, making their identification considerably 
cheaper.

The spatial organization of the genome 
as a tool to further explain the functional target 
of non‑coding variants
One way gene expression is regulated is through the for-
mation of physical loops that connect distal regulatory 
elements (e.g., enhancers) to the promoters of their target 
genes, resulting in the recruitment of transcription fac-
tors/cofactors that activate transcription from the target 
promoters [143]. Importantly, this mechanism of regula-
tion is directly linked to the three-dimensional organi-
zation of the genome. Within each cell, DNA fits inside 
the nucleus through the systematic packaging of chro-
matin into an exquisite hierarchical structure (Fig.  5A–
C). Within this structure, regions of DNA are further 
compartmentalized into chromatin loops that connect 
regulatory elements with their target gene promoters 
(Fig.  5D). These enhancer–promoter loops are cell-type 
specific, which contributes to tissue-specific gene regula-
tion [139]. To capture the connections formed by three-
dimensional chromatin folding, methodologies such as 
chromosome conformation capture (3C) [144] and its 
derivatives (e.g., 4C [145, 146], 5C [147], GCC [148], and 
Hi-C [136]) have been developed. Overall, Hi-C is the 
most extensive examination, enabling the elucidation of 
the physical interaction of all genomic loci in an unbiased 
manner (all vs. all). Importantly, such methodologies can 
be leveraged to identify enhancer–promoter loops, thus 
facilitating the identification of target genes [149].

The DNA–protein complexes that prevent inap-
propriate enhancer–promoter contacts are frequently 
mutated in cancer. For example, somatic mutations in 
the eight genes that comprise the cohesin ring (SMC1A, 
SMC3, STAG1, STAG2, RAD21) and the cohesin-ring 
support genes (NIPBL, MAU2, WAPL, PDS5A, PDS5B) 
and CTCF are frequently found in many cancer types 
[150] and are especially common in acute myeloid 
leukemia (AML) [151–153]. In AML, cohesin subunit 
knockdown has been shown to alter gene transcrip-
tion, likely through the disruption of cis-regulatory 
architecture [154, 155]. Thus, cohesin mutations likely 
drive tumorigenesis by altering the three-dimensional 
genome organization, resulting in aberrant gene expres-
sion [152]. Across all cancer types, the mutation rate of 
CTCF is 2% overall, with the mutation considered to be 
oncogenic in half the cases [51]. Mutations in cohesin/
CTCF binding sites are also frequently found in can-
cers, altering regulatory interactions in AML (activat-
ing TAL1 [156]), melanoma, and gastric cancer [45]. 
Abnormal expression of ZNF143 is related to a wide 
range of pathogenic behaviors in cancer cells [157]. 
Additionally, depletion of YY1 or deletion of its binding 
sites have been shown to disrupt normal gene expres-
sion [141]. Thus, understanding genome organization 
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and the specific connections between two genomic 
locations can be leveraged to describe one type of regu-
latory mechanism modulating key biological functions 
in cancer.

Beyond direct mutation of the structural machinery, 
it has been shown that many disease-associated non-
coding mutations alter regulatory elements involved in 
chromatin organization and looping [158, 159]. The use 
of Hi-C data to elucidate the target genes of these non-
coding variants has allowed for functional interpretation 
of many germline cancer-associated loci, including breast 
cancer [160], colorectal cancer [161, 162], prostate can-
cer [163, 164], pancreatic cancer [165], papillary thyroid 
carcinoma [166], and melanoma [167] [discussed below].

Functional interpretation of the germline melanoma risk 
locus 7p21.1
The melanoma risk locus 7p21.1 represents an interest-
ing case study, as initial efforts to interpret its biologi-
cal mechanism yielded inconclusive results. This locus 
was first identified through a GWAS meta-analysis in 
2015 with rs1636744, which is 63 kb from AGR3, iden-
tified as the most significant variant in the locus [168]. 
However, the region surrounding rs1636744 was not 
conserved between primates, suggesting little func-
tional significance [168]. Furthermore, while rs1636744 
and two other SNPs within this locus (rs847377 and 
rs847404) are eQTLs for AGR3 in GTEx lung tis-
sue, they are not eQTLs in sun-exposed skin. In 2018, 

Fig. 5  The non-random packaging of chromatin inside the nucleus. A On the nuclear scale, each chromosome occupies individual regions, termed 
chromosomal territories [135]. B Within these chromosomes, chromatin clusters into transcriptionally active (“A”) and inactive (“B”) compartments 
[136]. C Within these compartments, further organization occurs in the form of megabase-long loop structures called “topologically associating 
domains” (TADs) [137]. TADs are highly conserved between cell types and tend to insulate enhancers and genes contained within it from elements 
outside of the TAD, thereby preventing inappropriate enhancer–promoter contacts [138]. D Finally, TADs are further compartmentalized into 
smaller sub-TAD loops that frequently facilitate enhancer–promoter interactions. Unlike TADs, these smaller loops are more cell-type specific 
[139]. Generally, it is thought that TAD and sub-TAD loops are formed by the interaction of CTCF DNA binding proteins and cohesin ring-shaped 
complexes that bring distant chromatin regions into physical proximity [140]. However, even this is a simplistic model as further evidence suggest 
the involvement of many other factors. For example, recent evidence suggest that sub-TAD loops are more commonly stabilized by YY1 proteins in 
a manner analogous to CTCF [141]. Another evidence shows the involvement of ZNF143 as a chromatin-looping factor that bind to promoter and 
establish loops through interaction with enhancer-bound CTCF and cohesin [142]. Overall, the mechanisms behind chromatin looping are still an 
active area of research
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the nearby rs117132860 variant was associated with 
decreased tanning ability [169]. This suggests that 
variants at 7p21.1 might act on melanoma disease risk 
through the modulation of tanning response. In 2020, 
the most significant melanoma association was adjusted 
to rs117132860123, which was also the lead signal for 
association with cutaneous squamous cell carcinoma 
[170]. However, the function behind these associations 
remained elusive.

By using a targeted Hi-C approach, a recent 2021 study 
in primary melanocytes was able to infer a physical asso-
ciation between the region containing rs117132860 and 
the promoter of AHR [167]. Using ATAC-seq, ChIP-
seq, and DNase-seq, rs117132860 was shown to lie in 
an open chromatin region marked by enhancer activity 
and located within an AHR binding motif. Furthermore, 
eQTL analysis using a melanocyte-specific dataset [109] 
showed a strong correlation between the A-risk allele and 
lower AHR expression180 [167]. As AHR plays an impor-
tant role in the cellular response to dioxin and UV radia-
tion183–186 [171–174], together these data suggest that 
rs117132860 is a causal variant within a UV-responsive 
element that confers disease risk through the modulation 
of AHR expression. Together, this evidence suggests that 
this locus has a gene–environment interaction whereby 
UV radiation interacts with the at-risk genotype as a 
basis for the association in this locus to melanoma, tan-
ning response, and cutaneous squamous cell carcinoma.

Chromosome conformation decodes gene‑level recurrence 
for non‑coding somatic mutations
Computational tools that detect non-coding somatic 
driver events contributing to tumor development have 
been developed [176–183]. These tools identify signs of 
positive selection by detecting enrichment of somatic 
mutations based on an estimated background mutation 
rate. In this sense, the PCAWG consortium remains the 
most comprehensive effort to identify non-coding driver 
events by employing multiple such tools to address the 
limitations of individual algorithms. However, one inter-
esting finding from the PCAWG consortium was the 
continued scarcity of non-coding somatic mutational 
hotspots beyond the TERT promoter [44]. Although the 
presence of somatic drivers in regulatory elements is well 
accepted, their number is surprisingly low compared to 
the large numbers of non-coding mutations found in the 
typical tumor genome. This is partially due to the defini-
tion of what non-coding somatic mutations are deemed 
to be drivers. For a non-coding somatic mutation to be 
considered a driver, it must show evidence of positive 
selection (e.g., found to be recurrently mutated at a par-
ticular site; Fig. 6A). However, mutations at different sites 
may yield the same effect on an underlying functional 
unit. For example, driver genes are often mutated at dif-
ferent sites (exons) along their length [4], yet they drive 
tumorigenesis through affecting a common unit (a gene). 
Therefore, it remains possible that non-coding regulatory 

Fig. 6  Illustration of two different recurrence model. A Site-level recurrence model: three point mutations from three individual tumor samples are 
clustered on the same site, making it a hotspot of somatic mutations. B Gene-level recurrence model: three point mutations from three individual 
tumor samples are scattered on three different regulatory elements, but when spatial conformation is taken into account, those mutations 
converge on the same target gene. Figure is adapted from [175]
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alterations driving tumorigenesis are more common than 
appreciated but scattered over the genome, thereby pre-
venting the formation of highly recurrent hotspots at 
individual sites. Importantly, these non-coding mutations 
can still converge to specific genes or pathways, which 
makes them “recurrent” to those genes or pathways 
(Fig. 6B). Thus, cancer-driving regulatory mutations can 
be identified as recurrently targeting specific genes or 
pathways while not recurring at individual sites. There-
fore, as with burden analysis for somatic eQTLs, muta-
tions targeting genes that are on the same pathway are 
often collapsed to a single virtual locus.

Recent studies have incorporated chromosome con-
formation data to arrive on regulatory-gene connections 
within a regulatory recurrence network. For example, 
Sallari et  al. [184] introduced the concept of a genetic 
“plexus” as a set of loci that are scattered over the lin-
ear genome but are located next to each other in the 3D 
nuclear space. These plexi were assembled using DNase-
seq and histone modification ChIP-seq data to define 
genome-wide functional elements (e.g., enhancers) fol-
lowed by the use chromatin interaction data (Hi-C) to 
identify their target genes. This allowed for the use of 
statistical tests to identify genome-wide driver genes with 
an excess of mutations in their plexi. This approach iden-
tified 15 candidate driver plexi in prostate cancer, includ-
ing a plexus that converges on the PLCB4 gene, which 
affects the PI3K cancer pathway [184]. Importantly, these 
non-coding mutations at driver plexi were not signifi-
cant under the traditional recurrence test model. Using 
a similar “plexus” model, other studies have identified 
non-coding somatic mutations that converge on driver 
genes in breast cancer [42], lung cancer [175], prostate 
cancer [185] and ovarian cancer [186]. Further advance-
ments in grouping-based statistical frameworks are 
expected to determine further important drivers of can-
cer development.

Long‑range interactions
Depending on the distance to the gene they regulate, 
eQTLs can be characterized as either cis or trans. Con-
ventionally, eQTLs located within 1 Megabase (Mb) to 
a target gene’s transcription start site (TSS) are consid-
ered cis-eQTL, whereas those located > 1  Mb away (or 
between two chromosomes) are considered trans-eQTLs. 
Most enhancer-gene interactions identified are cis, as it is 
estimated that there is a median interaction distance of 
120  kb between enhancer and target genes [187]. How-
ever, enhancers can act > 1  Mb away (trans) [75, 188]. 
Considerations in the 3C-based methodology (an expo-
nential decrease in capture probability as genomic dis-
tance between two loci increases) make detecting ligation 
junctions between distant sites difficult but achievable 

such as was found in the physical association between 
the MYC locus and an oncogenic enhancer implicated in 
leukemia that acts 1.45 Mb away [189]. Therefore, while 
genome-wide identification of these loops using tech-
niques such as Hi-C is promising, it will likely require 
enormous datasets and rigorous computational methods.

Similarly, the total number of reported long-range 
eQTLs (> 1 Mb) is relatively low [190]. As with Hi-C, the 
identification of longer-acting eQTLs presents additional 
challenges that complicate their identification. Unlike 
cis-eQTLs, where identification of target genes can be 
limited to certain genomic distances surrounding the loci 
of interest, trans-eQTL detection requires genome-wide 
testing. Importantly, testing all SNPs against all genes 
imposes a hefty multiple-testing burden, leading to only 
a small proportion of SNPs survive multiple testing cor-
rections. Furthermore, the average effect size of trans-
eQTLs is smaller [191], making detecting significant 
results more challenging.

Several studies have successfully identified trans-
eQTLs relevant to various cancers [192–195]. A recent 
analysis in melanocyte samples has identified rs12203592 
(a SNP that was previously associated with human pig-
mentation phenotype [196]) as a genome-wide signifi-
cant trans-eQTL that acts over 5 Mb away from its target 
genes [109]. Specifically, rs12203592 is found to target 
4 trans genes (TMEM140, MIR3681HG, PLA1A, and 
NEO1). Interestingly, rs12203592 is also a cis-eQTL to 
the transcription factor IRF4. Thus, it is proposed that 
rs12203592 may indirectly affect the trans genes expres-
sion through its cis effect on IRF4. This suggests a mel-
anocyte-specific trans-eQTL network regulated by the 
IRF4 transcription factor [109]. Many such trans-eQTLs 
are believed to affect the expression of a cis diffusible 
mediator (such as a transcription factor), which in turn 
affects the expression of the trans genes [197] (Fig. 7).

Given the large search space and statistical complexity, 
various approaches have been developed to improve the 
detection of trans-eQTLs. For example, by searching for 
SNPs with known cis associations [102], the search space 
for trans association is reduced, thereby reducing mul-
tiple-testing burden. Similarly, by searching for eQTLs 
with confirmed physical interactions (Hi-C) [91, 198], the 
detection of long-range interactions is improved. Other 
methods such as GMAC [199], CCmed [200], and others 
[201] regress the candidate trans genes on the cis genes 
to improve statistical power. Importantly, trans-eQTLs 
explain a substantial proportion of the underlying herit-
ability of gene expression [202]. And trans-eQTLs are 
more likely to be tissue-specific modifiers of genes [203] 
and to target genes that are otherwise mutationally con-
strained [204]. Thus, despite their individually low effect 
sizes, trans-eQTLs are collectively crucial in explaining 
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gene expression variability, which underlie differences in 
phenotype and disease susceptibility. Since it follows that 
many trans-eQTLs are not elucidated yet, further iden-
tification and analysis of these long-distance regulatory 
interactions are vital to complete our understanding of 
how cancers arise and develop.

Conclusion and future outlook
The study of non-coding mutations requires the incorpo-
ration of multiple data types to better understand the key 
regulatory mechanisms disrupted by the mutations. Lev-
eraging knowledge of enhancers and their connections to 
distant genes (eQTL and Hi-C) has helped in understand-
ing the relationship between function, genome structure, 
and cancer. However, there are many improvements that 
can be made to existing studies.

Many methods have been proposed to solve the prob-
lem of mutational prioritization and gene target identi-
fication. However, as these methods sparsely agree with 
one another, it is important to better understand the 
underlying data being used and how to best incorporate 
this data to come to more accurate and synchronous 
conclusions.

The incorporation of accurate tissue- and cell-specific 
chromosome conformation and gene expression data 
will enhance the interpretation of non-coding mutations 

across all cancer types. This is especially relevant for the 
identification of trans-eQTLs, where cell-type heteroge-
neity has contributed to the low number of trans-eQTLs 
identified to date [203, 205]. Additionally, context speci-
ficity such as gene–environmental interactions will reveal 
chromatin loops and eQTLs specific to these environ-
mental stimuli, identifying key changes in processes such 
as cell activation [206]. For example, future studies could 
use Hi-C and eQTL data from stimulated cells (e.g., UV-
stimulated melanocytes) to interpret non-coding muta-
tions that exert their effect upon specific environmental 
stimulation. Ultimately, these approaches will help us 
to develop personalized cancer treatments, targeted to 
impact the specific regulatory mechanisms altered by an 
individual’s specific mutational burden.
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