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Abstract 

Background  Ovarian cancer (OC) is a highly lethal gynecologic cancer, and it is hard to diagnose at an early stage. 
Clinically, there are no ovarian cancer-specific markers for early detection. Here, we demonstrate the use of cell-free 
DNA (cfDNA) methylomes to detect ovarian cancer, especially the early-stage OC.

Experimental design  Plasma from 74 epithelial ovarian cancer patients, 86 healthy volunteers, and 20 patients 
with benign pelvic masses was collected. The cfDNA methylomes of these samples were generated by cell-free 
methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq). The differentially methyl-
ated regions (DMRs) were identified by the contrasts between tumor and non-tumor groups, and the discrimination 
performance was evaluated with the iterative training and testing method.

Results  The DMRs identified for cfDNA methylomes can well discriminate tumor groups and non-tumor groups (ROC 
values from 0.86 to 0.98). The late-stage top 300 DMRs are more late-stage-specific and failed to detect early-stage 
OC. However, the early-stage markers have the potential to discriminate all-stage OCs from non-tumor samples.

Conclusions  This study demonstrates that cfDNA methylomes generated with cfMeDIP-seq could be used to iden-
tify OC-specific biomarkers for OC, especially early OC detection. To detect early-stage OC, the biomarkers should be 
directly identified from early OC plasma samples rather than mix-stage ones. Further exploration of DMRs from a k 
larger early-stage OC cohort is warranted.
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Background
Ovarian cancer (OC) is the most lethal gynecologic can-
cer for its low five-year survival rate of 46% [1, 2]. Over 
the decades, even though the treatment of ovarian cancer 

has been evolved, there is not much improvement in the 
survival rate [3]. One main reason is about three-quarters 
of ovarian cancer patients were diagnosed at late stage 
(stage III–IV) for the lack of obvious early symptoms 
[1, 4]. The late diagnosis makes it surgically challenging 
to reach the complete resection, the only independent 
factor which could significantly impact the overall sur-
vival rate [5]. Early detection of ovarian cancer can be a 
remarkable strategy to improve this situation as the five-
year survival rate of early-stage ovarian cancer can reach 
92% [1]. Moreover, the surgery for early-stage ovarian 
cancer will be much simpler and will allow at least par-
tial patients to preserve their fertility and to have a better 
quality of life [6, 7].
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Several screen trials were designed for the early detec-
tion of ovarian cancer. In the UKCTOCS trial, post-
menopausal women randomly received CA125 testing 
or annual transvaginal ultrasound [8]. In the PLCO trial, 
women underwent both CA125 testing and transvaginal 
ultrasound [9]. These trials show no significant mortality 
reduction but documented harms [8, 10, 11]. Thus, the 
screening in average-risk women with the notable clini-
cal marker CA125 is not commended for the early detec-
tion of ovarian cancer. Other serum proteins were also 
discussed in ovarian cancer detection, including HE4, 
CEA, osteopontin, etc. [12, 13]. As these protein markers 
are also elevated in benign conditions, their performance 
requires further studies (Table 1).

cfDNA shed into the bloodstream is quite informative, 
and the load and the genetic pattern of tumor correlated 
cfDNA are widely used as biomarkers for cancer moni-
tor and therapy [14, 15]. Recently, cfDNA methylation 
shows a promising role in the early detection of cancer. 
DNA methylation alteration is one of the earliest events 
during carcinogenesis, which represses tumor suppres-
sion genes, activates tumor oncogenes, and promotes 
cancer transformation [16–18]. The alterations of DNA 
methylation can be detected in the blood even with a 
very low abundance of circulating tumor DNA (ctDNA), 
which would be sensitive for cancer detection at the early 
cancer stage or even before clinical diagnosis [19–21]. 
Several cfDNA methylation markers have already been 
discussed in ovarian cancer [22]. However, for the lack 
of the genome-wide methylation information of cfDNA, 
their early detection capacity is limited [20]. Lately, 
cfMeDIP-seq shows its ability to detect low-abundance 
methylation alterations in several cancer types, including 

renal cancer, lung cancer, pancreatic cancer, and glioma 
[21, 23], demonstrating its potential in early-stage can-
cer detection [21, 24]. In this study, we generated cfDNA 
methylomes for both early and late-stage ovarian cancer 
by cfMeDIP-seq. We found the DMRs identified in OC 
groups could discriminate them from non-tumor sam-
ples. Further, we found that the DMRs identified from 
late-stage OC samples show a late-stage specific pattern 
and not suitable for the detection of early-stage OC. The 
majority of cfDNA methylation markers of early-stage 
OC are also more significantly altered in the early stage. 
Still, the whole set of early-stage markers could be used 
for the detection of all-stage of OC.

Methods
Patient plasma samples
Plasma samples presented in this study were col-
lected from Sun Yat-Sen Memorial Hospital upon 
approval of institutional ethics committees (SYSEC-
KY-KS-2021-084). All participants provided written 
informed consent. Seventy-four plasma samples were 
collected preoperatively from epithelial ovarian cancer 
patients without any pretreatment. The stage of cancer 
was surgically evaluated according to FIGO stage guide-
lines. In addition, 86 plasma samples from healthy vol-
unteers with serum CA125 lower than 35 IU/mL and 20 
samples from patients with benign pelvic masses were 
selected as controls.

Sample processing and cfDNA extraction
5–10  mL peripheral blood was collected in Streck cell-
free DNA tubes, and plasma was isolated within 48  h, 

Table 1  Patient characteristics

Characteristics Malignant Healthy Benign

Age

 Median (range) 53 (29–77) 53 (42–67) 41 (26–67)

CA125

 Median (range) 308 (6.5–16,608) 13.49 (4.21–31.70) 47.65 (10.5–183.4)

Tumor histology

 High-grade serous 52

 Endometrioid 6

 Clear cell 12

 Mucinous 3

 Mixed 1

FIGO stage

 I 19

 II 9

 III 43

 IV 3
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frozen at − 80  °C. cfDNA was extracted from 2 to 4  mL 
plasma using Qiagen Circulating Nucleic Acids Kit (Qia-
gen), according to manufacturer’s instructions, measured 
with Qubit fluorometer (Life Technologies), and stored 
at − 80 °C.

cfMeDIP‑seq protocol
10  ng cfDNA was used for Library preparation with 
Kapa HyperPrep Kit (Kapa Biosystems) and cfMeDIP 
with Diagenode MagMeDIP kit (catalog no. C02010021) 
according to the previously published protocols [21, 
25]. The library was amplified with KAPA HiFi Hotstart 
ReadyMix (KAPA Biosystems) and NEBNext Multiplex 
Oligos for Illumina (New England BioLabs) as follows: 
initial denaturation at 95 °C for 3 min, followed by 14–15 
cycles of 98 °C for 20 s, 65 °C for 15 s, 72 °C for 30 s, and 
the final extension at 72  °C for 1 min. After purification 
with Beckman Agencourt AMPure XP beads, amplified 
libraries were measured with Qubit fluorometer (Life 
Technologies) and Bioanalyzer 2100 (Agilent) and then 
pooled and sequenced (Wuxi NextCode) on an Illumina 
NovaSeq 6000 system to generate 150  bp paired-end 
reads.

cfMeDIP‑seq data processing
After sequencing, the sequenced reads were aligned to 
the hg19 genome using Bowtie [26] with the default set-
tings. The generated SAM files from hg19 alignment were 
converted to BAM format, ensuring the removal of dupli-
cate reads, and the reads were then sorted and indexed 
using SAMtools [27] before subsequent analysis with the 
R package MeDIPS [28]. The CpG enrichment score, as 
a quality control measure for the immunoprecipitation 
reaction, was also calculated with the MeDIPS package 
[28].

Machine learning approaches for in‑group samples 
classification
Data from cfMeDIP-seq profiles were first reduced to 
map functional regions including CpG islands, shores, 
shelves, FANTOM5 human enhancers, and promot-
ers as previously described [29, 30]. For all analyses, 
models were generated exclusively using samples in the 
training cohort, and model performance was tested in 
held-out samples (samples in the test sets). For each two-
group comparison, samples were partitioned into 100 
independent training and testing cohorts in an 80–20% 
manner. 100 glmnet models (tumor versus non-tumor) 
were developed with the top 300 DMRs identified using 
DESeq2 [31] to estimate the probability of a sample being 
a tumor sample with the R package caret [32]. Model per-
formance was evaluated with held-out samples in test 

cohorts by computing the area under the receiver operat-
ing characteristic (ROC) curve (AUROC).

To determine whether DMRs identified from late-
stage OC samples and healthy samples could distinguish 
early-stage samples from non-tumor samples, we first 
performed the differential analysis with 46 late-stage OC 
samples and 50 healthy samples random sampling from 
a 86 healthy sample cohort by DESeq2 [31]. Then, a glm-
net model was developed using the top 300 DMRs from 
late-stage OC and selected healthy samples with normal-
ized CPM (count per million reads) value. Finally, model 
performance was evaluated with early-stage samples and 
held-out non-tumor samples by computing the AUROC. 
To evaluate whether early-stage specific DMRs could 
classify late-stage OC samples with non-tumor samples 
effectively, we generated similar models using DMRs 
between early-stage OC samples and randomly sampled 
healthy samples and evaluated model performance in a 
similar way.

Results
Performance of cfMeDIP‑seq data in ovarian cancer 
and non‑cancer samples
To identify ovarian cancer-specific cfDNA DMRs, we 
used a published cfMeDIP-seq protocol which can sen-
sitively detect as low as 0.001% tumor DNA from a 10 ng 
DNA mixture [21]. We performed cfMeDIP-seq on 190 
plasma samples, collected from 74 epithelial ovarian 
cancer patients (n = 28 stage I–II, n = 46 stage III–IV), 
86 age-matched healthy volunteers, and 20 benign con-
trols. Following the standard cfMeDIP-seq data process-
ing protocol, the mapping rates of all samples range from 
87 to 94%, and these reads were highly enriched in CpG 
island regions (Additional file  1: Fig. S1A; Additional 
file  2: Table  S1). We further used the CpG enrichment 
score [28] to evaluate the CpG enrichment profiles. The 
mean CpG enrichment score is between 3.33 and 3.60 in 
all sample groups (Additional file 1: Fig. S1B), similar to 
the results in the previous cfMeDIP-seq papers [21, 23].

Classification of ovarian tumor samples using cfDNA 
methylomes
To test whether cfMeDIP-seq profiles could discrimi-
nate cancer and non-cancer samples, we made contrasts 
with every two groups (Fig. 1A) and evaluated the abil-
ity of differential methylated regions (DMRs) for sample 
classification in each contrast. We first test the perfor-
mance of cfMeDIP-seq in groups of late-stage ovarian 
cancer and healthy samples. Following the previously 
published method [21, 24], we evaluated the perfor-
mance of discrimination with the iterative training and 
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testing method. 80% of late-stage samples and healthy 
controls were randomly selected for each iteration as 
a training set for DMR identifications. Top 300 DMRs 
were used to perform elastic-net logistic regression 
with a glmnet model [32]. And the classification model 
was used to calculate the sample methylation scores for 
the held-out 20% samples (Fig. 1B). This training–test-
ing procedure was repeated 100 times, and the discrim-
ination power was assessed with all the predictions of 
held-out samples during the whole iterations and pre-
sented by the area under the receiver operating char-
acteristic curve (AUROC). Across 100 training–testing 
sets, late-stage OC samples were assigned a higher 
median methylation score than all healthy samples (Fig. 
S2B), with acuminating AUROC of 0.97 (95% confi-
dence interval (CI) 0.96–0.98; Fig. 2A). To evaluate the 
classification performance of the top 300 DMRS identi-
fied with cfMeDIP-seq between late-stage samples and 
benign samples, we conducted a similar analysis and 
also found a high classification performance by meth-
ylation score (Additional file 1: Fig. S2B), with a cumu-
lative AUROC of 0.98 (95% CI 0.98–0.99; Fig.  2B). It 
demonstrated that DMRs identified with cfMeDIP-seq 
can classify late-stage OC from non-tumor samples.

To further assess the capacity of cfMeDIP-seq in 
early-stage detection of ovarian cancer, the same analy-
sis was performed in early-stage OC versus non-tumor 
controls. Even with a  limited  number  of early-stage 
samples, we observed a promising classification per-
formance in early-stage OC versus healthy controls 
(AUROC = 0.86, 95% CI 0.85–0.87; Fig. 2C), and also in 
early-stage OC versus benign controls (AUROC = 0.96, 

95% CI 0.95–0.95; Fig.  2D). Here, we also tested the 
discrimination power of the widely used OC protein 
marker CA125 in early-stage OC versus benign sam-
ples and observed a poor performance (Fig.  2E). By 
contrast, the tumor-specific DNA methylation markers 
from cfMeDIP-seq profiles showed much higher classi-
fication performance, revealing its potential in the early 
detection of ovarian cancer.

Performance of late‑stage methylation markers 
in early‑stage samples
As it is difficult to obtain a large amount of early-stage 
OC samples, we wondered whether the ovarian cancer-
specific markers identified from late-stage cancer sam-
ples could be used to detect early ovarian cancer samples. 
A glmnet model was trained with the methylation pro-
files of 46 late-stage cancer samples and 50 healthy con-
trol samples using the top 300 DMRs between the two 
groups to test this assumption. The trained model’s per-
formance was first evaluated on the early-stage OC sam-
ples and 36 held-out healthy controls, and we observed a 
comprised discrimination performance (AUC = 0.73, 95% 
CI 0.6–0.86; Fig. 3A, B). The discrimination ability of this 
model was weaker than the one generated with tumor-
specific markers identified in early-stage samples versus 
healthy controls markers and would be limited for clini-
cal applications considering the low incidence of ovarian 
cancer. We further test the performance of this model 
to discriminate early-stage samples and benign samples 
and found no classification between these two groups 
(AUC = 0.45, 95% CI 0.26–0.59; Fig. 3C).

Fig. 1  Design of ovarian cfMeDIP-seq dataset analysis. (A) Design of tumor and non-tumor cohorts. Classification analyses were performed 
between two groups linked by a double-headed arrow. (B) Flowchart of machine learning algorithm used to train and evaluate cfMeDIP profiles 
in the detection and classification of ovarian cancer
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To further understand the characteristic of these OC 
markers identified from late-stage samples, we checked 
the methylation levels of these markers in all samples. 
These markers indeed show a significantly hyper-/hypo-
methylated pattern in late-stage samples, but these dif-
ferentially methylated patterns were compromised or lost 
in early-stage OC samples (Fig. 3A). These observations 
indicate that the methylation markers identified from 
late-stage OC cannot be used directly to detect early-
stage OC.

Performance of early‑stage methylation markers 
in late‑stage samples
Some tumor-specific methylations were reported to show 
a sequential methylation alteration pattern during the 
cancer progression [33, 34]. A similar accumulative DNA 
methylation pattern was also found in ovarian tumor 
tissues and gastric tumors [35, 36], revealing that some 
early-stage tumor methylation markers have a consistent 
or progressed pattern and could be used to detect both 
early- and late-stage tumors. To test whether the OC 
methylation markers we identified in early-stage sam-
ples could also be used to detect the late-stage OC, we 

then evaluated the classification efficiency of early-stage 
markers in late-stage samples. Similarly, we built a glm-
net model with the top 300 DMRs between 28 early-stage 
samples and 50 healthy controls and evaluated its per-
formance in late-stage samples. The early-stage model 
showed a satisfactory discrimination capacity to classify 
late-stage samples and healthy samples (AUC = 0.88, 95% 
CI 0.8–0.96; Fig. 4A), and a relatively weaker capacity in 
discrimination of late-stage cancer samples and benign 
controls (AUC = 0.71, 95% CI 0.58–0.85; Fig.  4B). These 
results confirmed that the early-stage markers could gen-
erally present the molecular characteristics of ovarian 
cancer in all stages. A similar result was also observed 
when we visualized 4 groups of samples with early-stage 
OC markers by the top 2 principal components from 
principal component analysis (PCA). The early-stage 
markers could separate different groups, although the 
discriminative ability was lightly decreased between late-
stage OC and benign samples (Fig. 4C).

We further evaluated the methylation alterations of 
these early-stage markers among all four group sam-
ples (Fig. 4D, E). Contrary to our expectation, a fraction 
of early-stage markers showed continuous alteration 
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tendency from healthy to stage II samples, but with less 
differentially methylated levels in stage III/IV samples. 
Nearly, all the hypomethylated DMRs reverse to the basal 
level in the late-stage samples. Depending on whether 
the DMRs reverse their hypomethylation pattern at stage 
I or stage II, the hypomethylated DMRs can be clearly 
divided into two groups. A similar reversal pattern is also 
observed in hypermethylated DMRs. Still, about a quar-
ter of hypermethylated DMRs maintain or increase their 
methylated levels in late-stage plasma, which may con-
tribute to the discrimination of late-stage cancer.

Discussion
DNA methylation is increasingly involved in the research 
and application of cancer early detection. In precursor 
lesions of colorectal cancer, a cancer-similar accumula-
tion of DNA methylation can already be observed [37]. 
Several DNA methylation markers can be detected two 
years before the clinical diagnosis of ovarian cancer [20]. 
A recent study showed that cancer detection by a group 
of DNA methylation markers can be up to four years 
before the conventional diagnosis [38]. All these works 
confirmed the potential of DNA methylation markers in 

the early detection of cancer. cfMeDIP-seq provides a 
cost-efficient way to generate genome-wide DNA meth-
ylation profiles directly from plasma cfDNA. This tech-
nique has been proved for its discriminative capacity in 
many carcinomas, including intracranial tumors [21, 23, 
24]. Here, the first time, we generated the genome-wide 
cfDNA methylomes of ovarian cancer patients along with 
benign and healthy controls with cfMeDIP-seq. Within 
each contrast of tumor and non-tumor group, the clas-
sifier developed from methylation profiles can effectively 
discriminate every two groups (Fig. 2A–D), demonstrat-
ing the capacity of cfMeDIP-seq to identify the cfDNA 
methylation alterations in ovarian cancer. Comparing 
with the performance of the widely used clinical marker 
CA125 which elevates in fewer than 50% of early-stage 
OC cases and also elevates in some benign conditions 
[39, 40], cfDNA methylation markers show more poten-
tial to identify early OC patients from the average-risk 
population. But further works are required.

As there are no apparent symptoms, early-stage OC 
patients are usually diagnosed incidentally [41]. It will 
take  a very  prolonged period  of  time to collect enough 
early-stage OC samples for tumor marker identification 
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and validation. As described in a previous study, one 
solution to solve this common challenge was using DNA 
methylation markers identified from the OC cohort 
mainly consisted of late-stage samples for the early detec-
tion of ovarian cancer [20]. Although it is quite common 
to use stage-mixed tumor samples as a discovery set to 
identify markers for the detection of both early- and 
late-stage cancer, the performance of these markers usu-
ally declined in the early-stage samples [19, 20, 42]. In 
an extreme case, we evaluated the performance of the 
methylation markers of late-stage OC versus healthy 

controls in early-stage samples. The late-stage markers 
show a distinctive late-stage-specific pattern in plasma, 
which would limit their contribution to the detection of 
early-stage ovarian cancer. We also compared the top 
300 late-stage markers with the top early-stage markers, 
and only four of them are overlapped (data not shown). 
This observation confirms the limited capacity of plasma 
cfDNA methylation markers from late-stage ovarian can-
cer samples for early-stage ovarian cancer detection.

Although the late-stage cfDNA methylation mark-
ers could not be applied in early-stage detection, these 
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cfDNA markers reflected a sequential pattern during 
ovarian cancer progression, consistent with previously 
described in ovarian cancer tissues [43, 44]. However, 
a large proportion of hypermethylated markers and all 
hypomethylated markers identified in the early-stage 
plasma are not altered according to cancer progression. 
These different cfDNA methylation patterns are likely 
due to either the complexity of plasma as a highly dif-
ferent proportion of ctDNA in plasma between stages 
[14, 45] or the possible diverse DNA methylation pat-
terns during cancer progression. Though more evidence 
is required, the non-sequential methylation pattern has 
been discovered in the development of cutaneous squa-
mous cell carcinomas [46]. In either of the possibility 
described above, it has to consider the optimal propor-
tion of different stages of samples in the biomarker dis-
covery cohort to achieve the best specificity for all stages. 
Considering the low incidence of ovarian cancer and the 
clinical requirement for detecting early-stage patients [4, 
47], the optimal markers should be generated directly 
from early-stage samples to achieve high specificity.

In this study, with the limited number of early-stage 
OC samples, we cannot generate a set of optimized mark-
ers from a training group of early-stage OC and test them 
in an independent cohort. Collection of more early-stage 
samples and further work will be needed to test these 
cfDNA methylation markers both in the patients with 
unclear pelvic masses and in an average-risk population 
to evaluate their discrimination capacity more precisely.

Conclusions
In summary, with cfDNA methylomes generated by 
cfMeDIP-seq, we can discriminate OC patients, espe-
cially early-stage OC patients with health and benign 
controls. We observed that the top OC cfDNA methyla-
tion markers have a stage-specific pattern, indicating that 
it is necessary to identify early-stage OC markers directly 
from an early-stage cohort rather than a mix-stage one.
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