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Abstract 

Background:  With the rapid development of next-generation sequencing (NGS) technologies, researchers are mak-
ing efforts to reveal the genomic landscape of multiple myeloma (MM). However, the clinical significance of many 
mutations remains poorly defined due to the genetic heterogeneity of MM. To systematically explore the clinical 
implications of gene mutations and build practical prognostic models, we performed DNA sequencing in newly 
diagnosed MM patients.

Methods:  MM cells were purified from bone marrow aspirates using CD138 microbeads and subjected to sequenc-
ing with a 387-gene Panel. Nomogram was developed using Cox’s proportional hazards model, and candidate vari-
ables were screened by stepwise regression. Internal validation was carried out by the bootstrap method.

Results:  Between July 2016 and December 2020, a total of 147 patients were included in our study. We found 
patients with a higher mutational load had a significantly shorter progress-free survival (PFS) (19.0 vs. 32.0 months, 
P = 0.0098) and overall survival (OS) (3-year OS rates were 66.1% and 80.0%, P = 0.0290). Mutations in chromatin 
regulators (CRs) including KMT2C (14.3%), KMT2D (14.3%), EP300 (11.6%) and ARID gene family (31.3%) were highly fre-
quent in newly diagnosed MM patients. Interestingly, proteins encoded by these genes could form a complex called 
KMT2C/D COMPASS (KCDCOMs). Patients with mutations of ARID gene family had a significantly shorter PFS (15.5 vs. 
34.0 months, P = 0.0003) and OS (3-year OS rates were 64.9% and 81.0%, P = 0.0351) than patients without ARID gene 
mutations. Incorporating ARID gene mutations into the current staging system could successfully improve their prog-
nostic performance. The PFS and OS nomogram models (including 1q21 copies, ARID gene mutations, extramedullary 
disease, mutational load and TP53 mutations) showed good predicting performance in both training and validation 
sets.

Conclusion:  Our findings emphasized the importance of CRs mutations in newly diagnosed MM patients and indi-
cated the mutations affecting KCDCOMs might promote the development of MM. High mutational load and harbor-
ing mutations in the ARID gene family were novel predictors of adverse prognosis in MM. Prognostic models based 
on gene mutations were commendably prognostic evaluation methods that could provide a reference for clinical 
practices.
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Introduction
Multiple myeloma (MM) is a common hematological 
malignancy characterized by neoplastic proliferation 
of monoclonal plasma cells [1]. Despite the emergence 
of numerous new drugs, it is still an incurable disease. 
Therefore, the biological characteristics of MM require 
further exploration to find new predictive markers and 
therapeutic approaches. The advent of next-generation 
sequencing (NGS) technologies has provided a powerful 
tool for studies on cancer genetics in the past 15  years. 
MM showed a moderate level of tumor mutational load 
(1.6 mutations/Mb) across various cancer types, which 
suggested an important role of gene mutations in the 
occurrence and development of MM [2].

Several studies [3–5] have explored the genetic muta-
tion profile of MM using NGS technologies since 2014, 
and the authors were consistent with the conclusion 
that the top recurrent mutated genes were KRAS (muta-
tion rates, 20–23%) and NRAS (19–20%) in MM. Other 
common mutated genes included DIS3, FAM46C, BRAF, 
TP53 and TRAF3. These genes with a higher mutation 
rate were concentrated in five pathways, including the 
MAPK pathway (KRAS, NRAS and BRAF), plasma cell 
differentiation pathway (IRF4 and PRDM1), the NF-κB 
pathway (TRAF3, CYLD and LTB), cell-cycle control 
pathway (RB1 and CCND1) and DNA repair pathway 
(ATM, ATR​, TP53) [5, 6]. Previous studies confirmed that 
gene mutations also had considerable clinical and prog-
nostic significance in MM. Mutations of IRF4 and EGR1 
were found to be correlated with a favorable prognosis, 
while mutations of TP53, ATM and ATR​ were associ-
ated with a poor prognosis [4–6]. However, the genetics 
of MM are complex and the clinical significance of many 
mutations remains unknown.

In 2020, Ordoñez et al. [7] compared malignant plasma 
cells versus normal B cells using a multi-epigenomics 
approach and found extensive activation of regulatory 
elements in tumor cells, which led to the overexpres-
sion of members involved in the NOTCH, NF-κB, mTOR 
and p53 signaling pathways and promoted the prolifera-
tion of plasma cells. These data demonstrated epigenetic 
changes played an important role in MM pathogenesis. 
Epigenetics refers to the regulation of gene expression 
without changes in DNA sequence, and chromatin reg-
ulators (CRs) are important research objects in epige-
netics [8]. Based on the different functions, CRs can be 
grouped into three classes: (1) DNA methylators, includ-
ing DNMT1, DNMT3A and DNMT3B; (2) histone-mod-
ifying enzymes, including KMT2C, KMT2D, p300 and 
HAT1; (3) chromatin remodelers, including ARID1A, 
ARID1B, ARID2, CHD5 and ACF1 [9]. Although muta-
tions of CRs are common across multiple cancers, we still 
have limited knowledge of their roles in MM.

To further investigate the clinical significance of gene 
mutations in MM, we performed DNA sequencing in 
147 patients with newly diagnosed multiple myeloma 
(NDMM) by NGS technologies and found mutations 
of CRs have important prognostic significance. We also 
developed nomogram models based on mutations of CRs 
to predict the risk of relapse or mortality in MM patients, 
which can be used conveniently in clinical practice.

Materials and methods
Patients and data collection
The study was approved by the Ethics Committee of The 
First Affiliated Hospital of Nanjing Medical University. 
The use of tumor specimens was approved by the Ethics 
Committee, and informed consent was obtained from all 
patients. The diagnoses of patients were made based on 
the International Myeloma Working Group 2014 crite-
ria [10]. Clinical staging was based on the Durie–Salmon 
(DS) staging system [11], International Staging System 
(ISS) and Revised International Staging System (R-ISS) 
[12].

Laboratory examination data such as hemoglobin (Hb), 
serum creatinine, bone marrow plasma cells propor-
tion, lactate dehydrogenase (LDH) and β2 microglobu-
lin (β2-MG) were collected in our study. The presence of 
extramedullary disease (EMD) was detected by PETCT, 
whole-body CT or whole-body MRI. High-risk cytoge-
netic abnormalities were defined as at least one of the fol-
lowing: del(17p), t(4; 14), or t(14; 16) using cytoplasmic 
immunoglobulin fluorescence in  situ hybridization (cIg-
FISH). The numerical aberrations of the chromosomal 
regions 1q21 were also detected by cIg-FISH. Progress-
free survival (PFS) was calculated from the time of diag-
nosis to disease progression (PD) or death due to any 
reason. Overall survival (OS) was estimated as the time 
from diagnosis to death.

Next‑generation sequencing
Bone marrow samples were collected before treat-
ment, and tumor cells were purified by positive selec-
tion with anti-CD138 magnetic microbeads (Miltenyi 
Biotec, Germany). Genomic DNA was extracted from 
tumor cells using the QIAamp® Blood DNA Mini Kit 
(QIAGEN, Germany). The quantity of DNA was meas-
ured using a Qubit 2.0 fluorometer (Life Technologies, 
USA). Genotyping was performed using a sequencing 
panel of 387 genes (see Additional file 2 for details) by 
NGS technologies, and the average sequencing depth 
was 1000×. Genomic DNA (200 ng) was sheared with 
Enzyme Plus Library Prep Kit (iGenetech, China) and 
sequencing libraries were constructed using probes 
and TargetSeq One Kit (iGenetech, China) according 
to the instructions. Sequencing runs were performed 
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on NovaSeq 6000 sequencing platform (Illumina, USA) 
using a NovaSeq 6000 S4 Reagent Kit v1.5 (300 cycles) 
(Illumina, USA). The raw sequencing data were avail-
able in the SRA database (https://​www.​ncbi.​nlm.​nih.​
gov/​sra) under the accession number PRJNA826654.

Analysis of mutations
FASTQ files were pre-processed and assessed for qual-
ity with fastp. Sequencing reads were aligned to the 
human reference genome hg19 using BWA v. 0.7.17 
software. SAMtools v. 1.11 software was used to con-
vert Sequence Alignment/Map (SAM) files to Binary 
Alignment Map (BAM) [13], and gatk v.4.1.3.0 was 
applied to perform indel realignment and base qual-
ity recalibration. BAM files were sorted with SortSam, 
duplicate reads were removed with gatk MarkDupli-
cates, mapped reads were extracted with SAMtools, 
and base quality score was recalibrated with gatk 
BaseRecalibrator and ApplyBQSR [14]. Subsequently, 
we annotated the variants using Annovar and SnpEff 
[15]. Single nucleotide polymorphisms (SNPs) were 
identified using information from ExAC_ALL, ExAC_
EAS and 1000g2015aug_all databases, and they were 
excluded from further analysis.

Derivation and validation of predictive nomogram models
The predictive nomogram was developed using Cox’s 
proportional hazards model. Candidate variables were 
screened by stepwise regression. For the model fitting, 
we used the R package “survival”. Model diagnostics 
were then performed by package “survminer”, includ-
ing Deviance residues to assess the effect of outlier cases 
and Schoenfeld residuals to test the proportional risk 
assumption. The area under the receiver operator curve 
(ROC) (AUC/C-statistic) and Brier score were calcu-
lated to assess the performance of the model. Finally, the 
model was retested for internal validation using the boot-
strap method, with 100 replications.

Statistical methods
Statistical analysis and plotting were performed by R 
software v. 4.1.1 and GraphPad Prism v. 5.0. Numeri-
cal variables were analyzed by t-test or ANOVA, and 
non-normal distribution variables were analyzed by 
Mann–Whitney U test or Kruskal–Wallis test. Categori-
cal variables were analyzed using Chi-square test. K–M 
method and Log-rank test were used to plot and analyze 
the survival curves. Cox proportional hazards model was 
used for multifactorial analysis. For all analyses, a P value 
less than 0.05 was considered significant.

Results
Clinical characteristics of our study population
From July 2016 to December 2020, a total of 147 
NDMM patients were included in the study and the 
clinical characteristics of patients are summarized in 

Table 1  Clinical characteristics of 147 patients

ISS International Staging System, PIs proteasome inhibitors, IMiDs 
immunomodulatory drugs, ASCT autologous hematopoietic stem cell 
transplantation

*Some patients did not undergo the FISH examinations, so the proportions are 
calculated by the numbers of patients with FISH results
† Anemia refers to hemoglobin < 100 g/L
‡ Renal insufficiency refers to creatinine > 177 µmol/L or creatinine 
clearance < 40 ml/min

Clinical characteristics Proportion (%)

Gender

Male 60.5 (89/147)

Female 39.5 (58/147)

Subtype

IgG 48.3 (71/147)

IgA 24.5 (36/147)

IgD 6.1 (9/147)

IgE 0.7 (1/147)

κ light chain 11.6 (17/147)

λ light chain 8.8 (13/147)

DS stage

I 4.1 (6/147)

II 13.6 (20/147)

III 82.3 (121/147)

ISS stage

I 15.6 (23/147)

II 32.0 (47/147)

III 52.4 (77/147)

R-ISS stage*
I 13.0 (18/138)

II 64.5 (89/138)

III 22.6 (31/138)

1q21*
Gain 25.7 (35/136)

Amplification 24.3 (33/136)

High-risk karyotype*
del(17p) 12.5 (17/136)

t(4; 14) 17.6 (24/136)

t(14; 16) 0.7 (1/136)

Anemia† 64.6 (95/147)

Renal insufficiency‡ 31.3 (46/147)

Extramedullary disease 20.4 (30/147)

Induction therapy regimen

PIs-based 50.3 (74/147)

IMiDs-based 9.5 (14/147)

PIs + IMiDs 38.1 (56/147)

Completed ASCT 25.9 (38/147)

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
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Table  1. The median age was 63.0  years (range, 38.0–
84.0  years), and 60.5% of patients were male. The 
majority of patients (50.3%) were treated with proteas-
ome inhibitors (PIs)-based regimen as first-line chemo-
therapy, such as PCD (bortezomib/cyclophosphamide/ 
dexamethasone), PAD (bortezomib/doxorubicin/
dexamethasone) and VD (bortezomib/dexametha-
sone). 38.1% of patients received combination therapy 
with PIs and immunomodulatory drugs (IMiDs), 9.5% 
of patients received IMiDs-based regimen, and the 
remaining three patients were treated symptomatically.

Follow-up time ranged from 2.0 to 67.0 months, with 
a median time of 26.0 months. During follow-up, 49.7% 
of patients developed PD and 22.4% of patients died. 
The 1-year, 2-year and 3-year PFS rates were 77.3%, 
56.9% and 37.4%, respectively (the median PFS was 
28.0  months). The 1-year, 2-year and 3-year OS rates 
were 90.7%, 82.3% and 75.4%, respectively (the median 
OS was not reached).

Patients with heavier mutational load had a poor 
prognosis
A total of 343 mutated genes were detected, and mis-
sense mutation was the most common mutation type. 
The median total number of mutations in each patient 

was 17.0 (range 1.0–35.0). In order to fully understand 
the clinical value of mutational load, we performed an 
integrated analysis of clinical features and the number of 
mutations (Fig. 1a). The number of mutations in patients 
with IgD MM was significantly greater compared to IgG 
(P = 0.0219) and IgA (P = 0.0363) MM. Patients with 
ISS stage I and stage II were combined because of the 
low number of patients in ISS stage I group. The muta-
tional load of patients with ISS stage III was significantly 
heavier than those of patients with ISS stage I and stage II 
(P = 0.0249).

With 20 as the threshold, patients were divided into a 
high mutational load group (number of mutations ≥ 20, 
n = 47) and a low mutational load group (number of 
mutations < 20, n = 100). Patients in the low mutational 
load group had a significantly longer PFS than patients 
in the high mutational load group (median PFS, 32.0 vs. 
19.0 months, P = 0.0098, Fig. 1b). In a similar manner, OS 
of the low mutational load group was significantly longer 
than that of the high mutational load group (median 
OS was not reached, 3-year OS was 80.0% and 66.1%, 
P = 0.0290, Fig.  1c). These results indicated that a high 
mutational load was associated with poor prognosis in 
MM patients.

Fig. 1  Clinical values of mutational load. a The mutational load of patients with IgD MM is significantly greater compared to IgG and IgA MM. 
Patients belong to ISS stage III have heavier mutational load than patients belong to ISS stage I and stage II. b, c Patients with high mutational load 
have a significantly shorter PFS and OS than patients with low mutational load
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Profile of gene mutations
In this study, the top 15 genes with the highest muta-
tion frequencies were KRAS (29.3%), NRAS (24.5%), 
FAT1 (17.0%), FAT4 (17.0%), KMT2C (14.3%), KMT2D 
(14.3%), RNF213 (14.3%), FGFR3 (13.6%), EP300 
(11.6%), ZFHX3 (11.6%), ATM (10.2%), BRAF (10.2%), 
BRCA2 (8.8%), NCOR2 (8.8%) and TP53 (8.8%) 
(Fig. 2a). The variant allele frequencies (VAFs) are pre-
sented in Fig.  2b, and the median VAFs for each gene 
were KRAS (7.0%, range 1.0–56.7%), NRAS (14.4%, 
range 1.0–56.4%), FAT1 (47.1%, range 24.0–89.6%), 
FAT4 (44.8%, range 9.0–65.3%), KMT2C (45.5%, 
range 5.6–60.9%), KMT2D (48.9%, range 15.1–52.2%), 
RNF213 (48.4%, range 10.6–68.3%), FGFR3 (23.8%, 
range 1.7–56.9%), EP300 (49.0%, range 8.9–92.7%), 
ZFHX3 (46.4%, range 6.9–97.2%), ATM (46.8%, range 
7.4–60.1%), BRAF (29.4%, 1.2–52.2%), BRCA2 (50.8%, 
range 15.5–93.0%), NCOR2 (47.4%, range 7.6–52.4%) 
and TP53 (36.2%, range 1.2–88.5%).

To better understand the biological functions of 
the top 15 genes, we performed gene ontology (GO) 
enrichment analysis using DAVID (https://​david.​ncifc​

rf.​gov/) (Fig.  2c). In biological process (BP) category, 
the mutated genes were significantly enriched in the 
terms “regulation of transcription, DNA-templated” 
and “positive regulation of transcription from RNA 
polymerase II promoter”. Correspondingly, these 
genes were markedly enriched in “nucleus” of cellu-
lar component (CC) category and “DNA binding” of 
molecular function (MF) category. The enrichment 
results indicated that genes involved in regulation of 
gene transcription (KMT2D, ZFHX3, KMT2C, EP300, 
BRCA2 and TP53) might play an important role in MM 
pathogenesis. Interestingly, among the enriched genes, 
KMT2D, KMT2C and EP300 belong to CRs and are 
implicated in the formation of KMT2C/D COMPASS 
complex (KCDCOMs) [16].

Correlation between chromosome abnormalities 
and mutated genes
The most common cytogenetic abnormalities in MM 
include copy number gains of 1q21, del(17p) as well as 
IgH translocations t(4; 14), t(11; 14), t(14; 16) and t(14; 
20). However, only t(4; 14) was included in the further 

Fig. 2  The most common gene mutations in patients with newly diagnosed multiple myeloma. a The mutation rates and types of the top 15 
genes in our study. b The variant allele frequencies of the top 15 genes. c GO enrichment of the top 15 genes

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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analysis for there were very few patients with t(11;14), 
t(14;16) and t(14;20).

The increased mutation rate of EP300 (19.1% vs. 4.4%, 
P = 0.0080) was associated with copy number gains of 
1q21. Three copies of 1q21 were defined as 1q21 gain, 
and four or more copies were defined as 1q21 amplifica-
tion. With the increase of 1q21 copies, the mutation rates 
of EP300 also gradually increased (the mutation rates 
were 4.4%, 14.3% and 21.2%, respectively; P = 0.0172, 
Fig. 3a). Moreover, there was a clear correlation between 
gene mutations and chromosome abnormalities on 
which the gene was located. Patients with del(17p) had 
noticeably more mutations of TP53 (47.1% vs. 4.2%, 
P < 0.0001) (Fig.  3b) and mutation rates of FGFR3 obvi-
ously increased in patients with t(4; 14) (54.2% vs. 3.6%, 
P < 0.0001) (Fig. 3c).

The prognostic value of chromosome abnormali-
ties and gene mutations was evaluated using Kaplan–
Meier survival analysis. In patients with del(17p), there 
was a tendency toward a reduction in PFS, but this did 
not reach statistical significance (median PFS, 15.5 
vs. 27.0  months, P = 0.0677) (Fig.  3d). We re-grouped 
patients into four groups according to del(17p) and 
TP53 mutations: neither group contained patients 
without del(17p) and TP53 mutations (n = 114), 

del(17p) group contained patients with del(17p) posi-
tive (n = 17), TP53 mutated group contained patients 
harboring TP53 mutations (n = 13), and both group 
contained patients harboring del(17p) and TP53 muta-
tions concomitantly (n = 8). The median PFS for these 
four groups were 28.0, 15.5, 10.0 and 9.0 months. A sig-
nificant difference in PFS among the four groups was 
observed (P < 0.0001) (Fig.  3e), which suggested that 
patients could be better stratified by the combined use 
of del(17p) and TP53 mutations. Analysis for OS was 
performed next in the same manner. Patients with 
del(17p) had shorter OS compared to patients without 
del(17p) (median OS was not reached, 3-year OS was 
52.1% and 76.9%, P = 0.0412) (Fig.  3f ). The 3-year OS 
for neither group, del(17p) group, TP53 mutated group 
and both group were 77.1%, 52.1%, 36.4% and 19.0%, 
respectively (P < 0.0001) (Fig. 3g). Similar to the PFS, the 
combined use of del(17p) and TP53 mutations allowed 
a better prediction of OS. Moreover, our results showed 
the effect of TP53 mutations on patients’ prognosis 
was more pronounced than del(17p). However, further 
studies were needed to draw the final conclusion. Com-
bined analysis of 1q21 gain and EP300 mutations, t(4; 
14) and FGFR3 mutations did not show better discrimi-
nating abilities for predicting the outcomes of patients.

Fig. 3  The correlation between chromosome abnormalities and gene mutations. a The increased mutation rates of EP300 are associated with copy 
number gains of 1q21. b Patients with del(17p) have more mutations of TP53. c Mutation rates of FGFR3 increase in patients with t(4; 14). d Patients 
with del(17p) (n = 17) present shorter PFS compared to patients without del(17p) (n = 119), but this does not reach statistical significance. e Patients 
with both del(17p) and TP53 mutations present the worst PFS compared to patients with only one of them. Patients with none of del(17p) or TP53 
mutations have the longest PFS. f Patients with del(17p) (n = 17) have shorter OS compared to patients without del(17p) (n = 119). g Patients 
with both del(17p) and TP53 mutations present the worst OS compared to patients with only one of them. Patients with none of del(17p) or TP53 
mutations have the longest OS
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Mutations in ARID gene family were potential indicators 
of a poor prognosis
KCDCOMs complex might play an important role in 
the development of MM as previously shown. Unfortu-
nately, survival analysis found no difference in PFS or OS 
between patients with and without mutations of KMT2C, 
KMT2D or EP300. Therefore, we focused on another 
component in this complex, called ARID family (Fig. 4a). 
In our study population, 46 patients (31.3%) had one 
or more mutations in ARID gene family and missense 
mutation was the most common mutation type (Fig. 4b). 
The median VAFs for each gene were ARID1A (48.3%, 
range 9.5–52.3%), ARID1B (30.7%, range 19.3–51.5%), 
ARID2 (46.3%, range 10.2–48.6%), ARID3A (49.8%, 
range 20.9–67.1%), ARID3C (45.5%, range 41.7–49.2%), 
ARID4A (45.2%, range 2.7–53.4%), ARID4B (37.4%, range 
27.7–47.2%), ARID5A (50.7%, range 5.8–50.9%), ARID5B 
(49.9%, range 48.3–51.4%), JARID1A (45.7%, range 21.3–
50.4%), JARID1C (49.6%, range 5.0–94.1%) and JARID2 
(54.1%, range 45.6–63.4%) (Fig. 4c).

To better understand the effects of ARID gene family on 
the prognosis of MM, we compared PFS and OS between 
patients with and without mutation of ARID gene family. 
We divided patients into two groups: the ARID mutated 
group (n = 46) referred to patients who carried muta-
tions of ARID family and the non-ARID-mutated group 

(n = 101) referred to patients without mutations of ARID 
family. PFS was significantly shorter in the ARID mutated 
group compared to the non-ARID-mutated group 
(median PFS, 15.5 vs. 34.0 months, P = 0.0003) (Fig. 4d). 
Similarly, the ARID mutated group had obviously shorter 
OS than the non-ARID-mutated group (median OS was 
not reached, 3-year OS was 64.9% and 81.0%, P = 0.0351) 
(Fig. 4e).

To further evaluate the prognostic significance of ARID 
family mutations, we combined them with ISS and R-ISS 
staging system. Patients who belonged to ISS/R-ISS stage 
I and did not have mutations of ARID family were still 
divided into stage I; patients who belonged to ISS/ R-ISS 
stage III and have mutations of ARID family were divided 
into stage III; all other situations were divided into stage 
II (Table 2).

According to the ISS, 23 patients were stage I, 47 
patients were stage II, and 77 patients were stage III. 
The PFS could not be precisely distinguished (median 
PFS were 41.0, 24.0 and 27.0  months, respectively; 
P = 0.1820), especially between stage II and stage III 
(Fig.  5a). In the ISS + ARID staging system, 19 patients 
had stage I, 113 patients had stage II and 15 patients had 
stage III. A significant reduction of PFS was observed 
as the stage progressed (median PFS were 41.0, 28.0 
and 15.0  months, respectively; P = 0.0101) supporting a 

Fig. 4  Mutations of ARID gene family. a Schematic illustration of KCDCOMs structure: KMT2C, KMT2D, p300 (encoded by EP300) and ARID family are 
components of KCDCOMs. KMT2C/KMT2D are involved in the methylation of H3K4, p300 regulates H3K27 acetylation, and ARID family participates 
in chromatin remodeling. The activated KCDCOMs can promote transcription. b Waterfall plot of mutations in ARID family. c The variant allele 
frequency of mutations in ARID family. d The PFS of patients with ARID gene family mutations is significantly shorter than patients without ARID 
gene mutations. e The OS of patients with ARID gene family mutations is significantly shorter than patients without ARID gene mutations
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higher prediction power of ISS + ARID staging system 
(Fig. 5b). This was also the case for OS. Patients could not 
be clearly distinguished according to ISS staging (median 
OS was not reached, 3-year OS was 95.4%, 65.8% and 
76.5%, P = 0.0659) (Fig. 5c) while there was a significant 
difference of OS by using ISS + ARID staging (3-year OS 
was 100%, 75.6% and 61.0%, P = 0.0220) (Fig. 5d).

According to the R-ISS, 18 patients were stage I, 89 
patients were stage II, and 31 patients were stage III. 
There was no significant difference in PFS among these 
three groups (median PFS was 41.0, 24.0 and 33.0 months, 
respectively; P = 0.1891). When using ISS + ARID staging 
system, 15 patients had stage I, 114 patients had stage II 
and 9 patients had stage III. ISS + ARID staging displayed 
better performance in distinguishing PFS as the stage 
progressed (median PFS was 41.0, 27.0 and 13.0 months, 
respectively; P = 0.0005) (Fig.  5e). Similar findings were 
obtained for OS. Patients could not be clearly distin-
guished according to R-ISS staging (median OS was 
not reached, 3-year OS was 94.1%, 73.6% and 60.6%, 
P = 0.0787) (Fig. 5g), while there was a significant differ-
ence of OS by using ISS + ARID staging (3-year OS was 
100%, 74.8% and 20.8%, P = 0.0015) (Fig. 5h).

Construction and validation of the nomogram based 
on ARID mutation
After removing the missing values, we got 136 patients 
with complete clinical data. Candidate variables were 
added into Cox proportional hazards regression mod-
els of PFS and OS, including age, gender, EMD, subtype, 
DS staging, ISS staging, R-ISS staging, LDH level, high-
risk cytogenetic abnormalities, anemia, renal insuffi-
ciency, 1q21 copy numbers, mutation load, ARID family 
mutations and TP53 mutations. The final variables were 
selected based on coefficients and P-values of stepwise 
regression as well as clinical values. Regression coeffi-
cients and HRs for the final model variables are presented 
in Additional file 1: Tables S4 and S5.

We established a nomogram model for PFS includ-
ing TP53 mutations, mutation load, ARID family muta-
tions, EMD and 1q21 copy numbers (Fig.  6a). The total 
points were calculated by summing the scores of each 
variable, and the predicted risk corresponding to the total 
score was the probability of PD. The ROC plot showed 
a good performance of this model in predicting 1-year 
and 2-year PFS for the AUC were 0.731 and 0.741. The 
Brier score obtained from the model was 0.157 and 0.203 

Table 2  ARID gene mutation staging system

ISS international staging system, R-ISS revised international staging system

*ARID mutations refer to gene mutations in ARID gene family

Stage ISS + ARID R-ISS + ARID

I ISS stage I without ARID mutations* R-ISS stage I without ARID mutations

II Not stage I or stage III Not stage I or stage III

III ISS stage III with ARID mutations R-ISS stage III with ARID mutations

Fig. 5  ISS + ARID and R-ISS + ARID staging system. a The PFS of patients cannot be precisely distinguished using ISS staging system. b A significant 
reduction of PFS is observed as the ISS + ARID stage progressed. c OS cannot be clearly distinguished according to ISS staging system. d There is a 
significant difference of OS by using ISS + ARID staging system. e There is no significant difference in PFS using R-ISS staging system. f A significant 
reduction of PFS is observed as the R-ISS + ARID stage progressed. g OS cannot be clearly distinguished according to R-ISS staging system. h There 
is a significant difference of OS by using ISS + ARID staging
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which confirmed the calibration was acceptable (Fig. 6b). 
There was no outlier case detected by Deviance residues 
test (Fig. 6c), and Schoenfeld residuals test suggested that 
the Cox models met the proportional hazards assump-
tion (Fig.  6d). With internal validation, the AUC (0.708 
for 1-year PFS and 0.706 for 2-year PFS) and Brier scores 
(0.168 for 1-year PFS and 0.228 for 2-year PFS) of this 
model were all satisfactory (Fig. 6e).

Likewise, we developed a nomogram model for OS by 
using TP53 mutations, mutation load, ARID family muta-
tions and 1q21 copy numbers (Fig. 7a). The predicted risk 
corresponding to the total score was the probability of 
death. The model performed well in predicting 1-year, 
2-year and 3-year OS for the AUC that were 0.769, 0.769 
and 0.746. The Brier score obtained from the model was 
0.078, 0.134 and 0.156 which confirmed the calibration 
was acceptable (Fig.  7b). No outliers were identified by 
Deviance residues test (Fig. 7c) and Schoenfeld residuals 
test (Fig. 7d). With internal validation, the AUC (0.707 for 
1-year OS, 0.705 for 2-year OS and 0.705 for 3-year OS) 
and Brier scores (0.087 for 1-year OS, 0.155 for 2-year OS 
and 0.181 for 3-year OS) confirmed this model was eligi-
ble for predicting OS (Fig. 7e).

Discussion
MM is a highly heterogeneous cancer whose develop-
ment is driven by numerous factors, including cytoge-
netic abnormalities, changes in the bone marrow 
microenvironment and aberrant immune regulation 
[17]. A growing number of studies have revealed that 
epigenetic alterations, including dysfunction of CRs, 
play a critical role in the occurrence and progression 
of MM. Tessoulin et al. [18] found human myeloma cell 
lines displayed high mutation rates of epigenetic modi-
fiers. The mutation rate of TET2 (a DNA methylation 
regulator) was 15%, and the mutation rate of SETD2 
(a chromatin remodeler) was 6%. Ohguchi et  al. [19] 
identified a KDM3A-KLF2-IRF4 axis that maintained 
myeloma cell survival and dysfunction of KDM3A (a 
chromatin remodeler) was toxic to MM cells in  vitro 
and in vivo. However, the role of CRs in MM remains 
poorly studied and relevant clinical studies are par-
ticularly lacking. The present study was the first to sys-
tematically analyzed the clinical significance of CRs 
mutations in MM and provided a direction for subse-
quent mechanistic studies.

Fig. 6  Nomogram model for 1-year and 2-year probability of disease progression. a The scores are 100 for harboring TP53 mutations, 47 for 
having high mutational load, 73 for harboring ARID family mutations, 17.5 for having EMD, 20 for 1q21 gain and 39.5 for 1q21 amplification. The 
total points are calculated by summing the scores of each variable and the predicted risk corresponding to the total score is the probability of 
disease progression. b The ROC plot shows a good performance of this nomogram for 1-year and 2-year PFS. c There is no outlier case detected by 
Deviance residues test. d Schoenfeld residuals test suggests that the Cox models meet the proportional hazards assumption. e In the validation 
sets, the AUC and Brier scores of this model are all satisfactory
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KRAS was the most commonly mutated gene in our 
study followed by NRAS, which was consistent with 
existing reports [3–5]. Among the top 15 genes with the 
highest mutation rate, KMT2C, KMT2D and EP300 are 
CRs. KMT2C/KMT2D are involved in the methylation 
of H3K4 and p300 (encoded by EP300) regulates H3K27 
acetylation [9]. It was interesting that KMT2C, KMT2D 
and p300 could form a complex called KCDCOMs to 
activate transcription under normal conditions [16], 
indicating that the dysfunction of KCDCOMs might be 
involved in the pathogenesis of MM. Previous studies 
demonstrated that mutations affecting components of 
the KCDCOMs were associated with the development of 
other tumors, including breast cancer, lung cancers and 
B cell lymphomas [20–23], The possible mechanism was 
considered that dysfunction of KCDCOMs could promote 
oncogene expression (e.g., BCL2) and decrease tumor 
suppressor gene expression (e.g., TP53 and SOCS3) [20, 
22, 23]. However, the role of KCDCOMs in MM is not 
clear and subsequent functional experiments are needed 
to be further conducted.

We identified, for the first time, harboring mutations 
of ARID gene family as a predictor of poor prognosis in 
MM. It could be incorporated into ISS or R-ISS staging 

system for the optimal stratification of patients with MM. 
Subsequently, we constructed nomogram models to pre-
dict PFS and OS based on ARID family mutations and 
the model performed well with good discrimination and 
calibration. There are seven subfamilies and 15 members 
in ARID gene family (see Additional file  1: Table S3 for 
details). All members contain a DNA-binding domain 
and have the ability to regulate transcription [24]. Much 
research effort has been focused on the dysfunction of 
ARID gene family in a variety of tumors. Loss of ARID1A 
expression was related to poor outcomes in ovarian clear 
cell carcinoma [25]. Mutations of ARID5B might be a 
potential cofactor in patients with ETV6-linked leuke-
mia predisposition [26]. Frequent deletions of JARID2 
promoted the transformation of chronic myeloid malig-
nancies to leukemia [27]. However, the role of this gene 
family in MM is still unknown, which should be explored 
in further study.

Currently, there is consensus that chromosomal 
abnormalities are present before gene mutations dur-
ing the pathogenesis of myeloma [6]. Therefore, marked 
correlations were observed between chromosomal 
abnormalities and gene mutations in MM [5, 28]. We 
found FGFR3 mutations were associated with t(4; 14) 

Fig. 7  Nomogram model for 1-year, 2-year and 3-year probability of death. a The scores are 100 for harboring TP53 mutations, 38 for having 
high mutational load, 42.4 for harboring ARID family mutations, 30 for 1q21 gain and 60 for 1q21 amplification. The total points are calculated by 
summing the scores of each variable and the predicted risk corresponding to the total score is the probability of death. b The ROC plot shows a 
good performance of this nomogram for 1-year, 2-year and 3-year OS. c There is no outlier case detected by Deviance residues test. d Schoenfeld 
residuals test suggests that the Cox models meet the proportional hazards assumption. e In the validation sets, the AUC and Brier scores of this 
model are all satisfactory
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and TP53 mutations were associated with del(17p), 
which were in line with other studies [28]. However, the 
association of gain(1q21) with mutations of EP300 has 
not been reported in MM before. Gain/amplification of 
1q21 copies is considered a secondary genomic event 
during MM progression. The incidence of gain(1q21) 
increased from monoclonal gammopathy of undeter-
mined significance to relapsed MM [29]. So, we specu-
late that mutations of EP300 might promote the tumor 
progression of MM. On the other hand, del(17p) is a 
well-established marker of poor prognosis in MM, but 
our results demonstrated the combination of del(17p) 
and TP53 mutations could better predict outcomes of 
MM patients. Patients who had both del(17p) and TP53 
mutations presented with a very poor prognosis and 
should be paid more attention to by clinicians.

However, there were still some limitations in the pre-
sent study. It was regretful that we did not perform 
external validation due to the absence of suitable data. 
The effectiveness of this model will be externally vali-
dated using multi-center data in the future. Moreover, 
we used the data of normal person in databases but not 
the same patient’s non-tumor tissue to serve as con-
trols, so we were unable to completely eliminate ger-
mline variants. By using strict bioinformatic analysis 
we tried to minimize the influence of germline variants.

In conclusion, our findings emphasized the importance 
of CRs mutations in NDMM patients and the mutations 
affecting KCDCOMs might promote the development of 
MM. High mutational load and harboring mutations in 
the ARID gene family were novel predictors of adverse 
prognosis in MM. Prognostic models based on 1q21 
copies, ARID gene mutations, extramedullary disease, 
mutational load and TP53 mutations were commendably 
prognostic evaluation methods for OS and PFS and pro-
vided a reference for clinical evaluation.
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