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Abstract 

Background:  African Americans have a high risk for type 2 diabetes (T2D) and insulin resistance. Studies among 
other population groups have identified DNA methylation loci associated with insulin resistance, but data in Afri-
can Americans are lacking. Using DNA methylation profiles of blood samples obtained from the Illumina Infinium® 
HumanMethylation450 BeadChip, we performed an epigenome-wide association study to identify DNA methyla-
tion loci associated with insulin resistance among 136 non-diabetic, unrelated African American men (mean age 
41.6 years) from the Howard University Family Study.

Results:  We identified three differentially methylated positions (DMPs) for homeostatic model assessment of insulin 
resistance (HOMA-IR) at 5% FDR. One DMP (cg14013695, HOXA5) is a known locus among Mexican Americans, while 
the other two DMPs are novel—cg00456326 (OSR1; beta = 0.027) and cg20259981 (ST18; beta = 0.010). Although the 
cg00456326 DMP is novel, the OSR1 gene has previously been found associated with both insulin resistance and T2D 
in Europeans. The genes HOXA5 and ST18 have been implicated in biological processes relevant to insulin resistance. 
Differential methylation at the significant HOXA5 and OSR1 DMPs is associated with differences in gene expression 
in the iMETHYL database. Analysis of differentially methylated regions (DMRs) did not identify any epigenome-wide 
DMRs for HOMA-IR. We tested transferability of HOMA-IR associated DMPs from five previous EWAS in Mexican Ameri-
cans, Indian Asians, Europeans, and European ancestry Americans. Out of the 730 previously reported HOMA-IR DMPs, 
47 (6.4%) were associated with HOMA-IR in this cohort of African Americans.

Conclusions:  The findings from our study suggest substantial differences in DNA methylation patterns associ-
ated with insulin resistance across populations. Two of the DMPs we identified in African Americans have not been 
reported in other populations, and we found low transferability of HOMA-IR DMPs reported in other populations in 
African Americans. More work in African-ancestry populations is needed to confirm our findings as well as functional 
analyses to understand how such DNA methylation alterations contribute to T2D pathology.
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Background
African Americans are disproportionally affected by type 
2 diabetes (T2D) [1]. The prevalence of T2D among Afri-
can Americans is nearly twice that of European–ancestry 
Americans [1]. Various factors such as socio-economic 
status, genetic predisposition, environmental triggers, 
as well as lifestyle factors have been found to contribute 
to the high risk of T2D among African Americans [2, 3]. 
However, traditional risk factors such as obesity do not 
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fully explain the elevated risk among African Americans 
compared with European Americans, and it is estimated 
that genetic variants only explain 17.5% of the pheno-
typic variance of T2D [4]. Environmental, lifestyle and 
social determinants are the major players in ethnic differ-
ences in health and a better understanding of the mecha-
nisms by which these factors increase T2D risk in African 
Americans is needed.

Insulin resistance is a major feature of T2D [5], and 
African Americans have been reported to have a higher 
degree of insulin resistance relative to European-ancestry 
Americans [6]. In addition, differences in insulin resist-
ance have been reported between men and women of 
various ancestries, which may play a role in sex distinc-
tions in T2D prevalence and phenotypes [7, 8]. Given 
that the onset of T2D is often preceded by many years 
of increasing insulin resistance, the direct study of insu-
lin resistance can provide insight into the early phases 
of T2D pathology. Genetic, environmental, and lifestyle 
factors influence insulin resistance with the epigenome 
as a potential interface where these factors converge [9]. 
Epigenetics, which is the study of heritable yet revers-
ible molecular modifications to DNA without altering 
the DNA sequence, may thus provide new insights into 
mechanisms underlying insulin resistance in order to 
improve our understanding of the pathogenesis of insulin 
resistance [10]. Furthermore, because of the strong effect 
of environmental and lifestyle factors on the epigenome, 
studying epigenetics provides an opportunity to improve 
our understanding of the social pathways underlying 
health disparities, and the variable and reversible nature 
of epigenetics provides opportunities for intervention 
[11]. The best understood and most studied epigenetic 
modification is DNA methylation, which can modulate 
gene expression through the binding of methyl groups to 
CpG dinucleotides in the DNA.

Previous studies among Europeans, European ances-
try Americans, Indian Asians, and Mexican Americans 
have identified several hundred DNA methylation sites 
associated  with insulin resistance [12–16]. However, 
data are scarce on the association between DNA meth-
ylation and insulin resistance among African Americans. 
African Americans differ from other African ancestry 
populations in terms of environmental exposures and 
the amount of non-African genetic admixture (mainly 
a European ancestry component which is estimated to 
range from 10 to 20% on average) [17]. Since DNA meth-
ylation can be affected by genetic, environmental as well 
as lifestyle factors, findings from other population groups 
cannot be extrapolated to African Americans who have 
dissimilar genetic variation, environmental exposures, 
and lifestyles.

Hence, we aimed to identify DNA methylation loci 
associated with insulin resistance among African 
American men, using data from the Howard University 
Family Study (HUFS) [18]. Studying DNA methylation 
changes associated with insulin resistance may contrib-
ute to identifying markers of early pathological changes 
related to T2D.

Results
Participant characteristics
Characteristics of the 136 unrelated African Ameri-
can men without T2D are shown in Table  1. Almost 
80% of the participants consumed alcohol, and 73% 
were current smokers. The mean BMI was 27.2  kg/
m2, while their glycolytic markers, such as fasting 
glucose and insulin levels, were in the normal range. 
Granulocytes represented about 50% of the immune 
cells inferred by Houseman et  al. [19] and each of the 
other immune cell types was less than 10% as shown in 
Table 1. The immune cells showed low correlation with 
insulin resistance assessed using Homeostatic Model 

Table 1  Participant characteristics (n = 136)

SD standard deviation, HOMA-IR homeostatic model assessment for insulin 
resistance

Mean (SD)

Demographics

 Age (years) 41.6 (10.0)

Health-related behavior factors

 Smoking, n (%)

  Never 9 (6.6)

  Current 100 (73.5)

  Former 27 (19.9)

 Alcohol consumption, n (%)

  No 28 (20.6)

  Yes 108 (79.4)

 Body Mass Index (BMI), kg/m2 27.2 (6.1)

 Obesity (BMI ≥ 30), n (%) 40 (29.4)

Blood samples

 Fasting glucose (mmol/L) 4.8 (0.6)

 Insulin (pmol) 80.5 (44.6)

 HOMA-IR 1.19 (1.13)

Immune cells (%)

 CD4 + cells 18.0 (6.4)

 CD8 + cells 8.7 (7.1)

 Natural killer cells 6.1 (4.5)

 B cells 7.9 (3.6)

 Monocytes 9.4 (3.1)

 Granulocytes 49.9 (11.5)
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Assessment (HOMA-IR) with an r2 ranging from 0.057 
for CD8 + to 0.204 for CD4 + .

Association between DNA methylation and HOMA‑IR
Differentially methylated positions (DMPs): Epigenome-
wide DMPs for HOMA-IR were identified using linear 
regression analyses with adjustment for age, alcohol con-
sumption, tobacco smoking, BMI, estimated cell types, 
and technical effects (hybridization batch and array 
position). DNA methylation levels of three CpG sites 
(cg14013695, cg00456326, cg20259981) showed genome-
wide significant associations with HOMA-IR at a 5% false 
discovery rate (FDR) (Table  2; Fig.  1, Additional file  1: 

Supplementary Fig. S1). Using GapHunter, we confirmed 
that none of these 3 DMPs had an underlying multi-
modal distribution. cg14013695 was annotated to the 
transcription start site (TSS1500) of HOXA5 on chromo-
some 7. Our results showed that a single unit higher level 
of HOMA-IR was associated with a 1.6% lower DNA 
methylation of cg14013695 (FDR = 0.035). The second 
DMP (cg00456326) was located on chromosome 2 in the 
TSS1500 of the gene OSR1 and was within the shores 
of the nearest CpG island. DNA methylation levels of 
cg00456326 were 2.7% higher for each unit higher level of 
HOMA-IR (FDR = 0.035). The third genome-wide signif-
icant CpG site (cg20259981) was annotated to the 5’UTR 

Table 2  Top 10 DMPs associated with insulin resistance in African American men

a Annotation was performed via IlluminaHumanMethylation450kanno.ilmn12.hg19. Homo sapiens (human) genome assembly GRCh37 (hg19). Hansen [20] 
IlluminaHumanMethylation450kanno.ilmn12.hg19: Annotation for Illumina’s 450 k methylation arrays. R package version 0.6.0
b TSS1500—transcription start site 1500 (the region from Transcription start site (TSS) to − 1500 nucleotides upstream of TSS)
c 5’UTR—5′ untranslated region (the region of an mRNA that is directly upstream from the initiation codon)
d CpG is located approximately 25 kilobases (kb) downstream of FERMT2 gene
e TSS200—transcription start site 200 (the region from Transcription start site (TSS) to − 200 nucleotides upstream of TSS)
f FDR = false discovery rate (a 5% FDR is considered significant)

No CpG ID Chr Position Gene namea Featurea Relation to Islanda Delta β value P. value FDRf

1 cg14013695 7 27,184,176 HOXA5 TSS1500b Island − 0.016 1.87e − 07 0.035

2 cg00456326 2 19,560,467 OSR1 TSS1500b N_Shore 0.027 2.42e − 07 0.035

3 cg20259981 8 53,301,664 ST18 5’UTR​c OpenSea − 0.010 2.48e − 07 0.035

4 cg14364984 14 53,310,508 Intergenic Intergenicd OpenSea − 0.014 8.68e − 07 0.093

5 cg22885024 8 95,274,933 GEM TSS1500b S_Shore − 0.005 1.28e − 06 0.107

6 cg10584797 1 26,126,588 SEPN1 TSS200e OpenSea 0.002 1.50e − 06 0.107

7 cg18886071 1 160,617,057 SLAMF1 5’UTR​c OpenSea 0.023 1.87e − 06 0.115

8 cg13437337 2 220,300,109 SPEG Body Island 0.002 2.21e − 06 0.118

9 cg10170677 12 51,985,615 SCN8A 5’UTR​c S_Shore 0.002 4.80e − 06 0.209

10 cg20817131 7 27,184,167 HOXA5 TSS1500b Island − 0.026 5.32e − 06 0.209

Fig. 1  Manhattan plot of epigenome-wide P-values for HOMA-IR in African American men. The red line indicates FDR < 0.05
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of ST18 on chromosome 8 in the open sea. One-unit 
higher HOMA-IR was associated with 1% lower DNA 
methylation of cg20259981.

Differentially methylated regions (DMRs): Our study 
did not identify any DMRs, defined as three or more 
CpG sites within  the direct vicinity of each other, at a 
family-wise error rate (FWER) of < 0.05 or FDR < 0.05 
using the Bumphunter and DMRcate packages, respec-
tively. However, our topmost DMR identified with Bum-
phunter (FWER = 0.124) was annotated to the TSS1500 
of HOXA5 on chromosome 7, a regulatory region from 
which our topmost DMP (cg14013695) was also identi-
fied. The DMP cg14013695 was situated 900  bp down-
stream of the DMR, and although cg14013695 was not 
among the 17 CpG sites that this DMR consisted of the 
direction of effect was the same. The DMP as well as the 
17 CpG sites of the DMR were hypomethylated for each 
unit increase in HOMA-IR (Table  3, Fig.  2, Additional 
file 2: Supplementary Table S1).

Evaluation of our top DMPs in previous EWAS
We searched the literature to determine if our three 
genome-wide significant DMPs have been reported in 
previous EWAS. We found that cg14013695 (TSS1500 of 
HOXA5) was previously reported in an EWAS on insulin 
resistance among Mexican Americans (Beta = − 0.174, 
p = 1.49E − 7, FDR = 0.056) [9]. The same DMP has also 
been reported in relation to oral squamous cell carci-
noma, colorectal cancer, and inflammatory bowel disease 
among others [21]. The other two DMPs -cg00456326 in 
the TSS1500 of OSR1 and cg20259981 in the TSS1500 
of ST18- have been associated with atherosclerosis and 
Down syndrome and with asthma, respectively. Next, 
we searched whether genes annotated to our top three 
DMPs (i.e., HOXA5, OSR1, and ST18) had been reported 
in previous EWAS. CpG sites annotated to the HOXA5 
gene have been associated to 33 different traits, with the 

most frequently reported associations including depres-
sive disorders (46 associations), Kabuki syndrome (33 
associations), and inflammatory bowel disease (23 asso-
ciations) [21]. The most-reported associations for CpG 
sites within the OSR1 gene are for breast cancer (6 asso-
ciations), and atherosclerosis (5 associations). Down syn-
drome (11 associations) and asthma (7 associations) are 
most reported for the ST18 gene. With respect to cardio-
metabolic traits, we found that HOXA5 was reported in 
an EWAS on obesity in African Americans, while OSR1 
was reported in an EWAS on insulin resistance and T2D 
among European populations [3, 12, 22].

Transferability analysis of CpG sites identified in other 
populations
We tested the transferability of a total of 855 CpG sites 
reported in five previous EWAS in Mexican Americans, 
Indian Asians, Europeans, and European ancestry Ameri-
cans (Additional file 2: Supplementary Tables S2 and S3) 
[12–16]. Analysis of the previously reported DMPs was 
performed using linear regression models similar to those 
employed in the main analysis. A total of 848 unique CpG 
sites remained after the removal of 7 CpG sites duplicated 
across studies. Exclusion of an additional 118 probes 
that did not meet quality-control thresholds in our data 
resulted in 730 candidate DMPS included in the final lin-
ear regression analysis (Additional file 2: Supplementary 
Table S4). We found that in our sample of African Ameri-
can men, only cg14013695 (TSS1500 of HOXA5) was sta-
tistically significant at a Bonferroni-corrected p-value of 
6.8E − 05 (i.e., p = 0.05/730; Additional file 2: Supplemen-
tary Table S4). We also assessed whether DMPs identified 
in other populations were statistically significant in our 
main analyses. We found that 47 (6.4%) DMPs (includ-
ing cg14013695) were statistically significant at p < 0.05 
(Additional file 2: Supplementary Tables S5 and S6). The 
majority of the replicated DMPs (40/47; 93%) were from 

Table 3  Top 5 differentially methylated regions associated with insulin resistance in African American men

a DMR = Differentially methylated region
b Chr = Chromosome
c Annotation was performed via IlluminaHumanMethylation450kanno.ilmn12.hg19. Homo sapiens (human) genome assembly GRCh37 (hg19). Hansen [20] 
IlluminaHumanMethylation450kanno.ilmn12.hg19: Annotation for Illumina’s 450 k methylation arrays. R package version 0.6.0
d FWER = family-wise error rate (an FWER < 0.05 is considered significant)

DMRa Chrb Startc Endc Gene namec No of CpG 
sites

P-value FWERd Direction of effect

1 7 27,182,493 27,183,806 HOXA5 17 2.4e − 05 0.124 hypomethylated

2 17 79,905,236 79,905,263 MYADML2 3 1.9e − 04 0.553 hypomethylated

3 17 41,277,974 41,278,380 BRCA1 10 2.1e − 04 0.683 hypomethylated

4 16 53,407,013 53,407,808 CHD9 7 2.6e − 04 0.703 hypomethylated

5 22 24,384,105 24,384,400 GSTT1 10 2.7e − 04 0.766 hypomethylated
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Fig. 2  Differentially methylated region for insulin resistance in African Americans annotated to the HOXA5 gene. Beta values for CpG sites in the 
DMR are provided in Additional file 2: Supplementary Table S2
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the study by Apron et al.[12]. While these DMPs reached 
significance in the replication, we were not able to check 
for consistency in direction of effect for many DMPs as 
effect sizes were not reported for these [12]. However, 
for the three DMPs whose effect sizes were reported 
(cg14013695, cg17126947, cg22065733), the direction of 
effect was consistent.

Biological pathways and chromatin state enrichment
We conducted enrichment analyses using the clusterPro-
filer package and the EWAS Toolkit in order to assess 
whether our top 100 DMPs enriched to particular bio-
logical pathways at a 5% FDR. The clusterProfiler Gene 
Ontology (GO) results showed that CpG sites annotated 
to HOXA5, OSR1, HOXA1, PAX8, HIPK1, and  HOXA6 
were enriched to embryonic organ morphogenesis 
and embryonic organ development (FDR = 0.030). 
The clusterProfiler KEGG pathway analysis did not 
yield any enriched pathways. Furthermore, cluster-
Profiler enrichment analysis for chromatin state, CpG 
Islands and gene position showed that top DMPs were 
enriched to the flanking active TSSs (P-value = 0.026) 
and enhancers (P-value = 0.002), were within CpG 
Islands (P-value = 0.03) and were within the TSS1500 
(P-value = 0.05) (Additional file  2: Supplementary 
Table S7a). Enrichment analysis using the EWAS Toolkit 
did not reveal any GO or KEGG enriched pathways at 
an FDR < 0.05. The EWAS Toolkit chromatin state anal-
ysis showed enrichment to the flaking active TSSs and 
enhancers in white blood cells and skeletal muscle cells 
(Additional file 2: Supplementary Table S7b).

DNA methylation at top loci and gene expression
In order to gain insight into the relationship between 
DNA methylation differences and gene expression, 
we assessed the correlation between our top three 
DMPs and gene expression in white blood cells using 
the IMETHYL database [23]. We found that high DNA 

methylation levels of cg14013695 (TSS1500 of HOXA5) 
were associated with low expression of HOXA5 (Frag-
ments Per Kilobase of transcript per Million mapped 
reads; FPKM = − 0.11 ± 0.39). Low DNA methylation 
of cg00456326 (TSS1500 of OSR1) was associated with 
decreased expression of OSR1 (FPKM = − 0.64 ± 0.18). 
Such data for cg20259981 (TSS1500 of ST18) were not 
available in the IMETHYL database (Table  4). Query-
ing the EWAS Toolkit showed that cg14013695 was 
positively correlated with HOXA5 expression in liver 
(R2 = 0.332, P-value = 1.32E − 11) and kidney (R2 = 0.124, 
P-value = 0.001) tissue and that cg20259981 was posi-
tively correlated with expression of ST18 in brain 
(R2 = 0.119, P-value = 0.004) and testis tissue (R2 = 0.434, 
P-value = 1.48E − 7).

Assessment of gene function related to insulin resistance
We assessed whether genes annotated to our top three 
DMPs were linked to insulin resistance traits in the 
GWAS catalog, EWAS catalog, and GeneCards. In 
the GWAS catalog, we found out that genetic variants 
annotated to HOXA5, OSR1 and ST18 were not inde-
pendently related to insulin resistance traits (Additional 
file  2: Supplementary Table  S8). However, several genes 
located in the 500 kilobases (kb) vicinity of HOXA5 (i.e., 
HOXA11-AS, HOXA11, HOXA-AS3, HOXA3, HOTTIP, 
HOXA6) and ST18 (i.e., RB1CC1) were associated with 
BMI adjusted waist circumference and BMI adjusted 
waist-to-hip ratio (Additional file  2: Supplementary 
Table S8). In the EWAS catalog, we found that aberrant 
DNA methylation in HOXA5 (including cg14013695) 
was associated with pancreatic ductal adenocarcinoma 
and gene expression in the liver (Additional file  2: Sup-
plementary Table S9A). Several genes in the 500 kb vicin-
ity of HOXA5 (i.e., HOXA3, HOXA9, HOXA7, HOXA1, 
EVX1) were also associated with high density lipoprotein 
(HDL) cholesterol efflux capacity, BMI, and pancreatic 
ductal adenocarcinoma (Additional file 2: Supplementary 

Table 4  Relationship between DNA methylation and gene expression as reported in the IMETHYL database

a Annotation was performed via IlluminaHumanMethylation450kanno.ilmn12.hg19. Homo sapiens (human) genome assembly GRCh37 (hg19). Hansen [20] 
IlluminaHumanMethylation450kanno.ilmn12.hg19: Annotation for Illumina’s 450 k methylation arrays. R package version 0.6.0
b Methylation level according to iMETHYL database (low, medium, high). IMETHYL provides whole-DNA methylation (~ 24 million autosomal CpG sites), whole-
genome (~ 9 million single-nucleotide variants), and whole-transcriptome (> 14 000 genes) data for CD4+ T-lymphocytes, monocytes, and neutrophils collected from 
approximately 100 subjects. Komaki et al. [23] iMETHYL: an integrative database of human DNA methylation, gene expression, and genomic variation. Hum Genome 
Var 5, 18,008 (2018)
c FPKM = Fragments Per Kilobase of transcript per Million mapped reads

CpG ID Nearest genea Gene featurea Methylation levelb Methylation averageb 
% (SD)

FPKMb,c

average (SD)

cg14013695 HOXA5 TSS1500 High 85.3 (11.2) − 0.11 (0.39)

cg00456326 OSR1 TSS1500 Low 35.0 (12.0) − 0.64 (0.18)

cg20259981 ST18 5’UTR​ High 94.2 (5.3) Data not available
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Table  S9B). The genes ST18 and OSR1, as well genes in 
their 500 kb vicinity, were not associated with any insulin 
resistance traits.

Discussion
In this EWAS of insulin resistance, we have identified 
three DMPs (i.e., cg14013695, cg00456326, cg20259981) 
associated with insulin resistance among African 
American men at a 5% FDR. Two of these DMPs—i.e., 
cg00456326 (OSR1) and cg20259981 (ST18)—have not 
been reported in other populations. In addition, we suc-
cessfully replicated another 46 DMPs, which were previ-
ously identified in other populations. To our knowledge, 
this is the first EWAS on insulin resistance among Afri-
can Americans.

Differential methylation of our top DMP, cg14013695 
(HOXA5) seems to play a role in the pathogenesis of 
insulin resistance across populations. This DMP has 
previously been reported in an insulin resistance EWAS 
among Mexican Americans [16]. In our sample of 
African Americans as well as in Mexican Americans, 
cg14013695 was hypomethylated for higher levels of 
insulin resistance. The CpG site cg14013695 is located in 
the transcription start sites of HOXA5 where lower DNA 
methylation can increase gene expression [24, 25]. We 
found that decreased DNA methylation of cg14013695 
leads to increased expression of  the HOXA5 gene in 
blood cells, but to decreased expression in kidney and 
liver [23]. The HOXA5 gene located on chromosome 7 
is a transcription factor that is involved in regulating 
human embryonic development and adult stem cell dif-
ferentiation [26]. More importantly, it has been shown 
that HOXA5 is highly expressed in the adipose tissue 
and plays an active role in regulating adipocyte func-
tions, including differentiation and body fat distribution 
[27]. Methylation levels of the HOXA5 promoter region, 
600  bp upstream of the transcription start site, were 
found significantly increased in preadipocytes of first-
degree relatives of T2D subjects compared with subjects 
with no family history of T2D [28]. A similar inverse 
association between methylation and expression level 
was found for this promotor region as for the transcrip-
tion start site in which the cg14013695 is located [28]. 
Functional studies have further shown that changes in 
HOXA5 expression in adipocytes play a role in chronic 
inflammation through M2 macrophage polarization and 
the eIF2α/PERK signaling pathways [29]. Besides the 
functional studies, GWAS have also found associations 
between genes in the 500  kb vicinity of HOXA5 (i.e., 
HOXA11-AS, HOXA11, HOXA-AS3, HOXA3, HOTTIP, 
HOXA6) and BMI adjusted waist-to-hip ratio, as well as 
BMI-adjusted waist circumference [30]. Likewise, EWAS 
have also found associations between aberrant DNA 

methylation in HOXA5 and pancreatic ductal adeno-
carcinoma, as well as gene expression in the liver [31]. 
Moreover, DNA methylation alterations in genes within 
500 kb vicinity of HOXA5 (i.e., HOXA3, HOXA9, HOXA7, 
HOXA1, EVX1) have been associated with HDL choles-
terol efflux capacity and with BMI [31]. This evidence 
clearly points to a link between DNA methylation in 
HOXA5 and the pathogenesis of insulin resistance. Fur-
thermore, successful replication of this CpG site reported 
in Mexican Americans in our study could point to the 
common pathology of insulin resistance between African 
Americans and Mexican Americans.

The DMP association in the promoter region of OSR1 
(cg00456326) may also play a role in cardiometabolic 
traits across populations. This DMP has previously 
been  found hypermethylated in postmortem obtained 
atherosclerotic portions of human aortas compared 
with donor-matched nonatherosclerotic portions of 
human aortas from samples in Spain [32]. The CpG site 
cg00456326 is located in the TSS1500 of OSR1 where 
the higher DNA methylation level we observed per 
unit increase in HOMA-IR is likely to lead to decreased 
expression of the  OSR1 gene. The OSR1 gene codes for 
a transcription factor that plays a role in the regulation 
of embryonic heart and urogenital development [33]. 
This gene has also been reported as a tumor suppressor 
in renal cell carcinomas and gastric cancer [34]. In func-
tional studies, administration of insulin was associated 
with an increase in phosphorylation of OSR1, which in 
turn increased sodium reabsorption in the kidneys via 
the Nacl cotransporter (NCC) [35]. Further studies are 
needed to better understand the potential role of the 
OSR1 gene in insulin resistance in African Americans.

Differential methylation of DMP cg20259981 may play 
a role in insulin action through effects on expression of 
the ST18 gene. The observed 1% more hypomethyla-
tion at the CpG site in the 5’UTR of ST18 for each unit 
increase in HOMA-IR can be hypothesized to increase 
expression of ST18, since lower DNA methylation in the 
gene body usually leads to increased gene expression [24, 
25]. The gene ST18 is a tumor suppressor gene, which 
was originally characterized as the third member of the 
neural zinc finger transcription factor family [36]. The 
ST18 gene is highly expressed in the pancreatic islets and 
represents a novel transcriptional mediator of lipotoxic-
ity and cytokine-induced β-cell death in the pancreas 
[36]. Furthermore, ST18 deletion can significantly reduce 
cellular insulin levels and increase β cell apoptosis [37]. 
In addition to these functional studies, GWAS have also 
found associations between genes in the 500 kb vicinity 
of ST18 (i.e., RB1CC1) and BMI-adjusted waist circum-
ference, as well as BMI-adjusted waist-to-hip ratio.
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We also noted in pathway enrichment analyses (gene 
ontology) that CpG sites annotated to HOXA1, HOXA5, 
HOXA6, OSR1, PAX8, and  HIPK1 enriched to embry-
onic organ morphogenesis. All six genes are homeobox 
genes and are directly involved in the formation of many 
body structures during early embryonic development 
[38]. Recent work has provided evidence that homeobox 
genes continue to be regionally expressed in adult tissues 
[38]. Enrichment of this pathway in our study could point 
to the fact that DNA methylation is associated with  the 
remodeling of body components (regions/structures) that 
are critical for insulin resistance during stem cell differ-
entiation. For example, HOXA5 expression is associated 
with adipose tissue remodeling [39], while OSR1 expres-
sion is associated with remodeling of sodium transport-
ers in the kidneys [35], and PAX expression is associated 
with enhanced differentiation of insulin-producing cells 
[40].

We successfully replicated a total of 47 (6.4%) HOMA-
IR associated DMPs that were previously identified in 
other populations. This means that the majority of DMPs 
reported in other populations did not replicate in our 
sample of African American men and that transferabil-
ity of DMPs for insulin resistance across populations is 
low. This finding corroborates with previous studies 
which showed that DNA methylation varies strongly by 
population group/ethnicity due to differences in genetic 
ancestry and environmental exposures [41]. Given the 
numerous environmental exposures, including lifestyle 
factors, that can have a substantial effect on DNA meth-
ylation [42], we suspect the lack of transferability to be 
mainly due to these factors. Hence, DNA methylation 
findings should not be extrapolated to populations of dif-
ferent ancestry or in different environmental contexts. 
Importantly, African Americans are not a homogenous 
group and are exposed to a wide variety of environmen-
tal and social determinants, which may affect the epig-
enome. As such, our study, which is the first on African 
Americans, is an important first step because it pro-
vides the much-needed literature on the African Ameri-
can population, but more EWAS studies among African 
Americans reflecting diversity in environments and 
exposures are needed.

The main strengths of this study are that it represents 
the first EWAS for insulin resistance in African Ameri-
cans (a previously understudied population) and our top 
three DMP-IR associations are supported by evidence 
from GWAS, EWAS, and functional studies. Nonethe-
less, there are several limitations. Firstly, insulin resist-
ance was calculated using a HOMA calculator, while a 
hyperinsulinemic euglycemic clamp and intravenous 
glucose tolerance test are considered the gold stand-
ard. Nevertheless, validation studies have found good 

correlation between euglycemic clamp and HOMA-IR 
(r = 0.8) [43], making it a widely used tool in epidemio-
logic studies. Secondly, our study had a small sample size 
and was only conducted in men, which may limit the 
external validity of the results. However, previous studies 
have shown sex differences in insulin resistance and dis-
tinctions in its effects on CVD risk [7, 8, 44], which high-
lights the importance of sex-specific analyses. Evidently, 
there is a need for follow-up studies larger in size that 
include women-specific analysis. In addition, analysis of 
sex chromosome DNA methylation patterns in insulin 
target tissue such as skeletal muscle may provide further 
insight into T2D pathology given the previously reported 
chromosome-wide and site-specific differences in DNA 
methylation on the X chromosome of human pancreatic 
islets [45]. Thirdly, DNA methylation was measured in 
blood but preferable tissue for insulin resistance includes 
adipose tissue and skeletal muscle. Fourth, we did not 
have data available for replication in an independent 
sample of African American men and neither were gene 
expression data available for these participants. However, 
we used data from the iMethyl database for CpG-expres-
sion associations, with the caveat that expression quanti-
tative trait methylation loci (like other quantitative trait 
loci) may differ between populations. Omics data from 
diverse populations would provide the ability to identify 
potential population-specific CpG-expression associa-
tions. Lastly, our cross-sectional study design contributes 
further to precluding the assignment of causality to any 
CpG site.

Conclusions
Studying DNA methylation changes associated with 
insulin resistance can help identify early pathophysi-
ological changes related to prediabetes and T2D. In the 
present study, we successfully identified three significant 
HOMA-IR-associated CpGs, one of which has been pre-
viously reported and two novel candidate loci that have 
not been previously reported in other populations. Two 
of the three loci are implicated in insulin resistance or 
related traits. More work in African Americans is needed 
to confirm our findings, as well as functional analyses to 
understand how such DNA methylation alterations con-
tribute to T2D pathology.

Methods
Study design and population
The Howard University Family Study (HUFS) study is a 
population-based family study that enrolled participants 
between 2001 and 2008 to investigate the genetic and 
environmental basis of common complex traits (includ-
ing hypertension, obesity, diabetes, and other health out-
comes among African Americans) [18]. The study did not 
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ascertain families based on any phenotype in order to 
maximize the utility of the cohort for the study of mul-
tiple common traits. The full details of the study have 
been published elsewhere [18]. In brief, HUFS enrolled 
a representative sample of African Americans in the 
Washington, DC metropolitan area. All study enrollees 
self-identified as African American and were excluded if 
they were under 14 years of age, pregnant at the time of 
enrollment or had acute febrile illness or an acute pain 
episode at the time of clinical examination. For the pre-
sent study, 144 men who were unrelated and were at least 
20 years of age were selected for DNA methylation profil-
ing. After the exclusion of eight individuals with T2D as 
defined by American Diabetes Association (ADA) crite-
ria, 136 participants remained for the current analysis.

Phenotypic measurements
The following measurements were obtained through a 
structured questionnaire: age, sex, alcohol consump-
tion, and tobacco smoking. Alcohol consumption was 
categorized as any or no consumption. Smoking was 
categorised into current smokers, past smokers, or non-
smokers. Body weight was measured in light clothes 
on an electronic scale to the nearest 0.1  kg, and height 
was measured with a stadiometer to the nearest 0.1 cm. 
Body mass index (BMI) was computed as weight (kg) 
divided by height squared (m2). Fasting plasma glucose 
concentration was measured using the enzymatic refer-
ence method with hexokinase on Roche Cobas Integra 
400 Plus or Modular-E analyzers. Fasting insulin was 
measured by electrochemiluminescence immunoassay 
(ECLIA) on Roche Modular-E or Elecsys 2010 analyz-
ers (Roche Diagnostics, Indianapolis, IN). Insulin resist-
ance was estimated using the updated Homeostasis 
Model Assessment (HOMA2), which takes into account 
variations in hepatic and peripheral glucose resistance, 
increases in the insulin secretion curve for plasma glu-
cose concentrations above 10  mmol/L (180  mg/dL) and 
the contribution of circulating proinsulin. Homeostatic 
Model Assessment for Insulin Resistance (HOMA-IR) 
calculations were conducted using the University of 
Oxford HOMA2 calculator (available at: https://​www.​
dtu.​ox.​ac.​uk/​homac​alcul​ator/).

DNA methylation processing, profiling, and quality control
Bisulfite treatment of DNA (Zymo EZ DNA Meth-
ylationTM kit) was used to deaminate unmethylated 
cytosine to produce uracil in DNA to conform to  the 
manufacturer’s protocol. The converted DNA was ampli-
fied and hybridized on the Infinium® HumanMethyla-
tion450 BeadChip which quantifies DNA methylation 
levels of approximately 485,000 CpG sites. The samples 
were randomized over two bisulfite conversion and 

hybridization batches. Raw 450  K data were processed 
for primary quality control using the statistical software 
platform “R” (version 3.6.1) and MethylAid package (ver-
sion 1.20). An overview of all “R” packages used in the 
analyses can be found in Additional file 2: Supplementary 
Table S10. MethylAid detects poor-quality samples using 
sample-dependent and sample-independent control CpG 
sites present on the 450 K array itself. MethylAid thresh-
old values included methylated and unmethylated inten-
sities of 10.5, overall quality control of 11.75, bisulfite 
control of 13.25, hybridization control of 12.50 and a 
detection p value of 0.94 [46]. The cluster plots showed 
all samples were of good quality and none were excluded 
from further analyses (Additional file  2: Supplementary 
Fig. S2). We used plots from Minfi package to predict sex 
by clustering samples based on their mean DNA methyl-
ation intensities on the X and Y chromosomes. We iden-
tified a single sex-discordant sample, which was removed. 
Quantile normalization was used to normalize the raw 
450 K data on the assumption that we would only detect 
very small DNA methylation changes in association with 
continuous HOMA-IR values. The minfi package was 
used to remove 17,351 cross-reactive probes and probes 
containing single nucleotide polymorphisms (SNPs) 
according to the Illumina 450  k manifest. Removal of 
these probes resulted in a final set of 456,513 CpG sites 
that were used in subsequent analysis. Finally, as cell mix-
ture is a source of variability in DNA methylation, white 
blood cell types were estimated using the method devel-
oped by Houseman et al. [19] and included as covariates 
in the analysis.

Statistical analysis
Differentially methylated positions and regions
Statistical analysis was carried out using packages in 
“R” statistical computing environment [47]. Study pop-
ulation characteristics were presented as proportions 
for categorical variables and as means (with standard 
deviations) for normally distributed continuous vari-
ables. Linear regressions were conducted to determine 
associations between DNA methylation and HOMA-
IR using the minfi package (with DNA methylation are 
the dependent variable). Age, alcohol consumption, 
tobacco smoking, BMI, estimated cell types, and tech-
nical effects (hybridization batch and array position) 
were included as covariates. Model fitting was evalu-
ated using a QQ-plot (Additional file  1: Supplemen-
tary Fig. S3). For all differentially methylated position 
(DMP) analyses, M values were calculated as the log2 
ratio of the intensities of methylated CpG site versus 
unmethylated CpG site. Identification of significant 
DMPs was determined based on P-values correspond-
ing with M values, while beta values were used for 

https://www.dtu.ox.ac.uk/homacalculator/
https://www.dtu.ox.ac.uk/homacalculator/
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visualization [48]. The GapHunter function [49] was 
applied to the top 100 DMPs with the lowest M-value 
P-values to detect potential multimodal distributions. 
False discovery rate (FDR) was used to correct for mul-
tiple testing. A 5% FDR was considered genome-wide 
significant. Regulatory regions around these DMPs 
were visualized using the MEAL package [50, 51]. To 
detect differentially methylated regions (DMRs), we 
tested two different methods. First, we fitted models 
similar to DMP analyses using the Bumphunter func-
tion [52] with a cutoff of 0.0151 (which corresponds 
to 1.5% difference in the Beta-values) and 1000 per-
mutations. Second, the DMRcate package was used to 
detect additional DMRs [53]. Three or more CpG sites 
within  the direct vicinity of each other was consid-
ered a DMR. For Bumphunter, a family-wise error rate 
(FWER) < 0.05 was considered statistically significant 
and for DMRcate, an FDR of < 0.05.

In silico replication
We conducted in silico replication of previously reported 
DMPs from five previous EWAS for insulin resistance 
among Europeans, European ancestry Americans, Indian 
Asians, and Mexican Americans to test the transferabil-
ity of these candidate loci in our study. First, we assessed 
whether our top DMPs were on the list of previously 
reported DMPs. Second, we assessed whether any of the 
candidate CpG sites had statistical significance in our 
study at a nominal p-value of 0.05. Lastly, we performed a 
separate statistical analysis on the candidate loci, employ-
ing linear regression methods similar to our main DMP 
analyses. For this analysis, we assumed statistical signifi-
cance at a Bonferroni-corrected p-value (0.05/number of 
candidate loci).

Post‑omic analyses
We performed several post-omic analyses in order to 
ascertain biological relevance of our findings. First, 
we performed pathway enrichment analyses using the 
clusterProfiler package on the top 100 DMPs. We fil-
tered GO and KEGG pathways with a 5% FDR. Second, 
we performed molecular enrichment analysis for CpG 
Islands, gene position, and chromatin state separately 
at an alpha < 0.05. Third, we used the same set of 100 
DMPs to perform enrichment analysis with the EWAS 
Toolkit [21]. Next, we assessed for correlations between 
top DMPs and gene expression in white blood cells using 
the publicly available IMETHYL database [23] and the 
EWAS Toolkit for other tissues [21]. IMETHYL provides 
whole-DNA, whole-genome, and whole-transcriptome 
data for normal CD4 + T-lymphocytes, monocytes, and 

neutrophils collected from approximately 100 healthy 
subjects [23]. Finally, we searched in the GWAS catalog 
(https://​www.​ebi.​ac.​uk/​gwas/), GeneCards (https://​www.​
genec​ards.​org/)​,the EWAS catalog (http://​www.​ewasc​
atalog.​org/), and EWAS Atlas (https://​ngdc.​cncb.​ac.​cn/​
ewas/​atlas) to determine whether genes annotated to top 
DMPs were linked to insulin resistance.
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