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Abstract 

Background: Recombinant human growth hormone (rhGH) has shown a great growth-promoting potential in 
children with idiopathic short stature (ISS). However, the response to rhGH differs across individuals, largely due to 
genetic and epigenetic heterogeneity. Since epigenetic marks on the methylome can be dynamically influenced by 
GH, we performed a comprehensive pharmacoepigenomics analysis of DNA methylation changes associated with 
long-term rhGH administration in children with ISS.

Results: We measured DNA methylation profiles before and after GH treatment (with a duration of ~ 18 months in 
average) on 47 healthy children using customized methylC-seq capture sequencing. Their changes were compared 
and associated with changes in plasma IGF1 by adjusting sex, age, treatment duration and estimated blood propor-
tions. We observed a considerable inter-individual heterogeneity of DNA methylation changes responding to GH 
treatment. We identified 267 response-associated differentially methylated cytosines (DMCs) that were enriched in 
promoter regions, CpG islands and blood cell-type-specific regulatory elements. Furthermore, the genes associated 
with these DMCs were enriched in the biology process of “cell development,” “neuron differentiation” and “develop-
mental growth,” and in the TGF-beta signaling pathway, PPAR Alpha pathway, endoderm differentiation pathway, 
adipocytokine signaling pathway as well as PI3K-Akt signaling pathway, and cAMP signaling pathway.

Conclusion: Our study provides a first insight in DNA methylation changes associated with rhGH administration, 
which may help understand mechanisms of epigenetic regulation on GH-responsive genes.
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Introduction
Growth hormone (GH) acts directly on intracellu-
lar pathways downstream of the GH receptor or via 
the stimulation and action of IGF1 [1]. Physiological 
effects of GH are mainly on growth, body composition 
and metabolism. In the epiphyseal growth plate, GH 
effects are largely mediated by promoting IGF1 pro-
duction to stimulate skeletal growth. In addition, GH 
is known to increase muscle mass. GH also contributes 
to the acute metabolic response to stressful situations, 
such as fasting [2, 3], exercise [4], injuries, critical 
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illnesses [5] and infectious diseases [6] by acting on 
the liver, pancreatic beta cells, adipose tissue and mus-
cle. Overall, most of these GH effects are mediated by 
activating the transcription of numerous genes.

Non-physiological exposure to GH occurs in the 
human clinic when children with short stature (SS) 
receive supra-physiological doses of recombinant 
human GH (rhGH) to stimulate their skeletal growth. 
These cases differ widely in the level and duration of 
exposure to rhGH which may leave lasting marks in 
different tissues that could conceivably be based on 
epigenetic mechanisms.

Changes in CpG methylation of the genome are one 
of the most studied epigenetic mechanisms. They can 
facilitate or reduce the transcription of certain genes 
when they occur in the regulatory zones of these 
genes. Once installed, some of them cannot be erased. 
However, they can show a certain plasticity and vary 
with age or environmental factors [7–11]. Most of 
them are variable depending on the tissue [12–14]. 
Modifications of CpG methylation have been associ-
ated with cancer, metabolic and cardiovascular dis-
eases [15–17]. Following binding to its receptor, GH 
activates GHR-associated Src family kinases, acting via 
other intracellular pathways [18], such as ERK and Jun, 
which are known to affect CpG methylation [19].

It was therefore interesting to investigate whether 
GH was capable of producing its own epigenetic marks 
on the methylome. The only opportunity to detect 
them in the human clinic is to study the methylome 
before and after exposure to the hormone. This is made 
possible in one particular circumstance, the appli-
cation of rhGH treatment to normal small children. 
Given the considerable individual variability of meth-
ylation marks, it would have been difficult to compare 
rhGH treated with untreated children. Therefore, we 
searched for acquired CpG modifications by studying 
the same children before and during rhGH exposure. 
As for most DNA methylation studies in humans, it 
was only possible to study blood cells in these chil-
dren, with the expectation that changes in blood cells 
may reflect those occurring in the physiological target 
tissues of GH action. It is probably important to clarify 
that our study does not address at all the epigenetic 
variations that could contribute to the mechanisms of 
short stature, which have been the subject of a num-
ber of previous studies. Such methylation marks are 
not expected to vary upon GH administration and are 
therefore outside the scope of our approach devoted to 
the epigenetic consequences of exposure to GH action.

Methods
Cohort—sample collection
DNA samples were obtained from 47 children with non-
pathological idiopathic short stature (ISS) recruited 
among 317 children who served as controls in a study 
of type 1 diabetes (T1D) epigenetics [20]. The 47 stud-
ied children with short stature all had ISS, as defined 
[21]. Briefly, this diagnosis requires that child’s height 
is < − 2SD (standard deviation) from the population aver-
age, with a birth length > − 2SD for gestational age (none 
of them had intrauterine growth retardation) and appro-
priate for parents’ height, then linear and normal growth 
rate, and no detectable etiology for the short stature, such 
as chromosomal, endocrine, or skeletal diseases. Clas-
sically, testing of such short children includes clinical 
examination, bone X-rays, IGF1measurement and/or GH 
stimulation tests (to exclude GH deficiency). The 47 stud-
ied children all went through these screening analyses, 
and none of them showed any abnormality in the cited 
parameters. This study was supported by the Programme 
Hospitalier de Recherche Clinique of the French Ministry 
of Health according to the French bioethics law with the 
objective of studying gene–environment factors in young 
patients with T1D and age-matched controls. Families 
were carefully informed about the investigational nature 
of the study and signed an informed consent agreed by 
CPP (number DC-2008-693; NI 2620, Comité de Protec-
tion des Personnes). The studied children had received 
rhGH treatment for a duration of 6–38.4 months.

None had deficiencies of GH or other hormones, chro-
mosomal disorders or syndromes, skeletal dysplasia or 
metabolic disease. All children received rhGH as daily sc 
injections 6 days/wk, starting with a 40 µg/kg day rhGH 
dose and following a target-to-treat rhGH dosing proto-
col based on the growth response to treatment, so that 
individual average dose ranged 40–113 µg/kg day across 
the studied children. Children gave two blood samples, 
one before onset of rhGH treatment and the other after 
6–38.4 months of rhGH treatment. All were seen as out-
patients every 6  months for clinical examination and 
measurements of serum IGF-I. Children were healthy at 
time of study, with no sign of viral or other intercurrent 
infection. Blood samples were collected in the course of 
routine medical evaluation of patients. DNA methyla-
tion was measured in peripheral blood mononuclear cells 
(PBMC) samples from these patients before and during 
treatment.

Isolation of genomic DNA
Peripheral blood mononuclear cells (PBMC) were iso-
lated from fresh blood using a density gradient. Five 
milliliters of fresh blood were mixed with 5 ml of NaCl 
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154  mM, and 5  ml of Lymphoprep solution (Eurobio, 
Paris, France) was added to the diluted blood and cen-
trifuged for 20 min at room temperature at 800 g. After 
centrifugation, the interphase containing PBMC was 
carefully aspirated and the cells were mixed with NaCl. 
The cell suspension was centrifuged at 300 g and the cell 
pellet washed with PBS. PBMC were frozen at − 80  °C. 
Nucleic acids were extracted from PBMC using Gentra 
Puregene blood kit (Qiagen, Hilden, Germany).

Measurement of IGF1 concentrations
IGF1 concentrations were measured in serum samples 
around 07.00 am to 08.00  pm before breakfast using a 
chemiluminescent immunometric assay after pre-treat-
ment with acid using Immulite®2000 (Siemens Health-
care Diagnostics Products Llanberis, UK). IGF1 values 
under treatment were averaged for analysis.

DNA methylation capture sequencing
Methylation capture sequencing (MCC-Seq) was per-
formed as previously described [22–24]. In brief, the 
MCC-Seq protocol was carried out using the SeqCap 
Epi Enrichment System protocol (Roche NimbleGen) 
[22–24]. Specifically, a whole-genome sequencing library 
was prepared and bisulfite converted, amplified and then 
a capture enriching for targeted bisulfite-converted DNA 
fragments was carried out. Equal amounts of multiplexed 
libraries (12 samples per capture) were combined and 
were further amplified. Lastly, the MCC-Seq libraries 
were sequenced on the Illumina HiSeq4000 or NovaSeq 
6000 system using 100 bp paired-end sequencing. More 
specifically, whole-genome sequencing libraries were 
generated from 700 to 1000 ng of genomic DNA spiked 
with 0.1% (w/w) unmethylated λ DNA (Promega) pre-
viously fragmented to 300–400  bp peak sizes using the 
Covaris focused-ultrasonicator E210. Fragment size was 
controlled on a Bioanalyzer DNA 1000 Chip (Agilent), 
and the KAPA High Throughput Library Preparation Kit 
(KAPA Biosystems) was applied. End repair of the gen-
erated dsDNA with 3′- or 5′-overhangs, adenylation of 
3′-ends, adaptor ligation and clean-up steps were car-
ried out as per KAPA Biosystems’ recommendations. 
The cleaned-up ligation product was then analyzed on 
a Bioanalyzer High Sensitivity DNA Chip (Agilent) and 
quantified by PicoGreen (Life Technologies). Samples 
were then bisulfite converted using the Epitect Fast DNA 
Bisulfite Kit (Qiagen), according to the manufacturer’s 
protocol. Bisulfite-converted DNA was quantified using 
OliGreen (Life Technologies) and, based on quantity, 
amplified by 9–12 cycles of PCR using the Kapa Hifi 
Uracil + DNA polymerase (KAPA Biosystems), accord-
ing to the manufacturer’s protocol. The amplified librar-
ies were purified using Ampure Beads and validated on 

Bioanalyzer High Sensitivity DNA Chips, and quantified 
by PicoGreen.

The hybridization procedure of the amplified bisulfite-
converted library was performed as described by the 
manufacturer, using 1 μg of total input of library, which 
was evenly divided by the libraries to be multiplexed, and 
incubated at 47  °C for 72 h. Washing and recovering of 
the captured library, as well as PCR amplification and 
final purification, were carried out as recommended by 
the manufacturer. Quality, concentration and size distri-
bution of the captured library were determined by Bio-
analyzer High Sensitivity DNA Chips.

This blood MCC-Seq panel covers (1) the majority 
of human gene promoters, blood-cell-lineage-specific 
enhancer regions and methylation footprint regions 
[25] observed in blood, (2) CpGs from Illumina Human 
Methylation 450 Bead Chips and (3) published autoim-
mune-related SNPs as well as SNPs in their LD regions 
with r2 > 0.8. Overall, it covers 4,861,805 CpGs which 
have been applied to multiple blood-based epigenome-
wide association studies [24, 26].

MCC‑Seq data process
Targeted MCC-Seq HiSeq and NovaSeq reads were 
aligned using the Epigenome Pipeline available from the 
DRAGEN Bio-IT platform (Edico Genomics/Illumina). 
Specifically, the MCC-Seq paired-end raw reads were 
first demultiplexed into FASTQ files using Illumina’s 
bcl2Fastq2-2.19.1 software. Reads were then trimmed 
for quality (phred33 ≥ 20) and Illumina adapters using 
trimgalore v.0.4.2 (https:// www. bioin forma tics. babra 
ham. ac. uk/ proje cts/ trim_ galore/), a wrapper tool around 
Cutadapt [27] and FastQC (https:// www. bioin forma tics. 
babra ham. ac. uk/ proje cts/ fastqc/). Then, the trimmed 
reads were aligned, per sequencing lane, to the bisulfite-
converted GRCh37 reference genome using DRAGEN 
EP v2.6.3 or later in paired-end mode using the direc-
tional/Lister methylation protocol presets; alignments 
were calculated for both strands, and the unique align-
ment with highest quality was retained. Lane bam files 
were merged and then de-duplicated using Picard (ver-
sion 2.9). A genome-wide cytosine methylation report 
was generated by DRAGEN to record counts of methyl-
ated and unmethylated cytosines at each cytosine posi-
tion in the genome. Methylation counts are provided for 
the CpG, CHG and CHH cytosine contexts. DNA meth-
ylation level of each CpG was calculated by the number 
of methylated reads over the total number of sequenced 
reads. CpGs that were located within sex chromosomes, 
overlapping with SNPs (dbSNP 137), the DAC Black-
listed Regions or Duke Excluded Regions (generated by 
the ENCODE project) were removed. CpG sites with less 
than 20X read coverage were also discarded.

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Variants/SNPs (including homozygous alternate and 
heterozygous genotypes) were inferred using Bis-SNP 
(version 0.82.2) [28] on the de-duplicated bam files. 
The homozygous reference genotypes of individuals on 
these SNPs were extracted from the aligned bam files by 
requiring >  = 10X read coverage aligned to the reference 
allele. Hierarchical clustering was performed based on 
the genotype profiles of SNPs on chromosome 1 where 
genotypes were inferred from all samples.

Statistical analysis
A linear regression model (LM) was built to investigate 
the association between the changes of DNA meth-
ylation level before and after treatment (delta beta) and 
the changes of IGF1 level (delta IGF1) by correcting age 
onset, the treatment duration and the estimated blood 
cell proportions. We used the R function lm() to fit the 
model and calculated p values for variables of interest. 
Due to limited sample size, the nominal p value < 1e−4 
was used as a threshold of statistical significance to 
determine differentially methylated CpGs (DMCs). To 
reduce the impact of zero-inflated methylation differ-
ences on inferring the regression, we limited our analysis 
on CpGs that have >  = 30% of pairs with  nonzero meth-
ylation differences. Blood deconvolution was done using 
constrained linear projection [29] via the projectMix 
function of the RefFreeEWAS package, using a custom 
panel of 30,455 cell-type-specific hypo-methylated and 
hyper-methylated CpGs. The blood reference epigenome 
profiles include neutrophil, monocyte, B cell and T cell.

Genome features and function enrichment analysis
We downloaded the genome feature annotation tables, 
including transcription start sites (TSSs), 3’UTRs, 
5’UTRs, first exons, exons, introns and transcription end 
sites (TESs), from the UCSC genome browser with the 
hg19 build version (https:// genome. ucsc. edu/). We con-
sidered both TSS200 (200  bp from TSSs) and TSS1500 
(1500 bp from TSSs) for the promoter regions. We also 
downloaded the CpG islands (CGI) annotation table from 
the UCSC genome browser. Furthermore, CGI north and 
south shores were defined as the 2-kb flanking sequences 
on upstream and downstream of CGIs, respectively, and 
north and south shelves were defined as the 2-kb flanking 
sequences beyond the shores. Genome feature enrich-
ment analyses of GH response DMCs were performed 
using Fisher’s exact test for significance where the back-
ground set was the all testable CpGs. The gene ontology 
enrichment analyses were performed using homer [30] 
(version 4.11) with gene sets detected from the immune 
panel as the background set.

Results
Descriptions of the GH cohort
Main characteristics of the 47 subjects (pairs) included in 
this study are shown in Table 1. All had ISS as defined by 
[31]. Briefly, ISS is a condition in which the height of the 
individual is more than 2 standard deviations (SD) below 
the corresponding mean height for a given age, sex and 
population, in whom no identifiable disorder is present.

The sex-matched participants (24 females vs. 23 males) 
were aged 4.9 to 13.1 years at time of starting rhGH treat-
ment. They received a mean supra-physiological dose of 
rhGH of 70.8 μg/kg per day for a duration range from 6 to 
38.4 months. During rhGH therapy, the mean increase in 
plasma IGF1 across children ranged from 4 to 658 ng/ml.

Differentially methylated CpGs in response to GH 
treatment
The average sequence genome coverage in targeted 
regions for these 94 samples was 25-fold (Additional 
file  1: Table  S1). Close to 5.3 million CpGs (including 
those out of the targeted panels) were captured at auto-
somes with more than 20-fold read coverage and in at 
least one sample. When restricting attention to CpGs 
with good sample coverage in at least 10 before and after 
treatment pairs, 3,342,494 CpGs at autosomes remained 
for downstream analysis. In addition, the paired sam-
ples before and after GH treatment for 47 children were 
clustered well according to their genotype profiles which 
were inferred from the methylation sequencing data 
(Additional file 2: Figure S1).

We first compared the DNA methylation difference 
of each CpG per individual pair. For these ~ 3.3 M CpGs 
across 47 individual pairs, 68.1% of all comparisons 
were measured, see the sample (pair) coverage distribu-
tion of CpGs in Additional file  3: Figure S2A. A major-
ity of the CpGs showed low mean absolute methylation 

Table 1 Main characteristics of the studied children

Mean ± SD

N 47

Sex (M/F) 23/24

Age at rhGH onset (year) 9.8 ± 1.8

Tanner stage (stage 0/stage 1) 36/11

Mean rhGH dose (µg/kg day) 70.8 ± 19

Treatment duration (months) 18.1 ± 7.3

Growth rate before treatment (cm/year) 4.6 ± 1.0

Growth rate during treatment (cm/year) 9.1 ± 1.5

Plasma IGF1 at baseline (ng/ml) 167 ± 80

Mean IGF1during treatment (ng/ml) 402 ± 123

Delta IGF1 under treatment (ng/ml) 235 ± 117

https://genome.ucsc.edu/
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difference (e.g., > 95% of these CpGs are showing mean 
methylation differences ≤ 5%) and low standard deviation  
(Fig. 1A, B). Specifically, it showed majority of them have 
DNA methylation difference of zero as indicated in the 
middle peak of Fig.  1A. Meanwhile, it also showed two 
lower sub-peaks which indicated the potential epigenetic 
responses to the GH treatment and represent the aver-
age methylation changes (i.e., ~  ± 5%). When consider-
ing each of the measured CpG pairs across 47 children 
(n = 107,019,585), the mean absolute value of the methyl-
ation changes between the baseline and rhGH stimulated 
samples is 4.8 ± 6.6% (SD). There is no difference between 
male and female groups (Additional file  3: Figure S2B). 
By requiring ≥ 10% methylation difference between the 
baseline and rhGH stimulated samples, 304,528 CpGs 
showed either ≥ 10  hypo-methylated samples or ≥ 10 
hyper-methylated samples. Among those CpGs, 37,128 
CpGs showed discordant responses to rhGH treatment 
(i.e., ≥ 10 hypo-methylated samples and ≥ 10 hyper-
methylated samples). Furthermore, the corresponded 
numbers of CpGs drop to 11,398 and 0 if requiring ≥ 20% 
methylation changes. Overall, we observed quite het-
erogeneous DNA methylation responses to rhGH treat-
ment. Additional file  3: Figure S2C demonstrates the 
methylation changes pattern for the top 5% most variable 

CpGs whose methylation profiles were measured for all 
individuals.

We observed that roughly 14.64%, 3.76% and 1.07% of 
the CpGs showed methylation difference > 10%, 20% and 
30% comparing the baseline and after treatment sam-
ples, respectively (Fig. 1C). We then correlated the ratio 
of CpGs showing methylation difference > 10% of indi-
viduals with other phenotypes such as onsite age, differ-
ence of blood proportions and changes in plasma IGF1 
concentration under treatment. We observed that the 
proportion changes of T cell and neutrophil are signifi-
cantly corrected with the ratio of CpGs showing >  = 10% 
differences (r = 0.39 and − 0.32, with p = 0.006 and 0.03, 
respectively) (Fig.  1D, E), but not for others parame-
ters. This correlation trends are further increased when 
checking the ratio of CpGs showing >  = 20% or 30% 
methylation level changes (Additional file  1: Table  S2). 
Furthermore, we also observed that the proportion 
changes of B cell are showing significant correlation with 
the ratio CpGs showing 30% methylation level changes. 
Additional file 1: Table S2 presents the detailed correla-
tions between CpG ratios at different levels of meth-
ylation changes and various phenotypic features. This 
implied that the methylation level changes might be con-
founded by the blood proportions changes.

Fig. 1 Characterization of DNA methylation changes before and after GH stimulation treatment. A The distribution of the DNA methylation 
changes. B The scatter plot between the DNA methylation changes and standard deviation of DNA methylation changes over all CpGs. The density 
of CpGs was also illustrated using different colors as indicated in the legend. C The distribution of the percentage of CpGs showing different level 
of differential methylation changes (> 10%, > 20% and > 30%) across samples. D, E The correlation between the percentage of DMCs (at > 10% 
methylation level difference) and the changes of T cell proportion (D) and neutrophil proportion (E). The sex and treatment duration were indicated 
with different colors and different sizes of the dots
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To identify the differentially methylated CpGs upon 
long-term exposure to rhGH, we fit a linear regression 
model on the difference between the DNA methylation 
values of all baseline and post-treatment PBMC sam-
ples and the difference in IGF1 values (Delta-IGF1) 
by adjusting the age at onset of treatment, treatment 
duration and differences in blood cell proportions 
before and after treatment. Figure 2A, B illustrates the 
QQ-plot and the Manhattan plot for this analysis. We 
did not observe any significant associations between 
Delta-IGF1 and the methylation level changes of CpGs 
(response DMCs) between baseline and post-treatment 
samples after multiple test corrections at a FDR of 0.05. 
However, we identified 2599 CpGs showing response 
DMCs (p < 1e−3) among baseline and post-treatment 
samples where 1317 response DMCs are negatively 
correlated and 1282 DMCs are positively correlated. 
With a more stringent p value threshold, we identified 
267 DMCs at p value < 1e−4 with 123 negatively cor-
related and 144 positively correlated response DMCs. 
The DNA methylation change’s pattern of the DMCs 
at p < 1e−3, which were also measured by all the indi-
viduals, is illustrated in Fig.  2C. Table  2 lists the top 
20 significant response DMCs with the top examples 

demonstrated in Fig.  2D–G, and Additional file  1: 
Table S3 lists the full list of these 267 response DMCs.

Genome feature and function enrichment analysis 
of response DMCs
We first performed a genomic feature enrichment anal-
ysis of response DMCs with the p value < 1e−4 and p 
value < 1e−3. We observed that the response DMCs with 
p value < 1e−3 were slightly enriched in the first exon, 
TES200 and CGIs (Fig.  3A) but no significant regions 
for the response DMCs with p value < 1e−4 (Fig.  3A). 
Furthermore, we also observed slightly enrichments on 
the blood-specific regulatory elements—DNase I hyper-
sensitive sites (DHSs) regions of CD19 and CD20 for 
the response DMCs with p value < 1e−4 but not for the 
response DMCs with p value < 1e−3 (Fig. 3A).

We then performed a gene function enrichment 
analysis on 265 genes which are associated with 267 p 
value < 1e−4 response DMCs using Homer (annotate-
peaks function) [30]. It revealed that these genes were 
enriched in the Biological process GO term of “neu-
ron differentiation” (p value < 1e−05), “cell develop-
ment” and “cell morphogenesis” (p value < 1e−4), as 
well as other developmental process-related terms, 

Fig. 2 The distribution of response-dependent differentially methylated CpGs. A The QQ-plot of p values from the analysis of the CpGs respond to 
the GH treatment. B Manhattan plot of p values from the response analysis. C The heatmap of response DMCs at p value < 1e−3 whose methylation 
profiles were measured for all individuals. Different phenotype features (including different sequencing platforms, sex, puberty, age onset, 
treatment duration, changes of IGF1 concentration and GH dose) are illustrated in the top plots. D–G Scatter plot for the examples of top response 
DMCs. The sex and treatment duration were indicated with different colors and different sizes of the dots
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including the “Development growth” and “Growth” 
terms (p value < 3e−3) (Fig.  3B). Strikingly, these genes 
were observed to be enriched in the “Endoderm dif-
ferentiation pathway” (p value < 1e−3), “Adipocytokine 
signaling pathway” (p value = 0.019), “TGF-beta signal-
ing pathway” (p value = 0.02) and “PPAR Alpha path-
way” (p value < 0.03) as well as other pathways related 
to growth factor receptor or stimulating hormone sign-
aling pathway (Fig.  3C). Furthermore, the common 
domain families of “Rnase H1,” “WH/WH-like DNA” (p 
value < 1e−4), “TIMP,” “PWWP,” etc. (p value < 1e−3), 
were observed to be over-represented in the proteins 
of these response DMCs-associated genes (Fig.  3D). In 

addition, when exploring the enrichment for genes asso-
ciated with response DMCs at p < 1e−3 (n = 2247 genes), 
we observed that these genes were enriched in “PI3K-Akt 
signaling pathway,” “Sphingolipid signaling pathway” and 
“cAMP signaling pathway” (Additional file 4: Figure S3).

We compared our identified DMCs with previously 
reported GH-related DMCs (n = 239, [32]). We did not 
find that any reported significant DMCs were replicated 
at our study, but when expanded to 1 kb distance-based 
neighboring CpGs, we observed a slight enrichment 
(fold-change of 1.73) of these reported DMCs at our 
response DMCs (p value < 0.001) compared with our 
non-significant CpGs (p value > 0.001) although this 

Table 2 The top 20 response DMCs list with p value < 1e−4. The response DMCs were sorted by the p value. CpG chromosome and 
position, regression p value, beta value (coefficient) and the annotated closest gene information (including genomic Annotation, 
Distance to TSS, Gene Name, Gene Type, and Gene Description of the closest gene) were provided

chr.position p value Beta Annotation Distance to TSS Gene Name Gene type Gene description

chr18.48723610 3.49E−08 − 0.22733 exon (NM_016626, exon 
1 of 2)

440 MEX3C Protein-coding mex-3 RNA binding family 
member C

chr1.150532375 7.49E−07 − 0.39527 TTS (NR_104133) 7971 MIR4257 ncRNA microRNA 4257

chr10.105647890 1.17E−06 0.893509 intron (NM_024928, intron 
9 of 9)

30,051 STN1 Protein-coding STN1 subunit of CST com-
plex

chr11.10679586 1.56E−06 − 0.58556 intron (NM_001206880, 
intron 1 of 19)

− 5739 MRVI1 Protein-coding Murine retrovirus integration 
site 1 homolog

chr3.156848563 1.97E−06 − 0.14999 Intergenic − 7773 LINC00880 ncRNA Long intergenic non-protein-
coding RNA 880

chr12.129252225 2.68E−06 − 1.11703 Intergenic 56,277 SLC15A4 Protein-coding Solute carrier family 15 
member 4

chr1.50834156 3.76E−06 0.153745 Intergenic 54,958 DMRTA2 Protein-coding DMRT-like family A2

chr16.56553641 3.90E−06 − 0.13719 intron (NM_031885, intron 
1 of 16)

294 BBS2 Protein-coding Bardet-Biedl syndrome 2

chr6.99283220 3.95E−06 − 0.12451 exon (NM_005604, exon 
1 of 1)

771 POU3F2 Protein-coding POU class 3 homeobox 2

chr22.46519089 4.61E−06 − 1.1146 Intergenic 9524 MIRLET7B ncRNA microRNA let-7b

chr1.25228801 4.78E−06 − 0.30407 exon (NM_004350, exon 
5 of 5)

17,105 MIR6731 ncRNA microRNA 6731

chr2.241976241 4.88E−06 − 0.48453 exon (NM_001080437, 
exon 5 of 32)

38,207 SNED1 Protein-coding Sushi, nidogen and EGF-like 
domains 1

chr7.139187227 5.05E−06 − 0.39751 Intergenic − 18,809 KLRG2 Protein-coding Killer cell lectin-like receptor 
G2

chr4.79545349 5.32E−06 0.366908 Intergenic − 21,798 LINC01094 ncRNA Long intergenic non-protein-
coding RNA 1094

chr16.66554996 5.35E−06 0.684785 intron (NR_073520, intron 
5 of 8)

29,028 TK2 Protein-coding Thymidine kinase 2

chr11.68608981 5.63E−06 − 0.13725 intron (NM_001876, intron 
1 of 18)

402 CPT1A Protein-coding Carnitine palmitoyltrans-
ferase 1A

chr4.122871430 5.71E−06 0.274039 intron (NM_001366479, 
intron 1 of 10)

1784 TRPC3 Protein-coding Transient receptor potential 
cation channel subfamily C 
member 3

chr11.8364991 6.74E−06 0.562738 Intergenic − 74,658 LMO1 Protein-coding LIM domain only 1

chr9.117026652 6.75E−06 1.475667 exon (NM_032888, exon 
29 of 61)

54,939 MIR455 ncRNA microRNA 455

chr3.183873096 6.93E−06 0.345301 promoter-TSS 
(NM_004423)

− 68 DVL3 Protein-coding Disheveled segment polarity 
protein 3
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enrichment was not significant (p value = 0.15) due to 
the small number of overlapped CpGs being counted. 
Interestingly, one response DMC (with p value = 1e−5) 
at chr11:68608981, which is located within the CTP1A 
gene, was within 200  bp to the reported GH DMC at 
chr11:68609166 (p value = 1e−5, [32]).

It was reported that the effect of GH treatment on 
growth is potentially influenced by individual’s SNPs 
[33]. We first linked our response DMCs to 37 poten-
tial SNPs which were reported to be GH-response-asso-
ciated SNPs. We observed that only 14 SNPs have their 
surrounding CpGs in our tested CpG sets within 5  kb 
distance. Interestingly, three of these 14 potential SNPs 
were showing significant response DMCs (p value < 0.01) 
within a 5  kb distance to these SNPs. Particularly, one 
SNP (rs6600230, chr16:738477) is overlapping with 
the gene WDR24 where multiple CpGs were showing 
p value < 0.05 with the significant one (chr16:739598) 
located at the first exon region (p value = 0.01).

Discussion
The emerging field of pharmacoepigenomics will provide 
promising insights into the role drugs play in modulating 
the host epigenome and in addressing inter-individual 
variability in drug response and adverse effects. Although 
there is growing evidence that pharmacoepigenetics has 

the potential to become an important element of per-
sonalized medicine, we know of no study that has evalu-
ated the changes in the individual methylome of the same 
group of patients undergoing a treatment, as performed 
in the current study. An additional advantage of our 
pharmacoepigenetic study is that clinical (growth rate, 
height) and biological outcomes (IGF1) can be quanti-
fied in response to precise rhGH dosing carefully injected 
by parents. More specifically, our data provide the first 
comprehensive pharmacoepigenomics analysis on rhGH 
treatment in children with ISS by comparing DNA meth-
ylation marks before and after several months of rhGH 
treatment. We identified 267 response DMCs which are 
associated with 265 genes and these genes were enriched 
in the biological process of cell differentiation, system 
development and different growth-related pathways such 
as endoderm differentiation, adipocytokine signaling, 
PPAR alpha and TGF-beta signaling pathways. This pilot 
study thus supports the existence of dynamic epigenetic 
changes in response to rhGH treatment. Again, it should 
be recalled that these are methylation changes induced 
by prolonged GH administration, and not epigenetic 
marks associated with short stature, an example of which 
can be found in one of our previous studies [34].

Our customized methylation sequencing panel cap-
tured more than 5 million CpGs, which is much larger 

Fig. 3 Genome feature and functional enrichment analysis of the response DMCs. A Genomic features and blood regulatory element enrichment 
analysis of the response DMCs with p value < 1e−3 and p value < 1e−4. Fisher test: *: p value < 0.01. B–D Functional enrichment analysis of the 
response DMCs. Enrichment of functional grouping of genes through the biological process, groups of the genes in the same pathway through 
KEGG, pathway interaction database as well as the WikiPathways, and the similar domain and features of the gene’s product proteins through PFAM 
and Interpro domain database were illustrated in (B), (C) and (D), respectively. The number of genes in each item and p value of the enrichment 
analysis was shown in the legend
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than the previously used 450 K array data (i.e., > 10 folder 
larger), representing an unprecedented level of resolu-
tion. After quality control, more than 3.3 million CpGs 
remained for the response association analysis, providing 
the potential to discover novel signals. Indeed, of identi-
fied 267 response DMCs (with p value < 1e−4), only 114 
(43%) of them are located within 100 bp distance to the 
known 450 K loci and only 25 (9.4%) of them are exactly 
located at the 450  K loci. Among the top 20 response 
DMCs listed in Table 2, half of them does not have neigh-
boring CpGs (with 100 bp distance) in 450 K loci.

Previous studies had shown that the TGF-beta sign-
aling pathway plays an important role in regulating 
osteoblast differentiation and could inhabit IGF-1/Akt 
signaling pathway [35]. The adipocytokine pathway and 
cAMP-signaling pathway are downstream signaling path-
ways upon activation of IGF1 receptor and contribute to 
the signal transduction of insulin-like growth factors on 
growth [36]. Another study reported that the GH modu-
lates EGFR expression and signaling and further activates 
PI3K-Akt signaling, which was enriched in our response 
DMCs (p value < 1e−3) [37]. Moreover, our response 
DMC-associated genes were enriched in DNA-binding 
transcription factors as well as proteins with the common 
domain families of “WH/WH-like DNA” and “TIMP.” 
Particularly, TIMP3 is known to modulate GHR abun-
dance and GH sensitivity [38], and NFKB1 is a known 
gene associated with short stature [39] and the growth-
promoting effects of the transcription factor family of 
NFKB seems to be facilitated by GH and IGF-1[40], while 
FOXA1, FOXN1 are regulators for GH activation [41]. 
Here, our identified genes with rhGH-associated methyl-
ation changes were enriched in these pathways, support-
ing the biological relevance of our findings. The genes 
involved in these pathways include CDKN2B, LEFTY2, 
PPP2R1B, CPT1A, RXRA, NFKB1, KCNMA1, BORCS8-
MEF2B, MRVI1, PPIF and GATA4 (See the full response 
DMC list at p value < 1e−3, Additional file 1: Table S4).

The current study identified marked intra-individual 
responses of DNA-methylation to long-term rhGH treat-
ment. A study by Kolarova et al. investigated 24 patients 
at baseline and after only 4  days of rhGH administra-
tion [32]. The studied patients had various forms of GH 
deficiency (N = 13) or other pathological conditions, 
which could influence the epigenetic responses to rhGH 
and complicate the interpretation. In comparison, only 
healthy children were selected for the current study and 
were either prepubertal or with minimal manifestations 
of puberty in order to avoid epigenetic changes that are 
associated in blood cells with advancing puberty [42].

Array-based DNA-methylation profiling of paired 
peripheral blood mononuclear cell samples in the 
Kolarova et  al.’s study revealed clustering according 

to individuals rather than treatment [32]. Supervised 
analysis identified 239 CpGs as significantly differen-
tially methylated between baseline and acutely GH-
stimulated samples, which nevertheless did not retain 
significance after adjustment for multivariate analysis. 
In a companion study, Kolarova et  al. investigated the 
long-term effects of prolonged rhGH treatment on the 
DNA-methylome and analyzed peripheral blood cells 
from an independent cohort of 36 rhGH-treated chil-
dren born small for gestational age (SGA) compared 
to 18 untreated controls. These were not paired sam-
ples which had to face major unwanted inter-individ-
ual variance of children methylome. No differentially 
methylated targets reached the level of significance in 
this long-term rhGH-treated cohort [32]. Our study 
did not replicate any of these 239 DMCs but observed 
a slight enrichment if considering significant response 
DMCs in 1 kb distance to them. The lack of high repli-
cates might due to different etiologies of short stature 
(intrauterine growth retardation may influence epige-
netic marks in the Kolarova et al.’s study) design, differ-
ent treatment durations and dosing, different ages and 
more importantly the considerable inter-individual het-
erogeneity, while our study investigated paired intra-
individual changes in methylation.

Of interest, MEX3C, the top gene in our response 
association analysis, was reported to be a translational 
regulator of IGF expression in mice [43]. IGF1 protein 
expression in bone cells was decreased upon MEX3C 
deficiency in Mex3c homozygous mutant mice. Given 
that MEX3C is highly conserved among mammalian 
species, the observation in mice might be relevant to 
the human IGF1 regulation and warrants further inves-
tigation. Among the top 20 signals, the response DMC 
at CPT1A (chr11:68608981) was close to the reported 
locus (cg20228509, chr11:68609166) within 1  kb in the 
Kolarova et  al.’s short-term rhGH treatment study [32]. 
CPT1A was observed to be a genetic regulation of fatty 
acid metabolism, and missense mutation reduces height 
[44]. Although this evidence was not revealed in epige-
netic studies, the potential pathway CPT1A involved 
(such as the adipocytokine signaling pathway, an impor-
tant pathway related to IGF signaling) might indicate its 
indirect association with GH. In the same study, more 
than 3 CpGs in SLC15A4 were identified as differentially 
methylated loci and two of them were further validated 
with bisulfite pyrosequencing [32]. Our data showed the 
top signal was at the downstream of SLC15A4, and a few 
CpGs with nominal significance at p value < 0.01 were 
located in the intron of SLC15A4 gene. In addition, we 
also observed a couple of non-coding RNAs at our top 
signals list. Their functions related to GH are currently 
unknown and need further exploration.
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As in almost all epigenetic studies in humans, we were 
only able to characterize DNA methylation in blood cells, 
which may not recapitulate all GH-induced changes that 
may occur in other target cells. However, PBMC are sen-
sitive to the GH/IGF1 axis [45] and may thus reveal epi-
genetic changes triggered by GH or IGF1. B-lymphocytes 
and monocytes as well as T-lymphocytes and natural 
killer cells express GH receptors on their cell surfaces [46, 
47]. These cells also express IGF1 receptors [48], which 
activate the mTOR pathway and can subsequently induce 
epigenomic changes [49]. GH [50–52] and IGF1 signaling 
[53, 54] have been studied in PBMC and lymphocytes. 
Since the top variable CpGs in our study were highly 
associated with the proportion changes of T cell and 
neutrophils, we applied a well-established computational 
approach to deconvolute the PBMC blood compositions 
and included them as covariates in our analysis model, 
which would effectively remove the confounders due to 
dynamic blood cell proportion changes. Finally, the cur-
rent study supports the utility of PBMC to detect DNA 
methylation changes responding to rhGH treatment.

In summary, we have identified multiple response 
DMCs that are associated with rhGH treatment although 
none of them show the FDR significance after multiple 
testing correction. This is most likely due to the limited 
sample size given the large inter-individual variation in 
DNA methylation changes, which restricted our power to 
detect significant associations at FDR q-value threshold 
of 0.05. The downstream functional analysis revealed that 
the response DMCs were enriched in many pathways 
biologically relevant to GH. Larger sample sizes will be 
needed to more definitively identify epigenetic changes 
arising from rhGH administration. Further functional 
genomics investigations are also encouraged for valida-
tion of our discoveries, particularly for the top signals.
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