
Li et al. Clinical Epigenetics          (2022) 14:118  
https://doi.org/10.1186/s13148-022-01337-0

REVIEW

Liquid biopsies based on DNA methylation 
as biomarkers for the detection and prognosis 
of lung cancer
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Abstract 

Lung cancer (LC) is the main cause of cancer-related mortality. Most LC patients are diagnosed in an advanced stage 
when the symptoms are obvious, and the prognosis is quite poor. Although low-dose computed tomography (LDCT) 
is a routine clinical examination for early detection of LC, the false-positive rate is over 90%. As one of the intensely 
studied epigenetic modifications, DNA methylation plays a key role in various diseases, including cancer and other 
diseases. Hypermethylation in tumor suppressor genes or hypomethylation in oncogenes is an important event 
in tumorigenesis. Remarkably, DNA methylation usually occurs in the very early stage of malignant tumors. Thus, 
DNA methylation analysis may provide some useful information about the early detection of LC. In recent years, 
liquid biopsy has developed rapidly. Liquid biopsy can detect and monitor both primary and metastatic malignant 
tumors and can reflect tumor heterogeneity. Moreover, it is a minimally invasive procedure, and it causes less pain for 
patients. This review summarized various liquid biopsies based on DNA methylation for LC. At first, we briefly dis-
cussed some emerging technologies for DNA methylation analysis. Subsequently, we outlined cell-free DNA (cfDNA), 
sputum, bronchoalveolar lavage fluid, bronchial aspirates, and bronchial washings DNA methylation-based liquid 
biopsy for the early detection of LC. Finally, the prognostic value of DNA methylation in cfDNA and sputum and the 
diagnostic value of other DNA methylation-based liquid biopsies for LC were also analyzed.
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Background
Lung cancer (LC) is ranking as the most common malig-
nant tumor and the predominant cause of mortality 
among cancers worldwide [1]. Clinically, the early mani-
festations of LC are atypical, and the disease has already 
entered an advanced stage when the symptoms are obvi-
ous. Consequently, a lot of patients have been diagnosed 

as an advanced stage at the first visit to hospital, and 
the 5-year overall survival rate of an advanced stage is 
very low [2]. The most commonly used approach for LC 
screening is low-dose computed tomography (LDCT) [3]. 
However, due to the high sensitivity of LDCT, sometimes 
some benign lesions are misdiagnosed as malignant 
tumors. Therefore, there is an urgent need to increase the 
early detection rate of LC through novel biomarkers and 
improve patients’ prognosis.

Epigenetics is the study of heritable changes that do not 
involve any change in DNA sequences. Epigenetic mech-
anisms that are responsible of these changes include 
DNA methylation, histone modifications, and non-cod-
ing RNAs regulation. Unlike genetic changes, epigenetic 
alterations can be reversible. Abnormalities in epigenetics 
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may lead to cancer and autoimmune diseases [4]. DNA 
methylation, one of the widely studied epigenetic modi-
fications in humans, occurs by adding a methyl group to 
the 5-position carbon of a cytosine, which is catalyzed by 
DNA methyltransferases (DNMTs). DNA methyltrans-
ferase’s function is to build and maintain the methyla-
tion patterns [5, 6] (Fig. 1A). Usually, this process occurs 
in regions with a large number of CpG dinucleotides 
called CpG islands. DNA methylation is crucial for gene 
expression (Fig. 1B). Besides, it is also involved in various 
biological processes, such as maintenance of chromatin 
architecture, X-chromosome inactivation, and genomic 
imprinting [7]. Thus, dysregulation of DNA methylation 
may contribute to various diseases, including cancer and 
other diseases. DNA methylation can change chromatin 
structure, stimulate methylated binding-protein (MBP) 
to bind to transcription inhibitors, and prevent transcrip-
tion factors (TFs) from binding to DNA sequences and 
consequently affecting gene transcription [8]. Previous 
studies have demonstrated that hypermethylation in pro-
moters represses gene transcription. In contrast, hypo-
methylation in promoters promotes gene transcription. 
As for the body of the gene, DNA methylation in gene 
body may promote transcription of the gene. One expla-
nation is that DNA methylation in gene body may influ-
ence activities of repetitive DNAs in the transcriptional 
unit [9]. Hypermethylation in tumor suppressor genes 
or hypomethylation in oncogenes is associated with 
tumorigenesis [6, 10]. Intriguingly, aberrant DNA meth-
ylation usually occurs at an early stage of tumorigenesis. 
Besides, aberrant DNA methylation is related to cancer 
progression. For example, DNA methylation alterations 

in TBC1D16 and EBF3 play a vital role in the progression 
and metastasis of colorectal cancer, prostate cancer, and 
melanoma [11]. In addition, DNA methylation is revers-
ible and may help monitor the therapeutic effects. There-
fore, DNA methylation can provide a new strategy for 
early detection of LC and improve its prognosis.

Nowadays, liquid biopsy has received enormous atten-
tion as it has emerged as a minimally invasive approach 
for detecting cancer at an early stage [12]. Liquid biop-
sies mainly include cell-free DNA (cfDNA), circulating 
tumor cells (CTCs) and exosomes. In addition to the 
above-mentioned, sputum, urine, saliva, bronchoalveo-
lar lavage fluid, bronchial aspirates, bronchial washings, 
and pleural effusions are also the forms of liquid biopsies 
[13–16] (Fig.  2). Importantly, one of the advantages of 
liquid biopsy is that it can continuously monitor the evo-
lution of both primary and metastatic malignant tumors 
and detect their recurrences [17]. Besides, it is mini-
mally invasive and cost-effective, which makes it more 
acceptable for patients [18]. Compared to conventional 
LC-related tumor markers, the sensitivity and specific-
ity of liquid biopsy are higher. LDCT has disadvantages 
of a high false-positive rate and more or less radiation 
exposure, while liquid biopsy can overcome these prob-
lems. Aspiration biopsy of a suspicious lung lesion is 
traumatic and some patients have poor compliance. On 
the contrary, liquid biopsy has attracted a lot of attention 
and several reports have revealed the clinical applica-
tion of liquid biopsy in LC [19]. For instance, detection 
of plasma-derived EGFR mutation of advanced or met-
astatic non-small cell lung adenocarcinoma (NSCLC) 
patients is helpful for the treatment with EGFR tyrosine 

Fig. 1  Formation of DNA methylation and its regulation of gene expression. A Process of DNA methylation. DNA methylation usually happens in 
CpG islands by adding a methyl group, provided by S-adenosylmethionine (SAM), to the carbon-5 position of a cytosine. This process is catalyzed 
by DNA methyltransferases (DNMTs). B DNA methylation of gene promoters. Unmethylated CpGs result in gene activation. Methylated CpGs lead to 
gene silencing
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kinase inhibitors (TKIs) [20]. Another study found that 
plasma circulating tumor DNA (ctDNA) frequencies can 
be a powerful tool for monitoring the treatment response 
of NSCLC patients [21]. As DNA methylation occurs at 
an early stage of malignant tumors, it is expected to be 
a novel biomarker, and can be a potential field in liquid 
biopsy.

In this review, we summarized multiple liquid biopsy 
methods based on DNA methylation for LC. Firstly, we 
briefly reviewed some emerging technologies for DNA 
methylation analysis. Next, we focused on DNA meth-
ylation of cfDNA, sputum, bronchoalveolar lavage fluid, 
bronchial aspirates, and bronchial washings for early 
detection of LC. Also, the prognostic value of DNA 
methylation in cfDNA and sputum and the diagnostic 
value of other DNA methylation-based liquid biopsies for 
LC were discussed.

Technologies for DNA methylation analysis
Considering the critical role of DNA methylation in 
tumorigenesis and cancer screening, how to detect DNA 
methylation status accurately and quickly is particularly 
important. Here, we reviewed some technologies for 
DNA methylation analysis. Particularly, we focused on 
some emerging technologies.

Technologies for genome‑wide DNA methylation analysis
As for technologies for genome-wide DNA methyla-
tion analysis, it includes two aspects: technologies for 
determination of global DNA methylation analysis 
and technologies for whole-genome DNA methylation 
profiling analysis. Global DNA methylation analysis 
includes enzyme-linked immunosorbent assay (ELISA) 

and luminometric methylation assay (LUMA). ELISA is 
a rapid, convenient, sensitive, and inexpensive method 
for the quantitative measurement of 5mC. However, 
the disadvantages of ELISA are cross-reactivity and low 
specificity. LUMA is a good approach to analyzing DNA 
methylation [22]. The main principle of LUMA is based 
on DNA digestion, which HpaII or MspI catalyzes. The 
sensitivity of LUMA is really high. The whole-genome 
DNA methylation profiling analysis includes methyla-
tion BeadChip and next-generation sequencing (NGS). 
Human methylation 850 K BeadChip (MethylationEPIC 
BeadChip), developed based on human methylation 
450 K BeadChip, is a method based on probe hybridi-
zation. It can analyze more than 850,000 CpG sites, 
including genome coverage of enhancers, transcrip-
tion factor binding sites, open chromatin, and miRNA 
promoter regions. It is sensitive, time-effective, and 
user-friendly. However, a main limitation of Methyla-
tionEPIC BeadChip is that it only detects the previously 
determined regions where the probes can be designed, 
and the cost is high. Agilent’s Human DNA Methyla-
tion Microarrays are other platforms to quantify 5mC 
distribution in genomes. Briefly, 5mC-specific mono-
clonal antibodies are used to pull down methylated 
DNA fragments. Then, microarray probes hybridize 
with methylated regions. A disadvantage of microarrays 
is that they only cover a part of CpG sites, and some 
CpG sites may not be detected [23, 24]. Methylated 
DNA immunoprecipitation (MeDIP) is a technology 
based on the IP principle to detect DNA methylation 
levels. A monoclonal antibody against 5mC is used 
to bind to methylated regions of DNA samples. Then, 
NGS (MeDIP-Seq) or DNA microarrays (MeDIP-
Chip) analyzes the methylated DNA fragments. This 
technology has been applied to some cancers, such as 
breast cancer and ovarian cancer. Methyl-CpG bind-
ing domain (MBD) protein capture (MethylCap) assay 
analyzes genome-wide DNA methylation by MBD-spe-
cific antibody. The principle and procedure are similar 
to MeDIP. However, MethylCap is more sensitive than 
MeDIP in terms of detecting CpG islands. MethylCap 
has been applied to identify methylation-relevant bio-
markers for lung cancer [25], bladder cancer [26], and 
leukemia [27]. Enzymatic methyl-seq is based on two 
sets of enzymatic reactions, mainly detecting 5mC 
and 5hmC. In the first step, 5mC and 5hmC are con-
verted to products by TET2 and T4-BGT. APOBEC3A 
cannot deaminate these products. In the second step, 
APOBEC3A converts unmodified cytosines to ura-
cils through deamination. Therefore, these three 
enzymes (TET2, T4-BGT, and APOBEC3A) can iden-
tify 5mC and 5hmC [28]. HpaII tiny fragment enrich-
ment by ligation-mediated PCR (HELP) is another 

Fig. 2  Multiple liquid biopsy methods. Clinical information can be 
obtained from liquid biopsies. Among them, the main objects of 
liquid biopsy are cell-free DNA (cfDNA), circulating tumor cells (CTCs), 
and exosomes. Liquid biopsy is minimally invasive. Particularly, the 
collection of sputum, saliva, and urine is completely noninvasive. 
Hence, liquid biopsy has a promising clinical application
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enzymatic-based sequencing technology. At first, MspI 
(resistant to 5mC) and HpaII (sensitive to 5mC) digest 
genomic DNA, respectively. Then, the restriction frag-
ments are labeled with two specific fluorochromes and 
are amplified by ligation-mediated PCR. Finally, the 
products are directly sequenced (HELP-Seq) or hybrid-
ized to a microarray (HELP-Chip). This method is sen-
sitive, and it can detect genomic regions, regardless of 
CpG density [24]. Whole-genome bisulfite sequenc-
ing (WGBS) is a typical type of NGS, and it analyzes 
each CpG site of bisulfite-converted DNA. The advan-
tages of WGBS are high accuracy and good repeatabil-
ity. Furthermore, WGBS is a sensitive method, and it 
only needs ~ 30 ng of DNA, even 150 pg in some cases. 
However, this technique is expensive and the operation 
is complex. Reduced representation bisulfite sequenc-
ing (RRBS) is an adaptation of WGBS. Compared to 
WGBS, the cost of RRBS is lower and the throughput is 
higher. Nevertheless, it needs more DNA than WGBS, 
and its sensitivity is slightly lower than WGBS [29, 30].

Technologies for locus‑specific DNA methylation analysis
It is sometimes necessary to explore the DNA methyla-
tion status of some specific CpG sites. Technologies for 
locus-specific DNA methylation analysis are performed 
to solve this problem. Pyrosequencing and PCR are two 
major categories of technologies for locus-specific DNA 
methylation analysis. Pyrosequencing provides real-time 
quantitative information on bisulfite-converted DNA. 
Briefly, PCR is subjected to amplifying DNA sequenc-
ing of interest. Among them, one primer is biotinylated. 
Pyrosequencing primer is performed to react with DNA 
template [30]. Although pyrosequencing is a highly quan-
titative method, sequencing products is a time-taking 
process, which may reduce the accuracy. For PCR, meth-
ylation-specific PCR (MSP) is also used to detect the 
level of DNA methylation. MSP contains two primers: 
One binds to methylated CpG sites, and the other is to 
bind to unmethylated CpG sites. Moreover, MethyLight 
combines the properties of MSP and TaqMan probe. 
For sensitivity, MethyLight is ten times more sensitive 
than MSP. Besides, MethyLight reduced the occurrence 
of non-specific binding events [31]. Digital PCR (dPCR) 
is performed by partition method that detects every sin-
gle well. The DNA sample is divided into many reaction 
wells. Each well contains or does not contain the target 
molecule, representing positive or negative result. Drop-
let digital PCR (ddPCR) is based on a similar principle to 
dPCR but a bigger scale. The DNA sample can be divided 
into 20,000 droplets. The result of each droplet is positive 
or negative. DdPCR is a very sensitive method, and it is 
25 times more sensitive than MethyLight [30].

Newly developed technologies for DNA methylation 
analysis
In recent years, some new technologies for DNA meth-
ylation analysis have developed fast and are gradually 
being used in cancer screening. Here, we discussed 
the following two main categories of newly developed 
technologies: mass spectrometry for DNA methylation 
analysis and biosensors for DNA methylation analysis.

Mass spectrometry for DNA methylation analysis
Mass spectrometry is a precise technology for global 
DNA methylation detection. Usually, nano–ultra-
HPLC is coupled to multiple reaction monitoring in a 
mass spectrometry to achieve the exact quantification 
of DNA [32]. Mass spectrometry for global DNA meth-
ylation analysis is a highly sensitive and precise method 
with good reproducibility. In addition, this assay runs 
through the whole genome and it takes no account of 
sites or sequences. However, mass spectrometry is 
expensive and the operation is complex [32, 33].

Biosensors for DNA methylation analysis
Optical biosensors
The basic principle of the optical biosensor is that when 
a biorecognition layer captures the target analyte, the 
optical biosensor can detect the produced light. Col-
orimetry and fluorescence are two major detection 
methods of the optical biosensor. Colorimetric optical 
biosensors are represented by color changes, making 
them visible to naked eyes. Compared to colorimetric 
optical biosensors, the sensitivity of fluorescent ones is 
greatly higher due to their fluorescence detection [23]. 
Optical biosensors have advantages, such as high sen-
sitivity, specificity, and repeatability. This approach has 
been successful in the detection of tumor markers in 
clinical samples.

Electrochemical biosensors
Electrochemical biosensors detect electrical parameter 
signals. Based on the differences in electrical parameters, 
electrochemical biosensors can be divided into three 
major categories: potentiometric biosensors, ampero-
metric biosensors, and impedimetric biosensors [23]. 
They detect potential, electric current, and resistance, 
respectively. Usually, electrochemical biosensors contain 
a working electrode and reference electrode. The working 
electrode’s function is to detect the analytes, represent-
ing the generated response as electrical signals. Like opti-
cal biosensors, sensitivity and specificity are very high. 
Besides, the cost is low and the detection requires a short 
time. However, a big issue is that the clinical application 
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of electrochemical biosensors is not common until now, 
which needs to be resolved soon.

The development of detection technology has pro-
vided basis for liquid biopsy. Nowadays, liquid biopsy 
has received enormous attention as it can serve as a 
minimally invasive approach for early detection of cancer 
[12]. Liquid biopsies mainly include cfDNA, CTCs, and 
exosomes. Also, sputum, bronchoalveolar lavage fluid, 
bronchial aspirates, bronchial washings, urine, pleu-
ral effusions, and saliva are the forms of liquid biopsies 
[13–16]. In the following part, we will introduce different 
types of DNA methylation-based liquid biopsies for the 
detection and prognosis of LC.

CfDNA methylation‑based liquid biopsy for LC
CfDNA is released into the bloodstream from both 
healthy and tumor cells. In patients with malignant 
tumors, circulating tumor DNA (ctDNA), which is 
derived from primary or metastatic tumor cells mainly 
due to necrosis or apoptosis, is a type of cfDNA [34]. 
Specimen type selection is an important step before 
analysis, and it is necessary to compare serum-derived 
and plasma-derived cfDNA. In general, the concentra-
tion of serum-derived cfDNA is higher than plasma-
derived one. However, ctDNA is hard to be detected 
in serum, and the amount of some ctDNA fractions in 
plasma is more than in serum, such as KRAS-mutated 
fraction [35]. Besides, plasma ctDNA is more stable than 
that in serum [36, 37]. Therefore, the recent studies have 
focused on plasma-derived ctDNA methylation status of 
LC patients. CtDNA carries tumor-specific genetic and 
epigenetic information, and several studies have reported 
the role of ctDNA in managing LC [38–40]. Tumor cell 

DNA differs from healthy cell DNA in some aspects, 
including DNA methylation. Moreover, DNA methyla-
tion status in cfDNA resembles those of cancer tissues, 
and aberrant DNA methylation is an important event 
in the early stage of cancer [10]. Although sometimes 
the fragment of ctDNA is small or the concentration of 
ctDNA is low, advanced technology has been applied to 
ctDNA detection [41]. Thus, cfDNA methylation can be a 
potent biomarker for LC.

The value of single‑gene methylation‑based liquid biopsy 
in LC detection
Up to now, several studies have demonstrated that aber-
rant ctDNA methylation could be a potential biomarker 
for early diagnosis and screening of LC (Table  1). For 
example, Kneip et  al. reported that SHOX2 methyla-
tion in plasma had a sensitivity of 60% and a specificity 
of 90% to differentiate LC patients from healthy controls 
[42]. Ponomaryova et  al. illustrated that plasma-derived 
RASSF1A and RARB methylation levels could serve as 
biomarkers for early detection of LC with a sensitivity 
of 87% and a specificity of 75% [43]. In 2019, Xu W et al. 
revealed that the methylation levels of B3GAT2, BCAR1, 
HOPX, HOXD11, MIR1203, MYL9, SLC9A3R2, SYT5, 
VTRNA1-3, and HLF between LC patients and healthy 
controls were significantly different, suggesting that these 
ten genes could serve as diagnostic biomarkers for LC 
[44]. The involvement of the above 10 genes in LC was 
summarized in Table 2.

Gene promoter methylation, which has been studied 
intensely, plays a leading role in regulating its target gene 
expression. Furthermore, it has been found that the levels 
of these epigenetic alterations were very low in healthy 

Table 1  CfDNA methylation-based liquid biopsy for LC

Purpose Genes Cases Controls Sensitivity/specificity Samples Methods References

Diagnosis SHOX2 208 175 60.0/90.0% Plasma qPCR [42]

Diagnosis RASSF1A/RARB 60 32 87.0/75.0% Plasma qMSP [43]

Diagnosis B3GAT2/BCAR1/HOPX/HOXD11/MIR1203/
MYL9/SLC9A3R2/SYT5/VTRNA1-3/HLF

41 39 –/– Plasma MeDIP-seq and qPCR [44]

Diagnosis DCLK1 65 95 49.2%/91.6% Plasma qMSP [45]

Diagnosis CDH1/NISCH 40 30 –/– Plasma MSP [46]

Diagnosis CDO1/HOXA9/AJAP1/PTGDR/UNCX/
MARCH11

83 42 72.1%/71.4% Serum MSP and qMSP [47]

Diagnosis RTEL1/PCDHGB6 70 80 62.9%/90% Plasma qMSP [48]

Diagnosis MIR129-2/LINC01158/CCDC181/PRKCB/
TBR1/ZNF781/MARCH11/VWC2/SLC9A3/
HOXA7

18 47 83.0%/95.0% Plasma Two-set qPCR [49]

Prognosis DCLK1 37 0 –/– Plasma qMSP [45]

Prognosis BRMS1 122 24 –/– Plasma qMSP [50]

Prognosis KMT2C 139 60 –/– Plasma qMSP [51]

Prognosis SOX17 122 49 –/– Plasma qMSP [40]
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people, which reflected its vital role in tumorigenesis 
[57]. Thus, many studies have focused on gene promoter 
region methylation status. A study comprised 65 LC 
patients and 95 healthy controls, of which 32 LC patients 
(49.2% of the studied group) and 8 healthy controls (8.4% 
of the control group) showed DCLK1 promoter methyla-
tion. Statistical analysis showed that the test’s sensitivity 
was 42.9% and the test’s specificity was 91.6%. Further 
analysis suggested that there was no significant correc-
tion between cigarette smoking and DCLK1 promoter 
methylation [45]. In 2019, Krishnamurthy et al. revealed 
that the level of CDH1 promoter methylation was sig-
nificantly higher in LC patients than in healthy controls, 
and the level of NISCH promoter methylation was signifi-
cantly higher in LC patients and non-cancerous smok-
ers than non-smoker controls. Moreover, no significant 
association was found between the methylation level of 
CDH1 or NISCH and clinicopathologic variables, such as 
tumor size, histopathological grading stage, lymph node 
involvement, and distant metastasis status [46]. All the 
studies mentioned above suggested that gene promoter 
methylation has a wide prospect of LC screening.

Multiple genes panel of ctDNA methylation in liquid 
biopsy for LC screening
Undoubtedly, ctDNA methylation alterations could dif-
ferentiate LC patients from healthy individuals. Nev-
ertheless, the diagnostic power of a single methylation 
site was limited. Interestingly, some researchers tried 
to establish diagnostic panel based on several different 
methylation sites for the early detection for LC (Table 1). 
Ooki et  al. used a panel of 6 genes (CDO1, HOXA9, 
AJAP1, PTGDR, UNCX, and MARCH11) as a power-
ful biomarker to distinguish between LC patients and 
healthy controls, which had a sensitivity of over 90% for 
diagnosing of stage IA NSCLC [47]. In another study, 

70 LC patients and 80 healthy controls were enrolled, of 
whom 10  ml of peripheral blood was collected. Plasma 
cfDNA was used to analyze RTEL1 and PCDHGB6 pro-
moter methylation status. The sensitivity and specificity 
of RTEL1 methylation analysis were 51.4% and 91.2%. 
For PCDHGB6 methylation assessment, the sensitiv-
ity and specificity were 41.4% and 98.7%. Based on the 
two genes above, the panel improved diagnostic power 
with an AUC of 0.75, a sensitivity of 62.9%, and a speci-
ficity of 90.0%. The panel showed an AUC of 0.752 with 
a sensitivity of 64.6% and specificity of 88.4% for oper-
able stages of NSCLC (I-III A) [48]. Vrba L et  al. used 
a biomarker set comprising MIR129-2, LINC01158, 
CCDC181, PRKCB, TBR1, ZNF781, MARCH11, VWC2, 
SLC9A3, and HOXA7, to evaluate its power for detec-
tion of NSCLC. The cohort contained 18 NSCLC cases 
and 47 healthy controls, and ROC analysis showed that 
the AUC was 0.956, sensitivity was 83%, and specificity 
was 95%. Additionally, they found a positive relationship 
between NSCLC stage and methylation levels of the ten 
genes [49].

CfDNA methylation‑based liquid biopsy for the prognosis 
of LC
Besides the diagnostic value of DNA methylation, many 
studies have illustrated gene methylation’s function in 
the prediction and prognosis of LC (Table  1). In 2015, 
Powrozek T et al. found that LC patients who presented 
DCLK1 promoter region one or region two or both meth-
ylated had shorter survival than those without DCLK1 
promoter methylation [45]. Another study focused on 
the relationship between BRMS1 promoter methyla-
tion and the prognosis of LC patients, suggesting that 
patients with BRMS1 promoter methylation had a sig-
nificantly lower overall survival (OS) time and progres-
sion-free survival (PFS) time than those without BRMS1 

Table 2  The involvement of the single gene in LC

Gene The involvement of the gene in LC References

B3GAT2 – –

BCAR1 B3GAT2 promotes the formation and immune evasion of CTCs in LUAD by triggering EMT via RAC1 signaling and up-regulat-
ing CD274 expression by shuttling BRD4-S into the nucleus

[52]

HOPX ΜicroRNA-421 promotes the progression of NSCLC by targeting HOPX and regulating the Wnt/β-catenin signaling pathway [53]

HOXD11 – –

MIR1203 MIR1203 level is negatively regulated by LINC00632 to accelerate lymph node metastasis and distant metastasis of NSCLC [54]

MYL9 Low MYL9 expression may be relevant to the development and metastasis of NSCLC [55]

SLC9A3R2 – –

SYT5 – –

VTRNA1-3 – –

HLF Genetic deletion and methylation lead to down expression of HLF, thus accelerating anaerobic metabolism to promote the 
growth of NSCLC cells by activating NF-κB/p65 signaling through disrupting translocation of PPARα and PPARγ

[56]
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promoter methylation [50]. Mastoraki S et  al. studied 
the methylation status of KMT2C promoters of oper-
able and metastatic NSCLC patients. They found that 
compared to patients without KMT2C promoter meth-
ylation, promoter methylation-positive patients had a 
lower DFS time and OS time in operable NSCLC patients 
and a lower PFS time and OS time in metastatic NSCLC 
patients [51]. Balgkouranidou I et  al. found that SOX17 
promoter methylation level was higher in NSCLC than 
in healthy controls. Besides, SOX17 promoter methyla-
tion status in plasma-derived ctDNA was related to OS in 
advanced NSCLC patients. Analysis of SOX17 promoter 
methylation status could provide prognostic information 
for advanced NSCLC patients [40].

Sputum DNA methylation‑based liquid biopsy 
for LC
Sputum consists of exfoliated respiratory epithelial cells 
from the lower respiratory tract, which is the most com-
mon type of bronchial epithelial cells. Besides, other 
respiratory epithelial cell types in sputum may contain 
some useful molecular information. Recently, sputum has 
gained enormous attention, as it can be obtained easily 
and noninvasively [58]. Sputum cytological examination 
can reflect morphological alterations of the lower res-
piratory epithelial cells. Nevertheless, the sensitivity of 
sputum cytology to detect LC is very low, especially in 
the early stage of LC [59]. Previous studies revealed that 
smokers tend to produce more sputum, and carcinogen-
esis of NSCLC is the result of an accumulation of molec-
ular changes because of the effects of long-term smoking 
to respiratory epithelial cells [60]. Tumor cells cannot be 
detected using sputum cytological examination, while the 
DNA of tumor cells has already altered [61, 62]. Since the 
respiratory epithelial cells in the sputum are exfoliated 
from the lower respiratory tract, sputum DNA exami-
nation can reflect the molecular alterations of LC. For 

instance, DNA hypermethylation status in sputum could 
be detected in LC patients before clinical diagnosis [63]. 
Furthermore, the rate of hypermethylation detected in 
LC patients in sputum was significantly higher than in 
cytology [64]. Thus, sputum DNA methylation can be a 
noninvasive and powerful tool for LC screening.

Sputum DNA methylation‑based liquid biopsy for LC 
detection
As for LC detection, great studies have revealed the 
value of sputum DNA methylation-based liquid biopsy 
(Table 3). In 2015, Hubers AJ et al. investigated the DNA 
methylation status of FAM19A4, RASSF1A, 3OST2, APC, 
PHACTR3, CYGB, and PRDM14 in the learning cohort 
(73 LC cases and 86 healthy controls) and validation 
cohort (159 LC cases and 154 healthy controls). However, 
the diagnostic power of a single gene was not satisfac-
tory. A panel containing RASSF1A, 3OST2, and PRDM14 
was constructed. The sensitivity and specificity of posi-
tive DNA hypermethylation of one or more of these three 
genes were 82.2% and 66.3% in learning cohort. In valida-
tion cohort, the sensitivity and specificity were 79.2% and 
64.3%. Compared to sputum cytology examination, DNA 
methylation analysis of sputum is superior. Remarkably, 
RASSF1A, 3OST2, and PRDM14 were studied widely in 
LC patients. In lung carcinogenesis, hypermethylation 
of the RASSF1 promoter gene is an early and important 
event. As an isoform of RASSF1, methylation of RASSF1A 
may be a sign of increased risk of LC [65]. The 3OST2 
promoter methylation was observed in several malignant 
tumors, including LC [66]. PRDM14 accelerates NSCLC 
cell migration in  vitro and may be a therapeutic tar-
get of metastatic NSCLC [67]. Then in 2016, Hubers AJ 
et  al. established a diagnostic panel based on the above 
three genes for early detection of NSCLC with an AUC of 
0.79, a sensitivity of 82.9%, and a specificity of 76.4%. The 
diagnostic performance was superior to every single one 

Table 3  Sputum DNA methylation-based liquid biopsy for LC

Purpose Genes Cases Controls Sensitivity/specificity Samples Methods References

Diagnosis RASSF1A/3OST2/PRDM14 232 240 82.2/66.3% Sputum qMSP [67]

Diagnosis RASSF1A/3OST2/PRDM14 261 345 82.9/76.4% Sputum qMSP [59]

Diagnosis RASSF1A/APC/CYGB 161 536 63.0/78.0% in set 1
90.0/47.0% in set 2

Sputum qMSP [64]

Diagnosis SOX17/TAC1/HOXA7 150 60 93.0/89.0% Sputum qMSP [68]

Assessment P16/MGMT/DAPK/RASSF1A/GATA4/
GATA5/PAX5α/PAX5β

371 1063 95.0/54.0% Sputum MSP [60]

Assessment PAX5β/MGMT/DAPK/Dal-1/PCDH20/Jph3/Kif1a 64 64 –/– Sputum qMSP [69]

Assessment PAX5α/DAPK/SULF2/PAX5β/CXCL14/
GATA5/Dal-1

40 90 –/– Sputum qMSP [69]

Assessment ZNF549/SNCA/CCNA1 29 108 –/– Sputum MSP [70]
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[59]. Another study analyzed the relationship between 
RASSF1A, APC, and CYGB methylation levels and LC. 
The combined analysis of the three genes showed a sen-
sitivity of 63% and a specificity of 78% to discriminate LC 
cases from healthy controls in set 1 (98 LC cases and 90 
healthy controls) and a sensitivity of 90% and a specificity 
of 47% in set 2 (60 LC cases and 445 healthy controls), 
respectively [64]. In 2017, Hulbert A et al. detected meth-
ylation levels in the sputum of 6 genes (SOX17, TAC1, 
HOXA7, HOXA9, CDO1, and ZFP42) in both LC patients 
and healthy individuals. Except for HOXA9 with a low 
specificity, all of the five remaining genes were statisti-
cally significant. As a result, they selected the best three 
genes (SOX17, TAC1, and HOXA7) to establish a panel, 
which achieved an AUC of 0.89, a sensitivity of 93%, and 
a specificity of 89%. Moreover, sputum samples were 
better than plasma samples in the aspect of methylation 
detection in this study. One explanation for this may be 
that LC cells can enter into airways at an early stage. This 
is an advantage of the methylation of sputum over plasma 
in the early detection of LC [68].

The assessment of smokers at risk for developing LC
Smoking is one of LC’s most important environmental 
risks. Although National Lung Screening Trial (NLST) 
has reported that LDCT could reduce LC-related mor-
tality by about 20%, some benign nodules may be diag-
nosed as malignant tumors due to the high sensitivity of 
LDCT [71]. Thus, it is urgent to explore a powerful tool 
to identify smokers at high risk of LC receiving LDCT. 
Several reports have revealed that smoking could influ-
ence the initiation and progression of LC accompanied 
by a series of molecular variations, including DNA meth-
ylation [72, 73]. Moreover, sputum samples are noninva-
sive and easy to be obtained. Therefore, several studies 
focused on the value of DNA methylation alterations in 
sputum to select high-risk smokers who need a LDCT 
scan (Table  3). In 2017, Lissa D et  al. initially selected 
some LDCT eligible smokers, including 371 surgically 
resected LC patients and 1063 cancer-free smokers. They 
found that the methylation levels of eight genes (P16, 
MGMT, DAPK, RASSF1A, GATA4, GATA5, PAX5α, and 
PAX5β) in resected LC patients were higher than those in 
cancer-free smokers. Remarkably, the diagnostic power 
of the 8-gene panel was better than clinical risk factors 
(age, sex, and smoking status). Furthermore, the combine 
analysis of eight genes and clinical risk factors achieved 
a better prediction accuracy compared to 8-gene panel 
alone. Finally, the authors selected a cohort of smok-
ers who did not need to receive LDCT scans according 
to the current USPSTF screening criteria. The panel of 
eight genes and clinical risk factors could identify smok-
ers in the cohort who were at high risk of LC, suggesting 

the superiority of the panel to identify high-risk smokers 
over the current USPSTF screening criteria [60]. Another 
report, published by Leng S et  al., established a logistic 
regression modeling of gene methylation to select the 
high-risk smokers to receive LDCT. The study comprised 
Colorado cohort and New Mexico cohort. These pan-
els contained PAX5β, MGMT, DAPK, Dal-1, PCDH20, 
Jph3, and Kif1a for Colorado and PAX5α, DAPK, SULF2, 
PAX5β, CXCL14, GATA5, and Dal-1 for New Mexico. 
The results showed that the discrimination accuracy 
was 71% for Colorado and 77% for New Mexico, respec-
tively [69]. In another study, Tessema M et al. estimated 
the promoter methylation levels of three genes (ZNF549, 
SNCA, and CCNA1) in sputum from smokers. In can-
cer-free smokers, the methylation levels of ZNF549 and 
SNCA were 15% and 26%, while the results were 38% and 
52% in smokers with LUAD. However, the methylation 
status of CCNA1 was not detected in sputum from smok-
ers with LUAD [70]. In other words, DNA methylation 
analysis has the potential to distinguish between smokers 
who need to receive LDCT examinations and who need 
not to receive LDCT examinations.

Sputum DNA methylation‑based liquid biopsy 
for the prognosis of LC
As for the prognosis, Belinsky SA et al. conducted a study 
to evaluate the association between LC recurrence and 
eight genes methylation status. The eight genes were 
CDKN2, MGMT, DAPK1, RASSF1, GATA4, GATA5, 
PAX5α, and PAX5β. Three indexes, including low (0–1), 
medium (2–3), and high (≥ 4) methylation index, were 
used to assess the time to relapse for LC patients via the 
Kaplan–Meier analysis. However, results showed no sig-
nificant association between LC recurrence and eight 
genes methylation. Nevertheless, the authors were inter-
ested in whether eight genes methylation status predicts 
therapeutic response. The association between selenium 
treatment, risk of recurrence, and gene methylation sta-
tus was estimated using the generalized estimating equa-
tion. The follow-up time lasted for two years. Results 
revealed that no significant difference of the eight genes 
methylation levels was observed between LC patients 
with recurrence after selenium treatment and those with-
out recurrence after selenium treatment [74]. Therefore, 
the role of DNA methylation in sputum to monitor the 
prognosis of LC should be studied constantly.

Bronchoalveolar lavage fluid, bronchial aspirates, 
and bronchial washings DNA methylation‑based 
liquid biopsy for LC detection
Nowadays, fiberoptic bronchoscopy is a routine exami-
nation for patients with suspected LC. Bronchoalveolar 
lavage fluid is obtained from fiberoptic bronchoscopy 
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examination with minimal invasion [75]. Since bron-
choalveolar lavage fluid is anatomically adjacent to 
tumor cells, it can serve as an alternative source of 
biomarkers for LC. Usually, specimen from bronchoal-
veolar lavage fluid is used for histologic or cytologic 
examination. However, the diagnostic power for LC is 
limited [76]. Recently, the association between DNA 
methylation and LC has been studied intensely [77, 78]. 
Moreover, several studies have reported the status of 
hypermethylation of gene promoters in the body fluid 
of LC, including bronchoalveolar lavage fluid (Table 4). 
Recently, the genes RASSF1A and SHOX2 methyla-
tion in bronchoalveolar lavage fluid have been stud-
ied extensively. In 2017, Ren M et  al. enrolled in 123 
LC cases and 130 healthy controls to investigate the 
relationship between LC and the methylation levels of 
RASSF1A and SHOX2. They found that the methyla-
tion-positive rates of RASSF1A and SHOX2 were higher 
in LC group (50.4% and 64.2%) compared to the control 
group (3.8% and 7.7%). The diagnostic panel of these 
two genes achieved a sensitivity of 71.5% and a specific-
ity of 90.0%, whereas the sensitivity and specificity of 
cytological examination were 5.7% and 99.2%, respec-
tively [79]. In the same year, another study enrolled in 
284 LC cases and 38 healthy controls for RASSF1A and 
SHOX2 methylation analysis in bronchoalveolar lav-
age fluid. At first, they found that compared to healthy 
controls, the methylation levels of RASSF1A and 
SHOX2 were significantly higher in LC patients. The 
sensitivities of RASSF1A and SHOX2 methylation were 
higher than cytology and serum CEA. Then, a panel of 
RASSF1A and SHOX2 genes showed an AUC of 0.892, 
while the AUC of cytology and serum CEA were 0.828 
and 0.741, respectively. The panel showed the highest 
sensitivity of 81% compared to cytology (68.3%) and 
serum examination (30.6%). The above results illus-
trated the advantages of RASSF1A and SHOX2 methyl-
ation analysis in bronchoalveolar lavage fluid to screen 
LC over conventional approaches, such as cytology and 

serum CEA [76]. In 2004, Topaloglu O et al. examined 
promoter methylation status of 8 genes (CDH1, AFR, 
GSTP1, p16, RAR-β2, MGMT, RASSF1A, and APC) 
using bronchoalveolar lavage fluid from 31 LC patients 
and 10 age-matched controls. Overall, 21 of 31 LC 
patients were positive for promoter methylation. For 
the 10 controls, MGMT, RAR-β2, AFR, GSTP1, and p16 
were not observed to be methylated, while methylation 
levels of the 3 remaining genes were very low [80].

Besides bronchoalveolar lavage fluid, bronchial aspi-
rates and bronchial washings are both important tools 
for diagnosing LC. Like bronchoalveolar lavage fluid, 
they are obtained with little risk and without extra 
effort during the first fiberoptic bronchoscopy [83]. 
From an anatomical point of view, they are close to 
LC cells and tumor microenvironment. Thus, they can 
reflect molecular changes and provide tools for detect-
ing LC [84] (Table  4). In 2010, a study consisting of 
281 LC cases and 242 healthy controls was conducted. 
The result showed that DNA methylation of SHOX2 
in bronchial aspirates could discriminate LC patients 
from healthy people with an AUC of 0.86, a sensitiv-
ity of 68%, and a specificity of 95%. Furthermore, the 
performance of SHOX2 methylation level was perfect 
for diagnosing small cell lung cancer (SCLC) with a 
high sensitivity of 97%. For squamous cell carcinoma 
(SCC), the sensitivity was 82%. However, the sensitiv-
ity for adenocarcinoma was lower than other subtypes. 
Subsequent analysis demonstrated that the SHOX2 
methylation marker could detect a higher stage of LC 
with a slightly increased sensitivity. The reason may 
be that there are more malignant tumor cells in bron-
chial aspirates of advanced LC patients [81]. Another 
study established a panel based on PHF11, PDGFRA, 
TFAP2A, PRR15, HOXA11, TOX2, and TBX15 genes 
to diagnose LC patients. Results showed that the AUC 
was 0.87 with a sensitivity of 87% and a specificity of 
83.3% [82].

Table 4  Bronchoalveolar lavage fluid, bronchial aspirates, and bronchial washings DNA methylation-based liquid biopsy for LC

Purpose Genes Cases Controls Sensitivity/specificity Samples Methods References

Diagnosis RASSF1A/SHOX2 123 130 71.5/90.0% BALF RT-PCR [79]

Diagnosis RASSF1A/SHOX2 284 38 81.0/97.4% BALF RT-PCR [76]

Diagnosis CDH1/AFR/GSTP1/
p16/RAR-β2/MGMT/
RASSF1A/APC

31 10 –/– BALF RT-PCR and RT-MSP [80]

Diagnosis SHOX2 281 242 68.0/95.0% bronchial aspirates RT-PCR [81]

Diagnosis PHF11/PDGFRA/
TFAP2A/PRR15/
HOXA11/TOX2/
TBX15

70 53 87.0/83.3% bronchial washings 450 K Methylation Bead-
Chip and Pyrosequencing

[82]
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Other DNA methylation‑based liquid biopsies 
for LC
Besides cfDNA, sputum, bronchoalveolar lavage fluid, 
bronchial aspirates, and bronchial washings, liquid 
biopsy also includes CTCs, exosomes, urine, pleural effu-
sions, and saliva [13–16]. The currently reported CTCs, 
exosomes, urine, pleural effusions, and saliva DNA meth-
ylation-based liquid biopsy for LC were summarized in 
Table 5.

CTC DNA methylation‑based liquid biopsy for LC
CTCs are tumor cells in cancer patients’ peripheral 
blood originating from primary or metastatic malignant 
tumors. CTCs cause tumor metastases, and the number 
of CTCs in the bloodstream is related to patients’ ther-
apeutic response. CTCs provide information at DNA, 
RNA, and protein levels. As a type of liquid biopsy, CTCs 
carry genetic and epigenetic information on tumor cells 
and CTCs examination is noninvasive [90–93]. Thus, 
CTCs have the potential to be biomarkers of LC. Previ-
ous studies have revealed that CTCs were existed in the 
blood of LC patients, especially in stage I LC [94–96]. 
For CTCs DNA methylation of LC, Zhao L et  al. found 
that the methylation levels of cancer tissues were higher 
than normal tissues. Moreover, the methylation levels 
of CTCs were lower than both normal and cancer tis-
sues, suggesting a loss of DNA methylation during car-
cinogenesis of LC from normal tissues to cancer tissues, 
and to CTCs [85]. Jiang JH et al. tried to use DNA meth-
ylation of CTCs to classify the NSCLC subtypes. They 
found 5426 differentially methylated CpG sites to dis-
criminate between LUAD and lung squamous cell car-
cinoma (LUSC), 1409 differential methylated CpG sites 
to discriminate between LUAD and normal tissues, and 
2919 differential methylated CpG sites to discriminate 
between LUSC and normal tissues. The diagnostic accu-
racies were 97.5%, 95.7%, and 100%, respectively [86].

Exosome DNA methylation‑based liquid biopsy for LC
Exosomes are spherical lipid bilayer vesicles which are 
secreted by cells. The diameter of the exosome is around 

40-100  nm, and the density of exosome is about 1.13–
1.19  g mL−1 [97, 98]. Many studies have verified that 
exosomes exist in various body fluids, such as plasma, 
serum, saliva, tears, urine, semen, amniotic fluid, cerebral 
spinal fluid, bronchoalveolar lavage fluid, and bile [99–
108]. Exosomes contain proteins, nucleic acids, lipids, 
transcription factor receptors, cytokines, and other bio-
logical substances [109, 110]. Therefore, exosomes can 
serve as biomarkers for LC detection [111–114]. Several 
pieces of research studied DNA methylation of exosomes 
in different types of cancer, such as prostate cancer, dif-
fuse large B cell lymphoma, and murine melanoma 
[115–118]. However, the studies about DNA methylation 
of exosomes for LC detection were limited, which needs 
further research.

Urine DNA methylation‑based liquid biopsy for LC
As a kind of liquid biopsy, urine has been a forthcom-
ing method of detection for LC [87, 119, 120]. There are 
some advantages of urine analysis. The collection of urine 
is easy and noninvasive. Besides, a large urine volume can 
be obtained in a one-time collection. Furthermore, DNA 
in urine is more stable than other body liquids and urine 
can be stored at room temperature [87, 88]. In 2020, Liu B 
et al. found that the positive methylation rates of SOX17, 
HOXA9, CDO1, and TAC1 of urine in LC patients were 
higher than in healthy controls. For lung cancer risk pre-
diction, univariate logistic regression analysis revealed 
that methylation levels of SOX17, HOXA9, CDO1, and 
TAC1 were significantly related to lung cancer risk [87]. 
In 2021, Bach S et  al. analyzed the DNA methylation 
status of 23 urine samples from NSCLC patients and 60 
urine samples from healthy controls. The results showed 
that methylation levels of SOX17 and TAC1 were sig-
nificantly different between NSCLC patients and healthy 
controls [88].

Pleural effusion DNA methylation‑based liquid biopsy 
for LC
Malignant pleural effusion is a usual complication of var-
ious malignant tumors, especially LUAD [121–124]. In 
most cases, the production of malignant pleural effusion 

Table 5  Other DNA methylation-based liquid biopsy for LC

Purpose Genes Cases Controls Sensitivity/specificity Samples Methods References

Diagnosis CpG sites 15 5 –/– CTC​ LCM-μWGBS and PCR [85]

Subtype CpG sites 884 154 –/– CTC​ 450 K Methylation 
BeadChip and WGBS

[86]

Diagnosis SOX17/HOXA9/CDO1/TAC1 74 27 93.0/30.0% Urine qMSP [87]

Diagnosis CDO1/SOX17/TAC1 23 60 –/– Urine qMSP [88]

Prognosis MGMT/BRCA1/RARβ/p16/INK4a 30 0 –/– Pleural effusion MSP [89]
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occurs in advanced or metastasized cancers [125]. Thus, 
pleural effusion analysis may provide prognosis informa-
tion on LC. Previous studies have examined the role of 
p16/INK4a, MGMT, BRCA1, and RARβ in the recurrence 
and development of NSCLC [126]. In 2012, Botana-Rial 
M et  al. analyzed the relationship between DNA meth-
ylation of the above four genes and the survival of LUAD 
patients. Compared to LUAD patients with 1–3 methyl-
ated genes, a shorter survival time was found in patients 
with no methylated genes. Cox multivariate analysis 
revealed that hypermethylation in one or more genes had 
been associated with a better prognosis [89].

Saliva DNA methylation‑based liquid biopsy for LC
In recent years, saliva-based liquid biopsy for cancer 
has received much attention [127–132]. Analyzing com-
ponents of saliva can reflect genomic and epigenomic 
alterations involved in physiological and pathological 
processes, and thus reflecting a person’s physical condi-
tions [133–135]. Previous studies have suggested that 
some methylation profiles in saliva were similar to those 
in tissue [135]. Moreover, saliva can be collected in a non-
invasive, cost-effective, fast, and reliable way [135, 136]. 
Therefore, salivary biomarkers can be applied to early 
detection, prognosis, and therapeutic effect response of 
cancer. Recently, saliva DNA methylation-based liquid 
biopsy investigations mainly focused on oral cancer and 
head and neck cancer [137–139]. However, the study 
about LC screening based on saliva DNA methylation is 
limited and needs further explorations.

DNA methylation profile based on liquid biopsies 
between smokers and non‑smokers for LC
Smoking can alter epigenetic mechanisms, including 
histone modifications and DNA methylation [140]. Sev-
eral studies have demonstrated the relationship between 
DNA methylation and smoking. Here, we focused on 
liquid biopsy-based DNA methylation profile of smok-
ers and non-smokers. In 2013, Ostrow KL et al compared 
the NISCH gene methylation level in plasma between 
light smokers (< 20pack/year) and non-smokers. The 
result revealed that in light smokers, 69% of LC patients 
showed NISCH promoter methylation, and NISCH 
methylation was absent in those without LC. Moreo-
ver, methylation alterations of NISCH promoter can be 
induced by smoking before any detectable malignant 
tumors [141]. Another study reported that compared to 
former and non-smokers, methylation levels of F2RL3 
and AHRR in peripheral blood DNA were lower in cur-
rent smokers, indicating that smoking may lead to can-
cer risk [142]. The e-cigarette is becoming increasingly 
popular and the effects of e-cigarette use on health have 
attracted researchers’ attention. In 2021, Richmond RC 

et al. conducted a study, including 116 e-cigarette smok-
ers, 117 cigarette smokers, and 117 non-smokers, to ana-
lyze DNA methylation in participants’ saliva. They found 
that DNA methylation levels at 7 CpGs were related to 
e-cigarette use. Moreover, the DNA methylation profile 
of e-cigarette smokers was largely different from cigarette 
smokers. The diagnostic value for LC detection of DNA 
methylation profile related to e-cigarette use was worse 
than that of cigarette use, which requires further investi-
gations [143].

Discussion
Enhancing the early diagnosis rate of LC is clinically criti-
cal for improving its prognosis. However, early detection 
of LC is still difficult because of the high false-positive 
rate of LDCT, the low specificity of conventional serum 
tumor markers, and the traumatic nature of aspiration 
biopsy. Liquid biopsy has the advantages of minimal inva-
siveness and the ability to monitor tumor dynamically 
[144]. Previous studies have demonstrated that aberrant 
DNA methylation, such as hypermethylation in tumor 
suppressor genes or hypomethylation in oncogenes, is 
an early event in tumorigenesis [145, 146]. Thus, DNA 
methylation-based liquid biopsy opens up new pathways 
for the early detection of LC. As the concentration of 
DNA may be very low under some circumstances, how 
to detect DNA methylation status accurately and quickly 
is of great importance, which has attracted the attention 
of multiple researches [147–150]. With the rapid devel-
opment of technology, DNA methylation detection will 
become increasingly efficient. In this review, we first 
summarized currently used detection approaches focus-
ing on genome-wide and locus-specific DNA methylation 
analysis. Then, a series of newly developed methods were 
also introduced, such as mass spectrometry and biosen-
sors. Those studies provide insight into areas which could 
improve the detection efficiency and help discover cost-
effective and clinically practical methods.

In the following, we reviewed different types of liquid 
biopsies for the detection and prognosis of LC. CfDNA 
is a typical sample, as tumor cells release DNA into 
peripheral blood and a patient is very receptive to blood 
drawing. CfDNA methylation-based liquid biopsy is of 
great value to the early detection and prognosis of LC. 
As ctDNA is derived from primary or metastatic tumor 
cells, most of the studies focused on ctDNA methylation 
status of LC. Plasma-derived ctDNA is more stable than 
serum-derived one, so most of the samples are serum. 
Compared to the single gene, the diagnostic efficiency of 
multiple genes panel is more powerful. Another impor-
tant sample of LC patient is sputum, which is absolutely 
noninvasive and easy to be obtained. Not all smokers 
eventually develop LC. Moreover, LDCT has potential 
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radioactive harms to patients [151]. Fortunately, DNA 
methylation analysis of sputum has the potential to 
select smokers at high risk for developing LC and rec-
ommend them to receive LDCT scans. Particularly, 
the value of multiple genes panel is higher than a single 
gene. Although Belinsky SA et  al. performed a study to 
use DNA methylation status of sputum to evaluate LC 
prognosis, they found that LC recurrence and selenium 
therapeutic response were not related to DNA methyla-
tion levels. Further investigations should be conducted to 
resolve this issue. As fiberoptic bronchoscopy is a routine 
examination for patients with suspected LC, bronchoal-
veolar lavage fluid is easy to be obtained from fiberoptic 
bronchoscopy examination with minimal invasion. The 
value of DNA methylation-based bronchoalveolar lav-
age fluid for LC focused on early diagnosis. Remarkably, 
the gene RASSF1A has powerful diagnostic value for LC 
in several samples, such as bronchoalveolar lavage fluid, 
sputum, and cfDNA. Also, the gene SOX17 in cfDNA, 
sputum, and urine is of value for LC detection and prog-
nosis. Nevertheless, studies about CTC, exosome, urine, 
pleural effusion, and saliva-based DNA methylation anal-
ysis of LC are limited, which need to be further explored.

Conclusions and future perspectives
Our review systematically summarized the latest 
research on DNA methylation based on liquid biopsies 
for early diagnosis and prognosis assessment of LC. 
Based on this review, DNA methylation-based liquid 
biopsy has a promising future as a novel biomarker for 

LC detection and prognosis (Fig.  3). As a noninvasive 
approach, liquid biopsy has great potential to be the 
biomarkers for the early detection, recurrence moni-
toring, and prognosis of cancer. We guess that when 
coupled to LDCT and serum tumor markers, DNA 
methylation-based liquid biopsy may have a better 
diagnostic performance. Nevertheless, liquid biopsy 
still requires standardization of specimen collection, 
DNA isolation, and DNA quantification. Furthermore, 
we need to improve its clinical application. Compared 
to other liquid biopsies, exosomes and saliva-based 
DNA methylation analysis of LC is still limited, which 
requires further research to fill the gaps. Considering 
the fact that sometimes the concentration of DNA in 
body liquid may be very low, we need to explore highly 
sensitive detection technologies and tools to overcome 
the difficulty.
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Fig. 3  The sketch map of DNA methylation-based liquid biopsies for the detection and prognosis of LC, which are superior to LDCT, conventional 
serum tumor markers, and aspiration biopsy
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