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Abstract 

Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is 
achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, 
enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be 
broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes 
which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous 
heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the 
treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a 
simple sequence at long reads and is expected to be used soon at the bedside or doctor’s office. Here, we review the 
advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
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Introduction
At the half of the twentieth century, the discovery of 
DNA structure brought the demand to sequence it [1–3]. 
The two most popular methods Sanger and Maxam–
Gilbert were introduced based on chain termination 
reactions and chemical cleavage analysis, respectively 
[4–7]. The Sanger method which depends on termina-
tion of the growing nucleotide chain with dideoxythy-
midine triphosphate (ddTTP) dominated the traditional 
Maxam–Gilbert method [8, 9, 32, 33]. It was also used 
by automation and mass in the human genome project 

(HGP) [10–12]. Due to technological shortcomings, the 
human genome was not possible to be fully sequenced 
in 2003 [13, 14]. Recently, the gapless next-generation 
sequencing (NGS) in a T2T consortium makes it possi-
ble to address the whole-genome parts. NGS is one of the 
sequencing technologies that made possible the advance 
in Oxford Nanopore sequencing with ultra-long-read 
capacities [15, 16].

Pocket-sized nanopore sequencers, which do not need 
a reverse transcription process and do not require a high-
skill data entry approach, are becoming in need following 
their introduction for commercial purposes in 2014 [17, 
18]. The technology enabled viral genome sequencing 
during the outbreaks of the Ebola virus in remote areas 
of West Africa and the Zika virus in the deeply forested 
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regions of Brazil [19, 20]. These days it is used in China to 
sequence and identify SARS-CoV-2 [21, 22].

Single-molecule direct sequencing characteristics of 
nanopore-based sequencing methods look tailor-made 
to sequence epigenetics which has a significant role in 
driving cancer and its heterogeneity [23–25]. Methyl-
CpG-binding proteins are identifiers of methylcytosine 
residues to attract transcriptional repressor complexes 
like histone deacetylases (HDAC). Those proteins con-
necting methylation with histone modification are the 
foundations of epigenetics [26, 27]. Here, we review 
an introduction to the development of NGS technol-
ogy based on nanopore sequencing and its application 
to identify epigenetic tumor heterogeneity [28]. We also 
discuss the most studied and more impactful methyla-
tion and related cytosine modifications that exist as CpG 
islands.

Advancement of nanopore sequencing 
as the 4th‑generation sequencer
Sequencing from Sanger to 4th‑generation NGS
DNA sequencing technology has passed through a half-
century of advancements starting from the Sanger and 
Maxam–Gilbert to the fourth generation of NGS, and 
nanopore sequencing is marked as the beginning of 
the fourth generation of gene sequencing technology 
[29–31].

HGP when started in 1990 needed to have a well-estab-
lished sequencing technology that would make the pro-
ject feasible because of the automation of the sequencing 
technology and the scaling up of some advancements 
[34, 35]. Finalization of HGP brought the reference 
human genome sequence as well as the advancement of 
the sequencing technology too [10, 31]. First-generation 
sequencing used for HGP required longer running times 
and high cost with limited throughputs. As sequencing 
demanded more throughput and low-cost technology, 
the shift from the first generation to the second genera-
tion was made in the mid-20s to establish the second-
generation sequencing (SGS) [31, 36–38]. The shifting 
was achieved by devising a massively parallel sequencing 
system that started with the introduction of Roche 454’s 
pyrosequencing [39–41]. Since SGS is limited to short-
read (35-1000 bases) and requires PCR amplification 
like Sanger’s method, it is unable to read regions such as 
high/low G + C regions, tandem repeat regions, inter-
spersed repeat regions, and is hard to sequence [36, 38]. 
These SGS difficulties in resolving repetitive sequences 
of highly fragmented assemblies lead to the develop-
ment of the next era of gene sequencing, third-genera-
tion sequencings (TGSs) including Illumina/Solexa and 
PacBio [44–46]. TGS is marked by single-molecule real-
time (SMRT) sequencing, with improved reading length 

from tens of bases to tens of thousands of bases, reduced 
sequencing time from days to hours, and PCR elimina-
tion of sequencing biases [44, 47] (Fig. 1).

In 2007, Illumina/Solexa was introduced the sequenc-
ing by synthesis (SBS) method of Genome Analyzer plat-
form afterward sequencing by ligation system of ABI’s 
SOLID—Applied Biosystems instrument [42, 43]. SBS 
with bisulfite sequencing could be used to identify the 
methylation of cytosine. However, it could not be able to 
discriminate between C and 5mC from 5hmC [59, 60].

PacBio RS II as the first commercialized third-genera-
tion DNA sequencers that works by enabling the direct 
observation of DNA synthesis has the advantage of 
sequencing long-read lengths, high consensus accuracy, a 
low degree of bias, simultaneous capability of epigenetic 
characterization and is useful for direct detection of base 
modifications such as methylation [36, 38, 44, 47, 50, 54–
56]. Generally, PacBio RS II is ideal for whole-genome 
sequencing, targeted sequencing, complex population 
analysis, RNA sequencing, and epigenetic characteri-
zation. PacBio RS II works without PCR amplification 
and offers the advantages of providing long-read lengths 
(> 20  kb) and maximum read length (> 60  kb) over first 
and second-generation platforms. PacBio system is also 
capable of directly detecting and discriminating epi-
genetic modifications [28, 54]. Moreover, many hybrid 
sequencing strategies have been developed and coupled 
with PacBio to make it more affordable and scalable. The 
noticeable limitations of PacBio include lower through-
put, higher error rates, and higher cost per base [51–53].

In PacBio single nucleotide sequencing, four fluores-
cent-labeled nucleotides with distinct emission spectrum 
are added to the chip called SMRT cell, and a zero-mode 
wavelength light pulse is captured when a base is added 
(Fig. 2). The pulse is then interpreted as a base sequence 
[38, 54].

The most recent (NGS) sequencing with nanopore 
technology (majorly discussed in this review) has a thin 
membrane structure that holds nanoscale holes. When 
biological molecules smaller than the nanopore pass 
through the hole, it detects the potential charge of indi-
vidual molecules passing through it [31, 61, 62]. The four 
various companies are competing to dominate the NGS 
market based on their price, method, and average reading 
length (Table 1).

The development of Oxford Nanopore sequencing 
technology
In 2012, nanopore technology started to be applicable 
for RNA sequencing with reverse transcription and 
amplification methods. Following that, Oxford Nanop-
ore Technologies (ONT) developed a device based on 
an array of biological nanopores that enable reliable 
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Fig. 1  A Diagrammatic examples of first, second, and third-generation sequencing. Image reprinted from [48] with permission of the publisher 
(Request ID 600061564, 25 Nov 2021). B DNA sequencing timeline. The landmark events in DNA sequencing. Image adapted from [49]
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decoding of long sequences with an acceptable error 
rate, low cost, and better miniaturization [64, 94]. Its 
long-read sequencing capacity makes it a landmark 
in the history of sequencing [63–66]. The sequencing 
is a direct, highly parallel, real-time, single-molecule 

method that manifests an improved reading length of 
nucleotides [95–98].

Nanopores in NGS could reduce the time required 
for sample amplification along with enzymes, reagents, 
and optics used in sequencing by synthesis methods. 

Fig. 1  continued

Fig. 2  Principle of single-molecule real-time sequencing. A A single molecule of DNA template-bound Phi 29 is immobilized at the bottom of the 
zero-mode waveguide nanophotonic structure, which is illuminated by laser light. B Diagrammatic order of the phospho-linked dNTP association 
cycle. (1) Phospho-linked nucleotide forms a binding with a template in the polymerase active site. (2) Advancing fluorescence output on the 
analogous color channel. (3) Phosphodiester linkage formation releases the dye binder phosphate product followed by the ending of zero-mode 
waveguide nanophotonic fluorescence pulse. (4) Translocation of polymerase enzyme to the next nucleotide of the template strand. (5) Binding 
of the next cognate nucleotide on the active site of polymerase to continue the cycle [57, 58]. Image reprinted from [57] with permission of the 
publisher (Order license ID: 1164215-1, 25 Nov 2021)
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Nanopore sensors are purely electrical and could pene-
trate blood or saliva DNA samples [67–70]. A nanopore 
is a nanoscale opening biological pore simulated from a 
protein channel through a lipid membrane. The pore can 
be made by ion track etching or straightforward planar 
lithography. Using a sensitive patch-clamp amplifier, the 
ionic current through a single pore can be used to sepa-
rate two chambers labeled cis and trans [71–73]. Voltage 
is also applied across the membrane to create an ionic 
current through the nanopore [67, 72].

With mandatory changes from the previous sequenc-
ing methods, nanopore sequencing is an essential tool in 
medicine, such as in cancer research and diagnosis [73–
76]. Moreover, the pore-based sequencing can be used to 
sequence, assemble, and analyze structural variants and 
detect epigenetic marks to point-of-care implementa-
tion for future human genomics applications [75, 77–79] 
(Fig. 3).

Nanopore sequencing technology was the result 
of a combination of gradual, long, multidisciplinary 

efforts from different directions [80]. The first upbring-
ing was done in 1976 when Erwin Neher and Bert Sak-
mann developed mechanisms to record and measure the 
amount of current flowing through a single ion channel 
embedded in a biological membrane [81, 82]. But, the 
direct idea to use ion current measurement for sequenc-
ing through a membrane-embedded nanopore was intro-
duced by David Deamer in 1989 [83, 84].

Deamer’s lack of a possible ion channel to allow a nucle-
otide to pass through was solved when he came across 
the John Kasianozicz for studying α-hemolysin, which 
is a protein toxin secreted by Staphylococcus aureus 
(Fig.  4A, B) [85, 86]. A phospholipid bilayer embedded 
with biological hemolysin nanopores is separated into 
two chambers, filled with a KCl solution. The applied 
electric potential with ionic current (Fig.  5) pushes the 
negatively charged DNA to the positive pole through 
the pore until it translocates (Fig.  4C) [87]. Transloca-
tion velocity depends on electrical potential applied, 
nanopores used, and the single or double strandedness 

Table 1  Comparison of different NGS technologies. Adapted from [36]

Roche 454 Illumina/Solexa genome analyzer PacBio SMRT MinION

Company Roche Illumina Pacific Biosciences Oxford Nanopore Technologies (ONT)

Release year 2005 2006/7 2010 2014

Method Sequencing by synthesis Sequencing by synthesis Sequencing by synthesis Direct sequencing

Price $13,700 Expensive—$ 49,000 to over a million $695 $1000 with 500 disposable flow cells

Average reads 100–150 bp 75 bp highly accurate 10-25 Kb The longest reads over 100 Kb

Fig. 3  The MinION sequencing device—DNA sequencing is performed by adding a sample to the flow cell. The sensor measures the change 
in magnitude of current in the nanopore when the DNA molecule passes through it. The data streams are passed to the application-specific 
integrated circuit ASIC and MinKnow, which generate the signal-level data. Image reprinted from [63] with permission of the publisher (Request ID 
600062077, 01 Dec 2021)
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of the DNA. Optimal velocity is around 2 nucleotides 
per millisecond, and a 10 × 10 array human genome can 
be sequenced in 8  h [88]. The four nucleotides are dif-
ferentiated by various current disturbances created by 
translocation of ionic signal blockage. The amplitude and 
duration of blockages depend on the length and width of 
the translocating polymer [89, 90].

To break into the sequencing by synthesis sector, 
ONT designed a more stable membrane to support the 
nanopores, which were initially manufactured from 
lipids. Since the lipid was extremely sensitive to pH 

and temperature, it was replaced by lipid-coated Teflon 
hand-fabricated material [99]. The usual membrane 
works only seconds to minutes before it collapses and 
takes the whole day of production of the membrane to 
generate half an hour of data. ONT moved on to syn-
thetic membrane material that makes it more effec-
tive. Moreover, to overcome this challenge, in February 
2012 GridION, Flongle, MinION, and PromethION 
platforms were displayed [100, 104, 105]. Perhaps Min-
ION took the most attention, as it deciphers almost a 
billion DNA bases in 6 h while priced at $900 (Fig. 6) 
[102, 103].

Fig. 4  Representation of α-hemolysin from Staph aureus. Reprinted from [91] with permission of the publisher (CCC License ID: 5196920847168, 
27 Nov 2021). A Side view of the alpha-hemolysin heptameric complex indicates the exact location of the phospholipid bilayer. B View of 
alpha-hemolysin from the cis entrance to the pore [86]. C Structure of α-hemolysin nanopore embedded in a phospholipid bilayer. In nanopore 
sequencing, the motor protein guides the DNA strand to pass through the pore. This causes current fluctuations through the membrane. The 
nanopore signal later is converted into a nucleic acid sequence by the base caller. The DNA substrate (violet) is inserted into the pore by an applied 
electric field. Image adapted from [92]
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Biological versus solid‑state nanopores
The initial biological nanopores still yielded the best 
results with easily makeable, highly modifiable, and 
reproducible structures that allow repeatable current 
measurement [109–111]. The inorganic nanopores have 
strength in terms of temperature, solvent compatibility, 
robustness, and the ability to be integrated with semi-
conductor electronics [112–114]. Solid-state nanopores 
have an advantage over biological counterparts such as 
the stronger thermal, mechanical and chemical stability; 
ease of modifications; tunable pore size and morphol-
ogy, readily able to be integrated into nanofluidic or other 

nanodevices, and scalability of fabrication [115–118]. The 
most common solid-state nanopores are SiO2 and low-
stress silicon-rich nitride SiNx. In addition to the well-
developed handling of these materials for semiconductor 
microelectronic fabrication, silicon-based nanopores 
are preferred for their robustness, good resistivity, and 
dielectric strength [119–121]. Other elements tried for 
nanopores are Al2O3 and HfO2, to provide unique mem-
brane fabrication [122–125].

Solid-state pores, first made by ion-beam sculpting 
later by transmission electron microscopy (TEM) drill-
ing or dielectric breakdown, have the limitations of being 

Fig. 5  Biological nanopore instruments with representative ssDNA and protein-bound DNA events [67, 93]. Image reprinted from [67] with 
permission of the publisher (CCC License ID: 600061571, 25 Nov 2021). A The nanopore instrument uses an amplifier to apply a command voltage 
Vc and measure ionic current Ip through the nanopore channel. B At 120 mV in 1 M buffered KCl solution, 120 pA of open-channel current is 
attenuated to 15 pA for 0.2 ms upon the capture of ssDNA into the channel from the cis-chamber until the DNA passes through the pore. With Exol 
and ssDNA in the cis-chamber, bound events are also observed in which the duration of the current shift is extended 2 ms [67]

Fig. 6  Comparison of currently available Oxford Nanopore Technologies. Adapted from [23]
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unable to achieve the required thickness needed for 
membrane stability [107]. In comparison with biopores, 
solid-state nanopores exhibit lower single-molecule 
detection due to the intrinsic thickness and lack control 
over surface charge distribution [126].

A versatile nanopore membrane based on MoS2 was 
developed with signal amplitude five times higher than 
solid-state Si3N4 membranes, and unlike graphene nano-
pores, no special surface treatment was needed to avoid 
strong interactions between DNA and the surface [126, 
127]. Monolayer 2D materials such as graphene, MoS2, 
WS2, and hexagonal boron nitride (h-BN) are thicker as 
the spacing between the nucleotides [128, 129]. Com-
pared with traditional solid-state nanopore membranes, 
monolayer 2D membranes are ideal for nanopore devices 
as they exhibit a high ionic current signal-to-noise ratio 
and relatively large sensing regions [129, 130]. Solid-state 
nanopores channels are long around 100 times the dis-
tance between two bases in a DNA molecule (0.5  nm) 
[131, 132]. Even though it has a sticking effect during 
translocation, ultrathin graphene monolayer membranes 
drilled by electron beams after being placed on a silicon 
nitride are preferable solid-state nanopore technology 
[131, 133].

Following identification of hemolysin as biologi-
cal pore, stable membrane nanopores allowing passage 
of fewer nucleotides at a time were required to reduce 
entry of numerous nucleotides at once [116]. Thus, 

Funnel-shaped Mycobacterium smegmatis porin A 
(MspA) was introduced as an alternative to hemolysin 
[116, 134]. Unlike mushroom-shaped α-hemolysin, MspA 
has a reduced passing number of nucleotides in the stem 
[135]. To improve the readout of ONT nanopores, CsgG 
(Curli-specific gene products A-G) Escherichia coli outer 
membrane lipoprotein was also introduced [136]. Out of 
tens of nanopores tested and thousands of mutants, the 
CsgG pore had a very narrow and well-defined passage 
for a DNA strand and outsmarted all the pores tried by 
ONT [137, 138]. Later CsgG pore was engineered with 
reading heads that improved the signal and accuracy of 
the sequence readout [139, 140]. Other protein nanopo-
res include Outer membrane protein F (OmpF), Outer 
membrane protein G (OmpG), Aerolysin, Nocardia far-
cinica peptide A/B (NfpA/NfpB), and cytolysin A (ClyA) 
were also been tried [112, 141] (Fig. 7, Table 2).

Diversifying the nanopore type from different build-
ing materials to get more precision, size and chemical 
properties have widened the application of nanopores 
beyond sequencing [143]. Self-assembled pore types are 
produced from a variety of materials including proteins, 
peptides, synthetic organic compounds, and DNA of var-
ious [144]. Companies like Genia technologies (acquired 
by Roche in $300 million aiming to combine biological 
nanopores with an optical detection), quanta pore, quan-
tum Biosystems (by prof. T Kawai combining tunneling 
electron detector with nanopore sequencing), Base4, and 

Fig. 7  Examples of biological nanopores. a α-HL, b MspA, c Phi 29, d ClyA, e FhuA, f aerolysin, g SP1. Reprinted from [142] with permission of the 
publisher (CCC License ID: 1164219-1, 25 Nov 2021)
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Table 2  Different biological nanopores characteristics. Adapted from [142]

Biological nanopore Diameter (nm) Analyte Comment

α-HL 1.4 RNA, ssDNA, aa, 
polymers, pep-
tides, proteins

Large-scale application due to its reproducible structure and easy manipulation by site-
directed mutagenesis

MspA 1.2 ssDNA, dsDNA Suitable geometry for nanopore DNA sequencing

Phi 29 3.6 ssDNA, dsDNA Allowing for the detection of large analysts and offering more space for further modifica-
tions

ClyA 3.3 ssDNA, proteins Suitable for the accommodation of small to medium-sized proteins within the nanopore 
lumen

FhuA 2.4 Enzymes, 
protein–DNA 
interaction

Examining the proteolytic activity of an enzyme at pH 3.9 and determining the kinetics of 
protein–DNA–aptamer interactions

Aerolysin 1–1.7 Peptides, proteins Sensing the α-helix peptides and unfolded proteins

SP1 3 ssDNA Analyzing of ssDNA

Fig. 8  Various types and geometries of nanopores. Reprinted from [67] with permission of the publisher (CCC License ID: 600061571, 25 Nov 2021)
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Noblemen Biosciences aim to cleave single nucleotides 
into droplets in a water–oil emulsion and detect their 
presence by a chemical cascade of reactions [89, 145] 
(Fig. 8).

Controlling DNA translocation through a nanopore
One of the crucial hurdles for the success of nanopores 
to be a reliable DNA analysis tool is the ultrafast and sto-
chastic nature of DNA translocation, which demanded 
the incorporation of motor proteins to translocate DNA 
by base wise and other experimental modifications [107]. 
The origin of this problem is the velocity fluctuations due 
to random diffusion Brownian motion, which combine 
with a directed motion to create the event of a drift–dif-
fusion process [146]. To achieve a single-nucleotide reso-
lution, the translocation speed of the DNA is expected 
to be 1–100 ms/nt [107, 147]. Incorporating a biological 
motor or nanobead and regulating the driving voltage by 
adjusting pore geometry and experimental conditions 
are the two ways that have been tried [107, 148]. Sens-
ing each nucleotide of a DNA strand and delivering the 
strand into the nanopore in a controlled manner were 
tried to be addressed by modifying macroscopic prop-
erties such as solvent viscosity and ion concentration or 
temperature [149, 150]. Molecular dynamic simulations 
providing a series of metal-dielectric layers have also 
been proposed as an additional option [151].

Incorporation of a biological motor or nanobead
To enhance base recognition, DNA exonuclease (from E. 
coli exonuclease I (ExoI)) and DNA polymerase enzymes 
were used as a motor in α-HL [152]. Weighing disad-
vantages like being unable to have multiple reads due to 
complete digestion of the strand, and the demand to have 
a precise feeding of nucleotides into pores, made exo-
nuclease enzymes outdated early in motor protein stud-
ies [153, 154]. The first polymerase that is considered as 
A-family was the Klenow fragment (KF) of E. Coli DNAP 
I with α-HL pores [155]. However, due to stability and 
processivity issues, the A-family DNAP was replaced 
by B-family DNAP, i.e., Phi 29 [156]. The bacteriophage 
phi29 DNA polymerase (phi29 DNAP) has a high affinity 
for DNA substrates and works well with α-HL and MspA 
pores [157]. Unlike polymerase, helicases with the abil-
ity to bind single-stranded nucleic acids require a partial 
duplex where the new nucleotides are added to the 3′ end 
of the primer [158]. Helicase has also a better affinity, can 
eliminate double reading bases and skipping due to fluc-
tuation in synthesis rate, and exhibits the proofreading 
trait of Phi 29-DNAP [159, 160] (Fig. 9).

An integrated nanopore platform with a nanobead 
structure was reported to decelerate DNA movement 
and the noise is reduced by a polyimide layer along with 

a controlled dielectric breakdown (CDB) process for 
nanopore fabrication [161]. The second way of control-
ling translocation relied on regulating the driving voltage 
as mentioned above, and adjusting pore geometry and 
experimental conditions is helpful [162–164].

Adjusting pore geometry
Limited pore geometries were the factors that forced 
research to expand into solid-state nanopores, which 
can give diversity in pore shape. But, they have reduced 
spatial resolution due to the required thickness needed 
for membrane stability [107, 119, 165]. Decreasing the 
nanopore diameter to almost the same size as that of 
ssDNA, i.e., 1.4 nm, decreases the translocation speed to 
1.4 microsecond/base, making narrowing the nanopore 
one effective way to improve translocation [166]. When 
the pore diameter is reduced, the amplitude of current 
signals from DNA increases. Compared to cylindrically 
shaped nanopores on a continuum modeling system, 
conical-shaped nanopores produce greater signal ampli-
tudes from biomolecule translocation [167].

Adjusting experimental conditions
The ultrafast translocation speed of single-stranded DNA 
(ssDNA) in solid-state nanopores is one of the predica-
ments, and there are various ways to decelerate the speed 
[161, 166, 168], one of which is controlled dielectric 
breakdown (CBD) with a divalent metal cation especially 
Ca2+ provides a silicon nitride nanopore with a decelera-
tion of 100 microseconds per base [169]. Pore-dwelling 
time was shown to be increased by varying electrolyte 
cationic species and solution molarities. For solid-state 
pores, when the cation size decreases from K+ to Na+ 
to Li+, translocation time strongly increases both for 
dsDNA and ssDNA and that is due to the stronger bind-
ing capacity of smaller cations to the DNA strand [170]. 
Slowing down of DNA translocation velocity using a 
LiCl salt gradient and nanofiber mesh was implemented 
to maintain the DNA molecule in the sensing time of 
nanopores. Compared to other alkali solutions, LiCl can 
extend the dwell time by 20  ms (five times longer than 
NaCl and KCl) for which it reaches 100  ms when the 
concentration increases and the nanofiber mesh further 
retards it by 162 to 185 ms [171]. Lowering the transloca-
tion speed of ssDNA by using 15-fold increases in LiCl 
salt concentration brings counter-ion binding and effec-
tive lowering of the overall charge of DNA, which in turn 
lessens the electrophoretic driving power of the system 
to slow down the translocation velocity. Lowering the 
translocation enhanced resolution until it allows 5’mC to 
be distinguished from C without using methyl-specific 
labels is mandatory [172]. On the other side, decreas-
ing the KCl concentration from 1 to 0.1 M resulted in a 
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shorter time to pass through the nanopore and oppositely 
longer transit time was gained with a low concentration 
of MgCl2 in silicon nitride nanopore systems [173].

Enhancing the signal‑to‑noise ratio SNR
The major hurdle in the progression of nanopore technol-
ogy is noise in the ionic current, limiting the signal-to-
noise ratio (SNR). Solid-state nanopores have the highest 
SNR due to the large currents at which they can be oper-
ated and the relatively low noise at high frequencies. Still, 
the translocation speed slowdown plays a major role and 
MspA was shown to increase the SNR > 160 fold [174] 
(Fig. 10).

Nanopore noise power spectral density (PSD) is com-
posed of 1/f noise: white noise, dielectric noise, and 

amplifier noise, each dominating at different frequencies. 
When we see the origin of the noise, 1/f noise is due to 
surface and bulk effect; white noise is from thermal and 
shot effect; dielectric noise from dielectric membrane 
current leakage and amplifier noise are due to capaci-
tance in the chip and amplifier [175] (Fig. 11).

To manipulate for SNR improvement, the diameter 
of the nanopore is limited by the molecule size, and the 
membrane thickness is constrained by material prop-
erties [176–178]. Using theoretical thickness limits of 
amorphous, Si membrane-based nanopore is becoming 
the leading material for increasing the ionic conductance 
and producing a high signal-to-noise ratio for sequenc-
ing applications [179, 180]. Various approaches are fol-
lowed to overcome the noise limitations, for example, 

Fig. 9  HEL308—helicase as motor protein translocating ssDNA A shows the mechanism and B Domain organization and motions of HEL308. 
The two (recombination protein A) RecA 1 and 2 domains compose the motor part; here, ATP binds between them and drives or rectifies the 
mechanochemical cycle, and the auxiliary ratchet domain makes several contacts with ssDNA and may offer determinants of the potential 
sequence specificity [159, 160]. Image adapted from [159]
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increasing the conformational stiffness and decreasing 
pore size in biological nanopores [174], surface function-
alization of the SiNx nanopores with a hydrophilic layer 
such as Al2O3 or SiO2 [124], application of high electric 
fields to the pore [181], choosing a pH far from the iso-
electric point of the nanopore material [174] which are 
proved to help reduce the noise in solid-state nanopores 
[178]. Suppression of dielectric noise by minimizing the 
capacitance and dielectric loss of the chip is also another 
way to reduce noise [174, 175].

The other improvement area of ONT is the compu-
tational requirements for higher SNR and throughputs 
[182, 183]. This demands more algorithms for base call-
ing, mapping, and variant calling [184]. Low SNR due 
to technological limitations of the nanopore sequenc-
ers makes it unable to read and determine the required 
nucleotide sequences [182].

Expanding the range too long reads
To sequence unambiguously spanning repetitive ele-
ments of the genome, long reads are required for 
increasing a significant length [187, 188]. The method 
of pipetting reagents as slowly as possible to minimize 
shearing force and preserve long DNA templates during 
library preparation was developed and called SNAILS (a 
slow nucleic acid instrument for long sequences) [187]. 
SNAILS implements automating the slow pipetting of 
library preparation reagents to increase the consistency 
and throughput of long-read nanopore sequencing [187, 
189]. Focusing on DNA extraction and enzymatic reac-
tions to further increase the read length, it is possible to 
transform from 50 to 70 kb of mechanical shearing to 90 

Fig. 10  Noise in biological and solid-state nanopores. Image adapted from [174]

Fig. 11  Ionic current noise in nanopores for solid-state SiN2 
nanopores and biological α-HL (a) pore performed at a constantly 
applied bias of 100 mV in 1 M KCl buffer at pH 7 at a bandwidth of 
10 kHz (b). Image adapted from [174]
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to 100  kb reads of transposase-mediated fragmentation 
[190].

At the beginning of the millennium, the initial draft of 
the human genome was not completed and remained as 
such until the Oxford Nanopore sequencing technology 
complements the PacBio sequencing [191]. So, we see the 
complete set of human genomes sequenced. The remain-
ing 8% of the genome addressed by the telomere-to-tel-
omere (T2T) consortium included: gapless assemblies 
for all 22 autosomes plus chromosome X, all centromeric 
satellite arrays, and the short arms of the five acrocentric 
chromosomes [16, 192]. Long-read sequencing gets into 
inaccessible parts of the genome such as centromeres 
[101], telomeres, and acrocentric genomic regions [193]. 
In those regions, massive arrays of tandem repeats pre-
dominate and manifest the highest mutation rates both 
in germline and soma makes [194]. Identification of those 
techniques allowing access to the regions was a blessing 
for genomic analysis research and industry [101].

Computational advancements
Computational analysis in sequencing experiments has 
various tools [104, 105]. But their selection needs to be 
clear, and separate tools are required for individual steps. 
Managing and integrating the tools is also difficult. Com-
bining tools to pipelines might help and play a role in 
mapping sequencing reads, calculating methylation lev-
els, and distinguishing differently methylated positions 
or regions [106]. Since movement was slow to allow iden-
tification of individual nucleotides, the other challenge 
was creating a well-controlled ratchet of the nucleotide 
through the pore [87, 107, 108].

Nanopore sequencers can generate enormous amounts 
of data within a short period due to the development of 
computational systems that incorporate nanopore chem-
istry and base calling software [182, 184]. The software 
performs sequencing and reading of nucleotide frag-
ments followed by two approaches: read mapping and 
de novo assembly [345]. Read mapping is an alignment 
of reads against the reference genome to identify varia-
tions in the sequenced genome [383]. De novo assembly 
is used to combine the reads for building the original 
sequence in the absence of a reference genome [384]. In 
2014, Oxford Nanopore Technologies (ONT) launched 
a beta-testing program for the MinION followed by the 
development of novel computational approaches for base 
calling, data handling, read mapping, de novo assembly, 
and variant discovery of this new generation of data [15, 
195]. These approaches improve the de novo sequencing 
of genomes and make possible the investigation of struc-
tural variants with unrivaled accuracy and resolution. 
The advancement can also reduce the higher error rate of 
nanopore sequencing techniques [196].

Nanopore chemistry software  A change in sequencing 
chemistry of sequencers like MinION and GridION has 
shown a valuable improvement in error rates. Before the 
production of MinION, sequencing through the biologi-
cal nanopore allows 1D sequencing of a template strand 
up on unwinding the double strands by motor protein 
[182, 387]. However, early models of MinION provided 
2D sequencing software that incorporates proofreading 
of both strands (Template and complimentary), realized 
due to ligation of hairpin structure to the DNA strands. 
The accuracy of the 2D read has been more than 5% of the 
1D read (read of the template strand alone) [64]. Recently, 
ONT has developed 1D2 sequencing software that per-
mits the sequencing of the template and complementary 
strands without physical ligation. Due to this change, 1D2 
has shown an increase of 7% accuracy than 1D software 
[182, 385, 386].

Base calling software  A base calling that involves the 
computational process of converting the obtained raw 
current signals to nucleotide sequences is very important 
for the detection of epigenetic modifications [388]. Hence, 
ONT has gone through various development stages of 
base calling software. The base calling was obtained from 
fragmented current data using HMM at the early stages of 
development, followed by the implementation of a recur-
rent neural network in 2016 [389]. Raw current data have 
been used to collect base calling in 2017. As the accuracy 
demand increased, updated flip-flop and customized base 
calling models were practiced in 2018 and 2019, respec-
tively [184, 390].

Real-time base calling can be simplified as the cur-
rent formats like BAM/CRAM (Binary alignment map/
Compressed reference alignment map) are unable to 
completely reach the ultra-long reads [77]. Up to five 
neighboring bases influence the current level of a single 
DNA strand that traverses through MspA [185]. Such 
kind of limitations inspired to use of the most dynamic 
programming such as the Viterbi algorithm [186]. 
Of course, genotyping accuracy is racing short-read 
sequencing instruments and it is because of insufficiency 
to discriminate between heterozygous and homozygous 
alleles. This urges a need for structural variant genotyp-
ing tools for long, single-molecule sequencing reads [77]. 
The computational program of MinION has identifica-
tion steps to convert base calling electronic data into the 
required nucleotide sequences [63]. First, the motor pro-
tein found above the nanopore unwinds the dsDNA to 
make proper passage of the ssDNA through the nanop-
ore (Fig. 12A). Second, the ionic current signals obtained 
from the nucleotide reading are segregated into mean, 
standard deviation, and length (Fig.  12B). Those signals 
have a constant sampling frequency of 5000  Hz. Third, 
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the segregated results are then transferred to the machine 
learning approach box for translating into the template 
and adjunct signals (Fig.  12C). Finally, the sequence of 
signals results in a display with the computer device 
(Fig.  12D). The performance of each step can be evalu-
ated through graphs based on throughput, read length, 
and accuracy (Fig. 12E, F, G, H) [195].

Current challenges and opportunities of nanopore 
sequencing technology
The two challenges that need to be solved in nanop-
ore sequencing are enzyme turnover and the interval in 
which the nanopore current is released [67, 186]. The 
enzyme turnover is used for the identification of succes-
sive bases in the sequence stochastic, giving an imperfect 
ratchet in which the interval between each advance of 
DNA is variable [197]. Some of the intervals may be so 
short, overlooked in system noise, or repetitive sequences 
of identical bases may not be recognized in long intervals. 
Improved ratcheting mechanisms for accurate nanopore 
sequencing might solve the issue [186].

Solid-state nanopores modification and functionaliza-
tion for mimicking some of the important biological pore 
characteristics are advancing. However, nanopores are 
single-use only and require more effort to achieve revers-
ible functionalization [198, 199]. Therefore, a hybrid 
biological/artificial nanopore is the most promising strat-
egy to combine robustness and selectivity [200–202]. 
Nanopore technology in terms of consensus base calling 

accuracy is unable to compete with other sequencing 
platforms [203, 204]. Single-molecule sequencing (SMS) 
has trouble producing sufficient signals, and as a result, 
the error rates of the individual sequencing reads are 
higher than SBS sequencing data [205, 206]. Of course, 
nanopores enabled genome-wide and transcriptome-
wide analysis on top of these base modifications in epi-
genomics. Additionally, as a nanopore technology being 
applied to protein sequencing too, for proteomics, the 
opportunity brings the multi-omics to a single platform, 
which would be nanopore sequencing, the future of 
sequencing for all applications including in human health 
and medicine [207–209].

The competition with PacBio and the biggest market 
shareholder Illumina is enormous. Although high-cover-
age sequencing is required in SMRT, detection with high 
accuracy is possible using low-coverage reads in nano-
pore sequencing [209, 210]. It has been easy for Oxford 
Nanopore to defeat both Illumina and PacBio on the bat-
tlefields of legal charges; it seems to continue as such due 
to super-packed patents held by Oxford Nanopore Com-
pany for producing, hunting, and claiming for more than 
a decade [211–213].

Even though many solutions emanate to the challenges 
as mentioned in Sect.  3, the decade-long journey of 
nanopore sequencing technology challenges remains still 
concerning for the adepts working on the technology. 
Daniel Branton once predicted in his “the potential and 
challenges of nanopore sequencing” paper in 2008, those 

Fig. 12  Steps for computational sequencing of DNA using a nanopore. Image reprinted from [195] with permission of the publisher (License ID: 
1164222-1, 25 Nov 2021)
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similar challenges still exist, but great advancements have 
been made too [108].

Workflow for Nanopore sequencing
All relevant regulations for working with human subjects 
should be compiled before sample and library prepara-
tion for nanopore sequencing proceeds [214]. Extrac-
tion of nucleic acids followed by library preparation and 
base calling was subsequently performed [66]. Before 
sequencing and assembling large DNA fragments from 
short DNA oligonucleotides, a general step is increas-
ing the nanopore sequencing throughput of small DNA 
amplicons [214, 215] (Fig. 13).

Mapping of nanopore reads is done by alignment to the 
reference genome with Minimap2. For reads matching 
known genes, the gene name is added to the correspond-
ing SAM record using the Sicelore Add Gene Name Tag 
method; here, the genes are annotated with their nanop-
ore read sequence and read qualities [217] (Fig. 14).

Epigenetic tumor heterogeneity and sequencing 
technologies
Epigenetics and tumor heterogeneity
Epigenetics
Epigenetic components could be conceived as writers, 
readers, and erasers; writers add chemical groups to 
histones or DNA (e.g., histone acetyltransferase HATs, 
histone methyltransferases HMT, or DNA methyltrans-
ferases) [219]. Erasers like histone deacetylases HDACs 
or histone demethylases HDMTs remove the added 
chemical groups [220–222]. A set of reader domains that 
act as effector proteins by attaching to specific sequences, 
e.g., methyl-binding domain proteins or Bromo and 
extra-terminal (BETs) domain proteins, are also known 
[220, 223, 224]. Out of this DNA methylation which 

refers to the modified nucleotide 5-methylcytosine (5mC) 
[225] is the first epigenetic factor to be identified and the 
main focus here. 5mC is found within all sequences but 
is highly rich at sequences where cytosine is immediately 
followed by guanine in the 5′ to 3′ direction [226]. 5mC 
is considered as a CpG site, while regions with high CpG 
sites are known as CpG islands found over two-thirds of 
gene promoters and can serve as epigenetic regulatory 
switches that restrict gene expression when methylated 
[227, 228]. CpG islands at the promoter region silence 
genes for normal developmental requirements and dur-
ing tumorigenesis [229, 230]. Unlike relatively plastic 
transcriptional regulation done by histone modification, 

Fig. 13  The workflow for nanopore sequencing. Image adapted from [216]

Fig. 14  Workflow and period for MinION nanopore sequencing and 
assembly process. The estimation was based on a rapid barcoding 
sequencing kit, which could pool twelve samples in a single run. 
Base calling and de novo assembly are dependent on the computer’s 
capacity used. Image adapted from [218]
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gene silencing through DNA methylation is more durable 
and persistent [231]. As a consequence, methylation is 
the primary epigenetic silencing mechanism used for the 
repression of endogenous transposons, imprinted genes, 
and pluripotency-related genes in somatic cells [232, 233] 
(Fig. 15).

Other than methylation, there are additional dinucleo-
tide modifications with potential regulatory roles such 
as 5-hydroxymethylcytosine (5hmC), 5-formylcytosine 
(5Fc), and 5-carboxylcytosine (5CaC) [236]. DNA meth-
ylation at the 5th position of cytosine forms 5-methyl 
cytosine (5mC), which is the main DNA modification 
occurring mostly in CpG dinucleotide sites of mam-
mals. 5mC can be converted to 5hmC, 5Fc, and 5CaC 
by ten–eleven translocation families of enzymes called 
α-ketoglutarate-dependent dioxygenases [237, 238]. 
Indeed, distribution of 5hmC is possible at protein-cod-
ing gene bodies and promoters found on long non-cod-
ing RNAs, LncRNAs (Fig. 16) [239].

The regulatory function of methylation, especially 
in hypermethylation, lays in the recruitment of co-
repressors after the promoter regions of a gene get extra 
methylation [241]. Such extra methylation leads to tran-
scriptional silencing. The regulation process is directed 
by DNA methyltransferases (DNMT 1, 2, 3A, and 3B) 
and methyl-CpG-binding proteins, which identify 
methylcytosine residues to attract transcriptional repres-
sor complexes like histone deacetylases (HDAC) [27, 
242, 243]. Histone acetylation (HAT) and histone dea-
cetylation (HDAC) ultimately affect gene transcription as 
regulators [27]. There are small RNAs that manage scaf-
folds that are complementary and nascent but used as 
an agent to guide histone and DNA methyltransferases 

[244]. Apart from small RNAs, chromatin-associated 
long non-coding RNA scaffolds play an independent but 
co-transcriptional silencing role that provides a system 
to detect and silence inappropriate transcriptional events 
[245]. This system also allows the registration of memory 
for what is carried out as self-reinforcing epigenetic loops 
[246] (Table 3).

The role of oxidized 5-methylcytosine was contro-
versial for a long time, but the discoveries of binding 
proteins as a reader to these sites started to show their 
roles [248, 249]. For 5hmC, a reader protein like UHRF2 
(Ubiquitin-like with PHD and ring finger domains 2) was 
recognized [250]. But, downstream biological effects 
of this binding have not yet been identified [248, 251]. 
5fC and 5caC exist in low amounts specifically in cer-
tain genomic locations like enhancers and promoters, 
and targeted studies have identified binding proteins for 
those modified nucleotides [252].

Association of epigenetic dysregulation with cancer 
and targeted therapeutics
The advancement of molecular sequencing technolo-
gies to characterize epigenetic aspects has made it one 
of the other hallmarks of cancer [253, 254]. DNA meth-
ylation profiles regulate key cellular processes such as 
apoptosis, lipogenesis, and downstream transcriptional 
effects of the MAPK-pathway [255]. Uncontrolled regula-
tion of methylation in those gene regions results in the 
growth of tumor cells in colorectal cancer (CRC) [256]. 
Further, methylation-associated epigenetic driver genes 
have been identified to be involved in the early stages of 
tumorigenesis in CRC. CRC tumors display CpG island 
methylator phenotypes (CIMPs). Those phenotypes show 

Fig. 15  The linkage between DNA methylation and histone modification in pluripotency genes. In embryonic stem cells, pluripotency genes 
such as Oct 3/4 and Nanog have acetylated (unmethylated) CpG islands. These islands are combined with acetylated Histones (Ac) H3 and H4 and 
methylated (Me) lysine 4(K4) of Histone H3. With the initiation of differentiation histone methyltransferase (G9a) together with histone deacetylase 
(HDAc) enzyme binds to the complex. The binding leads to deacetylation of H3 and H4. At the same time demethylation of K4 is catalyzed by HDAc 
and methylation of K9 is catalyzed by G9a. This modification created a binding site for the chromodomain protein heterochromatin protein 1(HP1). 
Finally, G9a recruits the methylases DNMT3A and DNMT3B (dark purple circles), which will mediate the de novo methylation of the deacetylated 
DNA [232, 234]. The process favors epigenetic silencing and methylation while blocking heterochromatinization. Image reprinted from [235] with 
permission of the publisher (Request ID 600061575 25 Nov 2021)
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high concordance with specific genetic changes, disease 
risk factors, and patient outcomes [257]. So, hypermeth-
ylation of the CpG island region leads to the silencing of 
tumor suppressor genes to cause the growth of tumor 
cells [258], while hypomethylation of the CpG island 
promotes transcriptional oncogenes [259]. Dysregulated 
epigenetic mechanisms, methylation, and histone modi-
fication are also highly associated with the occurrence of 
glioblastoma [260].

5hmC has specific characteristics which make it suit-
able for biological functions, majorly to block 5mC-
seeking protein interactions with DNA [261, 262]. As a 
transient intermediate, it has a role during germ cell and 
early embryonic development to facilitate DNA demeth-
ylation [263–266]. During cell differentiation and repro-
gramming, TET-mediated DNA demethylation is started 
with the oxidation of 5mC to 5hmC [267–269]. With 

further oxidations, 5hmC is transformed to an interme-
diate 5caC and eventually completes DNA demethylation 
when converting to cytosine [266–270].

On gene bodies and promoters, 5-hydroxymethyl-
cytosine (5hmC) has various roles in cancer hallmarks 
and differential 5hmC levels were correlated with clini-
cal outcomes and tumor status in colorectal cancer 
(CRC) patients [239]. 5hmC on the other way has a role 
in the regulation of DNA functions that makes it one of 
the early cancer diagnosis and prognosis markers in the 
future [271, 272]. This expectation comes after the rec-
ognition of 5hmC as a transitional state intermediate 
that has its role to play in the demethylation process of 
genetic regulation [263, 273].

Generally, epigenetic aberrations of DNA methylation, 
histone modifications, chromatin remodeling, and micro-
RNA can show cancer development and progression and 

Fig. 16  The landscape of epigenetic mechanisms. A Cytosine and adenine modification, cytosine by methylation, hydroxymethylation (hmC), 
formylation (fC), and carboxylation (caC) while adenines by methylation. B Histone modification and nucleosomes having different histone variants 
change position. C Non-coding RNAs play an important role in transcription regulation and are sometimes considered epigenetic mechanisms. D 
All RNA modifications can also be considered as a part of epigenetics. Image adapted from [240]
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are used as biomarkers for patient stratification [274, 
275]. They are also used as predictive models to allow the 
use of cancer epigenetics in the diagnosis, prognosis, and 
treatment of patients [274, 276] (Table 4).

Epigenetics study moving deep in exploration to target-
ing epigenetic aberrations as a potential anticancer ther-
apy is suitable for reversible nature of epigenetic changes 
[277, 278]. Several epigenetic inhibitor agents have been 
developed and approved for use in routine clinical prac-
tice [253, 254, 279]. The mechanism of epigenetic therapy 
comprises inhibitors of methylation or demethylation 

and acetylation or deacetylation of DNA and histone 
proteins [253, 280–282]. Inhibitors of epigenetic regula-
tory mechanisms include various analogs of adenosine, 
cytidine or deoxycytidine or non-nucleoside small mol-
ecule inhibitors for DNMT and hydroxamic acids such 
as trichostatin A (TSA) and suberoylanilide bishydroxa-
mide (SAHA) for HDAC [27, 283]. Epidrug designs have 
targeted HDAC inhibitors such as SAHA and romidep-
sin for refractory cutaneous T cell lymphoma [284, 285], 
belinostat for peripheral T cell lymphoma [286, 287], or 
panobinostat for multiple myeloma including decitabine 

Table 3  Chromatin modifications, readers, and their functions. Adapted from [247] with permission of the publisher (License ID 
1165278-1, 01-Dec-2021)

Chromatin modifications, readers, and their function

Chromatin modification Nomenclature Chromatin-Reader motif Attributed function

DNA modifications

5-methylcytosine 5mC MBD domain Transcription

5-hydroxymethylcytosine 5hmC Unknown Transcription

5-formylcytosine 5fC Unknown Unknown

5-carboxylocytosine 5caC Unknown Unknown

Histone modifications

Acetylation k-ac Bromodomain Tandem PHD fingers Transcription, repair, replication, and con-
densation

Methylation (lysine) K-me1, K-me2, K-me3 Chromodomain, Tudor domain, MBT domain, 
PWWP domain, PHD fingers, WD40/β propel-
ler

Transcription and repair

Methylation (arginine) R-me1, R-me2s, R-me2a Tudor domain Transcription

Phosphorylation Ser and Thr S-ph, T-ph 14-3-3, BRCT​ Transcription, repair, and condensation

Phosphorylation (tyrosine) Y-ph SH2 Transcription and repair

Ubiquitylation k-ub UIM, IUIM Transcription and repair

Sumoylation k-su SIM Transcription and repair

ADP ribosylation E-ar Macro domain, PBZ domain Transcription and repair

Deimination R-Cit Unknown Transcription and decondensation

Proline isomerization P-cis–trans Unknown Transcription

Crotonylation K-cr Unknown Transcription

Propionylation K-pr Unknown Unknown

Butyrylation K-bu Unknown Unknown

Formylation K-fo Unknown Unknown

Hydroxylation Y-oh Unknown Unknown

O-Glc-NAcylation (Ser and The) S-GlcNAc; T-GlcNAc Unknown Transcription

Table 4  Epigenetics role in tumorigenesis and progression. Adapted from [247] with permission of the publisher (License ID 1165278-
1, 01-Dec-2021)

Enzymes/readers Mutation Tumor

Cancer mutations affecting epigenetic 
regulators of DNA methylation

Methyltransferase DNMT3A M, F,N,S AML, MDS, MPD

Hydroxymethylation and derivatives TET1 T AML

Hydroxymethylation and derivatives TET2 M, N, F AML, MPD, MDS, CMML
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as DNMT inhibitor for hematological malignancies such 
as myelodysplastic syndromes, acute myeloid leukemia 
and chronic myelomonocytic leukemia [220, 288, 289].

Numerous epigenetic biomarkers with cancer detec-
tion, diagnosis, and/or prognosis capability have been 
identified [290, 291]. However, their clinical availabil-
ity is low. Lack of independent validation and variable 
experimental designs in multicenter groups hindered the 
advance of translational studies to convert the markers 
to clinically useful tools [292]. The lack of validation also 
hinders the availability of easy and affordable testing for 
cancer [290].

Tumor epigenetic heterogeneity
Heterogeneity of tumors could occur among patients, in 
the same patient of multiple tumors with the same origin 
or within a tumor subpopulation, which is called inter-
patient heterogeneity, intra-patient heterogeneity, or 
intra-tumor heterogeneity [23, 293]. As a survival mecha-
nism in various environmental conditions, DNA modifi-
cation among individual cells is an important epigenetic 
factor that can regulate phenotypic heterogeneity [294, 
295]. Substantial heterogeneity in expression is found 
even among morphologically indistinguishable cells, 
which play an important functional role in tissue biology 
and disease states such as cancer [233].

In human cancer, epigenetic aberrant changes occur 
more frequently than gene mutations [23, 296, 297]. 
However, the majority of cancer research focuses on the 
genetic bases, particularly mutational activation of onco-
genes or inactivation of tumor suppressor genes (TSG) 
[23]. In several lineages of tumor cell differentiation 
programs, epigenetic mechanisms are integral parts and 
have a potential molecular link between cancer, stem cell 
biology, and drug resistance [24].

The level of methylation heterogeneity was found to be 
correlated with times of relapse-free and overall survival 
in 79 intra-tumor colorectal tumors [298, 299]. Abundant 
evidence supports that tumors are frequently composed 
of heterogeneous cell types to which drug resistance 
appears to be linked [300, 301] and the role of epigenetic 
mechanisms for mediating drug resistance in subpopu-
lations of cancer cells has compelling evidence [24, 302] 
(Figs. 17, 18).

Mapping epigenetic heterogeneity in tumor
Roles of epigenetic sequencing in tumor heterogeneity
When we looked at the physiological functions of the 
TET proteins and their mechanisms of regulation of 
DNA methylation and transcription, out of the three TET 
genes TET1 and TET2, expression levels were shown to 
be low in hepatocellular carcinoma (HCC) tissues [303, 
304]. Studies have also revealed that global genomic 

5hmC levels are down-regulated in HCC tissues and cell 
lines [305, 306]. For designing early detection and thera-
peutic strategies, 5hmC signatures found in HCC tissues 
and in circulating cell-free DNA are important [305]. 
Functions of 5-hydroxymethylcytosine (5hmC) in gene 
regulation and cancer pathogenesis were studied by using 
sequenced cell-free 5hmC obtained from 49 patients 
with seven different cancer types. The finding showed 
that distinct features are available to predict cancer types 
and stages with high accuracy. The study also suggested 
that cell-free 5hmC signatures may potentially be used to 
track tumor stages in some cancer types [307].

Cancer-associated 5hmC signatures were identified 
in cfDNA [308, 309]. The signatures are characteristics 
for specific cancer types which are highly predictive of 
colorectal, gastric, lung, and pancreatic cancers [307, 
308]. This marker has also great potential for diagnosis 
and prognosis of cancer from an analysis of blood sam-
ples [308, 310]. So, excelling on conventional biomarkers 
comparable to 5hmC is further required.

Conventional sequencing methods in epigenetics
DNA methylation can be assessed by: digestion of DNA 
with chemical conversion (bisulfite reactions), methyl-
sensitive restriction enzymes, and affinity enrichment of 
methylated DNA fragments [311, 312]. A strategy that 
could distinguish 5-hydroxymethylcytosine, 5-formyl-
cytosine, and 5-carboxylcytosine from 5-methylcytosine 
is important, and many strategies have been developed 
with their advantages and limitations [236]. Methylation 
sequencing and/or microarray-based profiling strate-
gies work with NGS techniques [313]. All the epigenetic 
sequencing methods to map the 5mC need to work with 
next-generation sequencing that gives the chance to 
long-read sequencing both for DNA and RNA and they 
can directly read out the modifications at once [314].

Bisulfite sequencing (BS-Seq) is based on the reactivity 
difference between methylated cytosine and unmethyl-
ated cytosine brought by bisulfite treatment that deami-
nates unmethylated cytosine to uracil (U), while the 
methylated one preserves itself [315], so that, during 
PCR amplification, methylated cytosine remains cyto-
sine, while unmethylated cytosine would be read out as 
T [314].

Though the base-resolution bisulfite method is the 
one taken as a gold standard, so far, it had flaws because 
of the harsh chemical treatment nature, degrades the 
majority of the DNA, and limits the library of gener-
ated epigenetic sequencing [316]. Bisulfite sequencing 
has many integral faults starting from missing to dis-
tinguishing between 5mC and 5hmC [317]. Bisulfite 
sequencing also provides combined signals such as 
reduction of sequence complexity leading to low 
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mapping rates, uneven genome coverage, and inher-
ent biases [314, 318]. Those drawbacks occur because 
95% of the total cytosine in the mammalian genome is 
converted to thymine [314]. The most serious problem 
inherent in base-resolution sequencing and awaiting a 
possible solution to ameliorate is the degradation of the 
majority of the DNA during bisulfite treatment and the 
low conversion efficiency. The bisulfite conversion is 
also blind to distinguish between 5mC and 5hmc [319].

Alternative to bisulfite techniques, there have been 
bisulfite-free and base-level resolution sequencing 
methods like TET-assisted pyridine borane sequenc-
ing (TAPS) and are developed for both 5mC and 5hmC 
[316, 320]. TAPS combines TET oxidation of 5mC 
and 5hmC to 5-carboxylcytosine (5caC) with pyri-
dine borane reduction of 5caC to dihydrouracil (DHU) 
[321]. The C-to-T transition completes when PCR con-
verts DHU to thymine and TAPS detects modifications 
directly with high sensitivity and specificity, with-
out affecting unmodified cytosine [322]. The method 

preserves up to 10 kilobases long that enable cheaper 
methylome analysis [316].

Another method based on oxidative bisulfite sequenc-
ing (oxBS-Seq) applies the oxidation capability of potas-
sium perruthenate (KRuO4) to produce 5fC and through 
bisulfite treatment converts into U and the conversion 
rate is 94.5% [314]. Finally, the 5hmC level and position 
can be obtained by subtracting the oxBS-Seq from the 
BS-Seq [323–325]. Potassium perruthenate is more dam-
aging than potassium ruthenate, and the latter is more 
helpful for nanoscale genomic mapping in limited bio-
logical and clinical samples [320]. This method is claimed 
to be able to detect cell-free DNA (cfDNA) of healthy 
donors and cancer patients, showing base-resolution 
hydroxymethylomes in the human cfDNA for the first 
time [314, 326].

Data analysis of methylation needs an efficient tool 
with bisulfite sequencing datasets, and the recently 
developed tool BSPAT (bisulfite pattern analysis) 
has removed multiple/pairwise sequence alignment 

Fig. 17  Tumor cell heterogeneity results in a drug-tolerant phenotype of the tumor. A Selection of a subset of DTPs after treatment. B Epigenetic 
changes mediate the transition between drug-sensitive to drug-tolerant states. Image adapted from [24]
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methods for fast alignment of sequence reads. To 
make DNA methylation mechanisms and regulation 
explored, BSPAT summarizes and visualizes DNA 
methylation co-occurrence patterns [327].

Improvement of the cost along for accessibility and 
genome coverage of approaches is important especially 
for those of bisulfite-free methods with base-pair reso-
lution (which are now single-molecule and single-cell 
analysis) [328]. The methylome’s large portion could 
be addressed by microarrays and next-generation 
sequencing technologies at genome-wide levels to gen-
erate base-resolution maps of 5mC and its oxidation 
derivatives in genomic samples [329, 330]. For this pur-
pose, quantitative approaches have been established 

under bisulfite-based methods like classical bisulfite 
sequencing, pyro sequencing, etc. [331–333].

Before PCR amplification, CpG methylation at the sin-
gle-base resolution can be determined by methylation-
sensitive restriction endonucleases [332]. Affinity-based 
methods also enrich the methylated areas. But it is diffi-
cult to reach the exact site to directly determine. Moreo-
ver, the bisulfite method requires DNA denaturation and 
causes DNA degradation that decreases its efficiency 
[334, 335]. There are also PCR-caused mapping ineffi-
ciencies of bisulfite-treated DNA and bisulfite conversion 
rates to be considered [311].

The complexity of library preparation and incomplete 
chemical conversion biases increased due to the bisulfite 
used to convert unmethylated cytosines to uracil [25, 
336]. Illumina-based sequencing fails short of short-
read lengths that hinder allele-specific methylation. 
On the other hand, PacBio long-read sequencing lacks 
high sequence coverage, limiting it from sequencing the 
methylated nucleotides. However, Oxford Nanopore 
sequencing is becoming the most advanced to fit into the 
situation [25].

Nanopore sequencing for epigenetic tumor 
heterogeneity
Nanopore sequencing advancing epigenetic mapping
Methylation of DNA is one of the commonest epigenetic 
modifications that can be used in epigenetic mapping 
[337, 338]. Methylation also plays a vital role in mamma-
lian gene cell expression [339, 340]. These roles include 
cell development, aging, and regulation of tumor sup-
pressor genes [341–343]. However, most DNA sequenc-
ing technologies are unable to differentiate methylated 
and unmethylated nucleotides in a DNA strand [25, 344]. 
However, the discovery of the Oxford Nanopore Min-
ION sequencer allows the sequence of methylated regu-
latory marks without special sample preparation, and 
with long-read single-molecule nature [345]. This feature 
makes MinION easier to study allele-specific methylation 
in heterogeneous cancer samples [25, 54, 346]. Limita-
tions such as multiple nucleotides signal due to at a time 
entry of 5 nucleotides into the pore and current overlap-
ping of methylated and unmethylated bases are identi-
fied [186]. Those drawbacks are resolved upon designing 
base-caller computational hidden Markov model (HMM) 
software [64, 347]. Based on the visibility of different 
current distributions, the software allows distinguish-
ing three modified cytosine (C, 5mC, and 5hmC) and 
two modified adenine variants (A and 6-mA) [348–350]. 
Despite the incorporation of HMM, clear detection of 
DNA methylation by solid nanopore sensors constructed 
from two-dimensional (2D) graphene or molybdenum 
disulfide has also widened the validity of the process 

Fig. 18  Identification of methylated cytosine residues using solid 
nanopore synthesized from 2D graphene or MoS2. Image adapted 
from [351]. a Discrimination of C and mC structures with the help of 
MBD1 protein. The methylation occurs in the fifth carbon position 
of the cytosine ring structure, and most of the mC nucleotides 
are found in the CpG island region of the gene. b Diagrammatic 
detection model of the mC during nanopore sequencing of DNA. The 
identification is based on utilizing ionic current differences obtained 
from the application of the required voltage
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[351]. Furthermore, to detect the mC nucleotide upon 
passing through the nanopore, labeling of DNA methyla-
tion site by an adaptor of methyl-CpG-binding domain 
proteins (MBD1) is also mandatory (Fig. 19).

For studying CpG methylation and chromatin accessi-
bility on long fragments of DNA, nanopore sequencing 
allows detecting sequencing difficult regions for char-
acterization of genomic elements such as repetitive ele-
ments [352, 353]. Looking for the CCN1 gene (a poor 
prognosis correlated gene in colorectal cancer), meth-
ylation heterogeneity was observed in three enhancer 
regions with the highest activity in Enhancer 3 which 
is responsible for CCN1 up-regulation. The only way to 
decipher this is using the long-read nanopore technol-
ogy [346]. By using nanopore sequencing data, the most 
complete human methylome is produced through long-
read chromatin accessibility measurements (nanoNOMe) 
paired with CUT and RUN data [354, 355]. The hypo-
methylated region is extremely inaccessible and paired 
to CENP-A/B binding [354]. However, long reads inter-
rogated allele-specific long-range epigenetic patterns in 
complex macro-satellite arrays existent in X chromosome 
inactivation can be deciphered. This single-molecule 
measurement clustered read based on the methylation 
status of epigenetically heterogeneous and homogenous 
provides a framework to investigate the most ambiguous 
regions of the human genome [354].

Augmenting the DNA bisulfite method with high-
throughput sequencing technologies has widened the 
range to genome-wide DNA methylation than limited 

to CpG sites and CpG islands [356, 357]. Genome-wide 
DNA methylation studies show differential methylation 
at the genomic sites like promoters, CGIs, and respec-
tive elements [358]. Those differential methylations are 
sources of various clonal cell populations that create 
heterogeneity [359, 360]. The easiest method to identify 
modifications has a positive impact on epigenetics and 
excellent reproducibility and correlation with bisulfite 
sequencing. Suggestions are saying that nanopore 
sequencing could become the gold standard for detect-
ing methylation patterns. As the short-read bisulfite 
sequencing demands differential methylation assess-
ment, statistical methods which we lack now in long-read 
sequencing extend even to allow nanopore sequencing 
modifications in haplotypes [77, 361].

MethyQA software package solves the glitch that 
occurs when the unmethylated cytosine is converted into 
U and T while using the bisulfite conversion technique 
[360, 362]. Alleviated by this software, NGS technolo-
gies can output the methylation sequencing data having 
quality issues like: low per-base sequencing at the 3′ end, 
PCR amplification bias, and low bisulfite conversion rates 
[362, 363].

5hmC detection limitation deterred the assessing of 
5hmC physiological functions and its role in demeth-
ylation pathways [364]. The limitation also affects the 
deep identification role performed by 5hmC: location, 
regulation of transcription, replication, and epigenetic 
reprogramming [365]. So, such determination of 5hmC 
functions demands the development of single-molecule 

Fig. 19  Direct reading of DNA methylation by nanopore sequencing. The ionic current is changed as single-stranded DNA passes through the 
pore; having a methyl group and small changes due to methylation are interpreted by a new set of algorithms. Image reprinted from [25] with 
permission of the publisher (Request ID: 600061678, 27 Nov 2021)
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DNA sequencing technologies for which nanopore 
sequencing best fits [365, 366].

Accuracy measurements for the detection of epigenetic 
modifications through nanopore sequencing
Out of the discussed methods above, the Oxford Min-
ION nanopore sequencing model with HMM (hidden 
Markov model) is reported to have the capacity to dif-
ferentiate among all the modified bases of Cytosine [63, 
347]. With better improvements of HMM, HMM-HDP 
(hidden Markov model with hierarchical Dirichlet pro-
cess) model has been developed, incorporating accuracy 
measurements of the modified bases detected by Min-
ION sequencing (Fig.  20a–d) [64, 348, 367]. The model 
discriminates among all five C5 cytosine variants based 
on ionic current measurements from low throughput 
nanopore sensors [368]. In HMM-HDP, the base modi-
fications are detected as changes in the ONT-MinION’s 
ionic current signal. MinION frequently records ionic 
currents to divide them into segments called events. 
The design models each event as a nucleotide striking 
of length called K-mer [369]. Each K-mer has an alliance 
with a distribution of ionic currents in Picomas (PA). The 
individual C, mC, and hmC bases are classified from the 
synthetic nucleotide regions to measure the accuracy 
of detections through a change of ionic current signal. 
After detection of changes in the model, the distribution 
of the ionic current signal has to be measured to deter-
mine segregational strength (Fig. 20e–h). The model also 
incorporates mapping of 5mC from CC(A/T) GG motifs 
and 6 mA from GATC motifs using E. coli genomic DNA 
[367].

Single‑cell tumor epigenetic mapping using nanopore 
sequencer
The field of single-cell epigenomics is in its infancy. But, 
due to the increasingly recognized importance of inter-
cellular heterogeneity in tumors with the rapid pace of 
technological development, it is expected to show enor-
mous progress over the next few years [370]. Single-cell 
epigenomics incorporates epigenetic profiling with the 
isolation of single-cell, barcoding it, and high-through-
put sequencing of the isolated cell genome [371]. Since 

epigenetically modified genes are shown in most cancer 
cells, it is essential to use simple and lower-cost methods 
to identify these modifications [372]. Nanopore sequenc-
ing with recently upgraded technologies has been the 
easier and preferable method to detect the epigenetic 
modifications that occur in a specific cancer type of vari-
ous organs [373].

Deletions, amplifications, inversions, and transloca-
tions of nucleotides in a DNA sequence are the four DNA 
replication-related causes of gene mutations. Nanop-
ore sequencing can be used to detect the heterogeneity 
of tumors as a result of these changes, which led to the 
anticipated alterations during epigenetic modifications 
[391]. Additionally, nanopore sequencing is highlighted 
as one of the primary areas of focus for the next-genera-
tion approaches to understand the heterogeneity of can-
cer [392].

Beyond previously accolade genetic alterations, tumor 
heterogeneity derived by epigenetic reprogramming 
causes drug-resistant subpopulations of tumor cells 
[374]. It shows the need for single-cell epigenetic tech-
nology capacity to truck drug-induced tumor evolution 
for the timely intercession of the treatment [293]. In 
hepatocellular carcinoma, identification of the modifi-
cation status of tumor suppressor genes using nanopore 
sequencing showed around 10 potential tumor suppres-
sor gene candidates and the glucokinase gene, more vali-
dated to involve in HCC development [375]. Nanopore 
sequencing allows whole-genome sequencing with the 
possible identification of epigenetic modifications in 
lung cancer cell line LC2/ad gene [376]. It also allows the 
detection of epigenetically modified genes in various can-
cer types (Table 5).

Main results in the epigenetics‑cancer field 
that nanopore technology allowed
Nanopore sequencing (NGS) is still in its infancy as a 
tool for cancer research, and applications in molecular 
cancer research are particularly lacking. Of course, NGS 
technologies are more suited for use in the investiga-
tion of fields like plant science and microbiology. How-
ever, employing cell lines as a study medium is gradually 
being applied to human samples [395–397]. Even if the 

Fig. 20  a–d Accuracy result of the MinION detection of cytosine methylation variants found in the synthetic oligonucleotides. Outputs from the 
classification of 6,966 C, 294 5mC, and 467 5hmC strands were sequenced in similar MinION flow cells. a Pre-read accuracy distribution results 
expressed by comparing normal distributions as Maximum-likelihood estimates (MLE) and HDP model distributions. Distributions are shown 
by triangles. b Across all cite three-way classification (C, mC, and hmC) of the template and co-template reads. c Confusion matrix showing the 
performance of HMM-HDP three-way cytosine classification on template reads of synthetic oligonucleotides. d Correlation between the log-odds 
of correct classification and the mean pairwise Hellinger distance between the methylation statuses of the 6-mer distributions overlapping a 
cytosine. e–h Variation between the ionic current distribution and effect of reading quality for left (6 mA in GATC) and right (5mC in CC(A/T) GG) 
motifs. The ionic current distribution between A and 6-mA (e) and C and 5mC (f) has shown a difference. Ionic current levels from 100 alignments 
are shown as a histogram g for A and 6-mA and h for C and mC. Learned probability densities of HDP are shown as curves. Image is Reprinted from 
[348] with permission of the publisher (Request ID 600061677, 27 Nov 2021)

(See figure on next page.)
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Fig. 20  (See legend on previous page.)
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sequencing overcame several obstacles, there are still 
opportunities for improvement and benchmarking com-
puter techniques for detecting whole-genome DNA alter-
ations [398]. It suggested that there was a pressing need 
for the benchmark to be able to predict CpG methylation 
in multiple genomic contexts, particularly those includ-
ing genes involved in tumor heterogeneity and tumor 
suppression.

The epigenome pattern on copies of DNA segments has 
been employed as a harbinger endeavor, and nanopore 
sequencing is still being used alongside the old stand-
ard methods midway. These patterns are determined by 
nanopore sequencing and allow the assignment of reads 
of haplotypes to enable chromosome-level allele-specific 
profiles of CpG methylation and chromatin accessibility 
on four human cell lines (GM12878, MCF-10°, MCF-7, 
and MDA-MB-231), which are determinants of nucleo-
some positioning and DNA accessibility. Then, the appli-
cation of nanopore sequencing was expanded to find 
heterogeneity in breast cancer model tumors [346]. Due 
to its capacity to recognize and sequence nucleotides 
even when they have little alterations, nanopore sequenc-
ing is evolving into a standard to rule the sequencing 
market [399]. It is hoped that future methylation-map-
ping-complete software, like NanoMetPhase, would offer 
a second deep signal for the detection of 5mC and 6 mA. 
The software employs 2 × coverage to find any DNA base 
methylation states that are reliable markers for the more 
accurate detection of tumor heterogeneity [400]. This 
upbringing will support the parallel implementation of 
nanopore-based computational and experimental appli-
cation methods.

Oxford Nanopore can be used for whole-genome 
sequencing to identify insertions, deletions, inversions, 
and intrachromosomal translocations in liver cancer, 
which could then be used for epigenome analysis as the 
instrument allows for parallel genome and epigenome 
sequencing  to determine the complex heterogeneity 
and variation of tumor cells [401]. The magic of this 
pocket-size nanopore sequencing device was tested 
by sequencing simultaneously on the same day the 
genome and epigenome of the low-pass whole genome 

to generate diagnostic copy number (CN) and meth-
ylation profiles from the same sequencing run. That is 
the beginning of the explosion of using nanopores for 
important molecular classifications in cancer for better 
diagnosis, prognosis, and treatment decisions in clinics 
[75]. Another study discovered that nanopore Cas9-tar-
geted sequencing (nCATS) is more effective at detect-
ing isocitrate dehydrogenase 1 and 2 (IDH1, IDH2) and 
O6-Methylguanine-DNA methyltransferase (MGMT) 
mutations and methylation status in diffuse glioma 
in 36  h [402]. The combination of Cas9 mutation and 
library creation for sequencing appears to be the most 
effective coupling currently available, and it could aid 
in identifying single-nucleotide variants (SNVs), struc-
tural variations (SVs), and CpG methylations [403]. In 
order to enable long-range amplification and nanop-
ore sequencing, the BRCA1 breast cancer gene’s body 
and flanking regions are isolated from peripheral blood 
cells using the Cas9-assisted targeting of chromosomal 
segments (CATCH) method. It is reasonable to assume 
that this technology will eventually be available in 
medical offices and patients’ pockets [404]. It is crucial 
to sequence the epigenome of tumor-specific LINE-1 
insertions and their retrotransposon signatures because 
CpG methylation controls the transposable elements 
(Tes) involved in the evolution of tumor growth. [405]

Nanopore whole-genome sequencing for intraop-
erative neuropathological classification has been found 
to improve practical intraoperative diagnostic accu-
racy impacting surgical decisions [406], so that with 
the previous data accumulated for epigenomic tumor 
signatures in whole-genome analysis done using the 
chemical methods and Illumina are now the back-
ground to bounce up along with nanopore sequencing 
soon.

For the high-level identification of epigenetic het-
erogeneity in cancer, nanopore sequencing is generally 
on the way to link with nanostructural components/
materials such as glass nanopipettes, nanostraws, car-
bon nanotube probes, and other nanomaterials [381]. 
By constructing channels between the intracellular 
and extracellular portions of the cell membrane, these 
nanocomponents facilitate the sequencing by enabling 
single-cell sampling [382]. An application of bisulfite 
sequencing to a single-cell level, similar to these nano-
components, addresses inter- or intra-heterogeneity of 
tumor cells with significant DNA degradation [382]. To 
accurately identify the heterogeneity of genes in future 
cancer treatments, it is therefore advised to research on 
the combination of nanopore sequencing, nanostruc-
ture components, and bisulfite sequencing or direct 
sequencing.

Table 5  Nanopore sequencing for epigenetic modification 
study of various cancer types

Type of nanopore 
sequencing

Type of cancer in which epigenetic 
modifications are identified

References

ONT and PacBio Breast cancer [377, 378]

ONT Leukemia [379, 380]

ONT Brain tumors [75, 393]

Linked Read Gastric cancer [376]

NGS Cervical cancer [394]
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Conclusion and future perspective
Epigenetics is a significant gene regulator that neces-
sitates thorough sequencing. The multi-omics-based 
medicine of the future will not be complete without 
sequencing epigenetics, particularly in the context of 
cancer biology. Furthermore, research and individual-
ized, evidence-based medical services would benefit 
from using epigenetics as a biomarker for diagnosis and 
as a pharmaceutical target. The heterogeneity of can-
cer is influenced by epigenetics, which makes epige-
netic sequencing crucial. Conventional methods have 
been used for sequencing up until now, but in the 
future, nanopore sequencing will be a more special-
ized method. According to earlier research, the Oxford 
Nanopore sequencer is the best method for advancing 
both genomic and epigenomic sequencing and has more 
advantages over rival sequencing technologies when pre-
senting epigenetics in the multi-omics space.  Moreover, 
Oxford Nanopore Technologies, which permits direct 
sequencing without the need for a lot of reagents, is bet-
ter suited than any other sequencing device for exploring 
the roles of epigenetics in cancer heterogeneity.

In the multi-omics age, the Oxford Nanopore sequenc-
ing technique will be highly effective in presenting 
one arm of epigenetics and the other arm of genomics. 
Oxford Nanopore sequencing is a quickly developing 
method that is fiercely challenging Illumina’s sequenc-
ing technology. Due to its reduced size and price, Oxford 
Nanopore sequencing is predicted to overtake Illumina 
sequencing technology with several advantages. Con-
sequently, a single nanopore sequencing platform may 
perform epigenomics, genomics, transcriptomics, and 
proteomics.

Finally, future cancer medicine studies will need to 
take into account the incorporation of different nano-
biomaterials with nanopore sequencing technologies 
in order to detect epigenetics in cancer in a more accu-
rate manner. The clinical viability and delivery mecha-
nism must be taken into account by the nano-combined 
sequencing procedures in addition to the incorporation 
of biomaterials.
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