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Technical considerations in PCR‑based assay 
design for diagnostic DNA methylation cancer 
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Abstract 

Background:  DNA methylation biomarkers for early detection, risk stratification and treatment response in can-
cer have been of great interest over the past decades. Nevertheless, clinical implementation of these biomarkers is 
limited, as only < 1% of the identified biomarkers is translated into a clinical or commercial setting. Technical factors 
such as a suboptimal genomic location of the assay and inefficient primer or probe design have been emphasized as 
important pitfalls in biomarker research. Here, we use eleven diagnostic DNA methylation biomarkers for colorectal 
cancer (ALX4, APC, CDKN2A, MGMT, MLH1, NDRG4, SDC2, SFRP1, SFRP2, TFPI1 and VIM), previously described in a system-
atic literature search, to evaluate these pitfalls.

Results:  To assess the genomic assay location, the optimal genomic locations according to TCGA data were extracted 
and compared to the genomic locations used in the published assays for all eleven biomarkers. In addition, all primers 
and probes were technically evaluated according to several criteria, based on literature and expert opinion. Both assay 
location and assay design quality varied widely among studies.

Conclusions:  Large variation in both assay location and design hinders the development of future DNA methylation 
biomarkers as well as inter-study comparability.
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Background
DNA methylation biomarkers for early detection, risk 
stratification and treatment response have been of great 
interest in the clinical management of cancer. Over the 
past decades, the focus in DNA methylation biomark-
ers research has expanded from tissue to liquid biopsies. 
Since then, some of these biomarkers have been incorpo-
rated in commercially available diagnostic tests [1]. In a 

recent systematic literature review, 100 potentially pub-
lished DNA methylation biomarkers for colorectal cancer 
(CRC) were identified in bodily fluids (Feng et al. unpub-
lished data). Only three of these (NDRG4, BMP3 and 
SEPT9) have been translated into commercial tests cur-
rently available for the early detection of CRC [1]. Vari-
ous reasons for this suboptimal clinical translation have 
been postulated [1–3]; many of these focus on issues 
such as a suboptimal study design, lack of validation and 
lack of clinical relevance. However, technical factors such 
as a suboptimal genomic location of the assay and inef-
ficient primer or probe design have been emphasized as 
important pitfalls in biomarker research as well [1, 3–5]. 
The choice of which genomic location to study in the 
evaluation of DNA methylation biomarkers can influence 
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the conclusion on the clinical value of this biomarker. 
Koch et al. previously described the importance of select-
ing the optimal genomic location, for example, by using 
publicly available data such as The Cancer Genome 
Atlas (TCGA) or whole-genome sequencing data [1, 6]. 
These data can be used to identify the genomic location 
with the largest methylation differences between sample 
groups, associated with the clinical outcome of interest. 
For example, we assume that the genomic locations with 
the largest difference in methylation between normal and 
tumor samples can be used to discriminate tumor tissue/
patients from normal tissue/healthy individuals, as sug-
gested in several of our previous publications [1, 7, 8].

In addition to the identification of these extracted loca-
tions with the largest difference between normal and 
tumor tissue, several technical assay design issues are 
crucial for optimal DNA methylation biomarker devel-
opment and subsequent chances for successful clinical 
translation, including assay type and primer- and probe 
design. For DNA methylation analysis, the most widely 
used technique is (quantitative) methylation-specific 
PCR (MSP/qMSP), which requires primer and probe 
design on the bisulfite-converted sequence of the bio-
marker of interest [9]. Although MSP primer design 
tools (including Bisearch, Methprimer and PrimerSuite) 
are available [10], these tools do not incorporate publicly 
available genomic data, and therefore do not preselect 
the most optimal genomic region for assay design.

Here, we analyzed the diagnostic CRC methylation bio-
markers identified in a previously conducted systematic 
literature search in order to provide an overview of the 
genomic locations. Moreover, we evaluated the quality 
of the described primers and probes and define recom-
mendations that can guide assay design within the DNA 
methylation biomarker field.

Results and discussion
Dataset characteristics
Here, we provided an overview of the studied genomic 
locations, the extracted locations according to TCGA 
data, and the quality of used primers and probes for the 
11 most studied diagnostic DNA methylation biomarkers 
in CRC (ALX4, APC, CDKN2A, MGMT, MLH1, NDRG4, 
SDC2, SFRP1, SFRP2, TFPI2, VIM). All genes were eval-
uated in a minimum of five (TFPI2) and a maximum of 
12 (SFRP2) independent studies (Table  1). Markers had 
been studied in a variety of bodily fluids including stool, 
serum, plasma and urine. Diagnostic performance (sen-
sitivity and specificity) showed considerable variation 
between individual studies evaluating the same marker, 
which might be attributed to sample type differences. 
MGMT showed the largest sensitivity range of 5.7–90.0% 
across sample types, with specificities varying from 93.8 

to 100%. MLH1 showed the smallest range in sensitivity 
(30.0–45.1%); however, the specificity range was sub-
stantial (56.9–97.6%). Despite using identical assays, 
diagnostic performance of these studies varied widely; 
e.g., 20–80% sensitivity and 96.8–100% specificity for 
CDKN2A, 60–94.2% sensitivity and 54–100% specificity 
for SFRP2 and 32.6–81% sensitivity and 82–100% speci-
ficity for VIM (Fig. 1C, I, K). This might be attributed to 
sample type differences, as illustrated by the relatively 
low sensitivities of CDKN2A methylation in stool (20–
40%), compared to serum (59–80%), plasma (61.1%) and 
peripheral blood (55.4%) using the same assay (Table  1; 
Fig. 1C). Similarly, the diagnostic performance of sFRP2 
in stool varied more widely (sensitivity 60–94.2%, speci-
ficity 54–100%) compared to serum (sensitivity 66.9–
86.8%, specificity 93.7%) using the same assay (Table  1; 
Fig.  1I). As stool contains PCR inhibitors like complex 
polysaccharides and bile salts, undigested debris, and 
an abundance of, e.g., bacterial DNA over human DNA, 
this can explain the lack of performance in these sam-
ples, compared to blood-based samples [11]. In addi-
tion, plasma seems to perform worse compared to serum 
using the same assay for most markers (Table 1; Fig. 1), 
which is in line with literature, suggesting that DNA is 
more abundant and stable in serum compared to plasma 
[12, 13]. On the other hand, the diagnostic performances 
within one gene using the same sample type but differ-
ent also differs widely, as illustrated by the sensitivities 
of, e.g., sFRP1 in plasma (Rasmussen et al. 21.8%; Bedin 
et al. 62.9%), CDKN2A in plasma (Rasmussen et al. 9.3%; 
Frattini et al. 61.1%) and NDRG4 in stool (Lu et al. 28.6%; 
Melotte et  al. 61.0%; Xiao et  al. and Park et  al. 68.8–
76.2%). Therefore, it seems that the performance of these 
biomarkers is influenced by both sample type and assay.

Overview of genomic and extracted locations of selected 
assays
In the 11 most studied diagnostic DNA methylation 
biomarkers for CRC, multiple genomic locations were 
studied. An overview of all genomic locations in the 
individual studies is presented in Fig. 1. In addition, the 
extracted locations that we identified from TCGA data 
were compared to the locations used in all published 
assays.

For ALX4, APC, MGMT, sFRP1, sFRP2 TFPI2 and 
VIM, the least variation in genomic locations was 
observed among studies (three different genomic loca-
tions; Fig. 1A, B, D, H, I, J, K). For APC and VIM, most 
assays (4/5 and 5/7 respectively) included at least one 
of the extracted locations as identified in TCGA data 
(Fig.  1B, K). In contrast, none of the assays investigat-
ing ALX4, MGMT, sFRP1, sFRP2 and TFPI2 included an 
extracted CG (Fig.  1A, D, H, I, J). Although MLH1 and 
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NDRG4 were studied in four and five genomic locations 
respectively, most assays did not contain an extracted CG 
(3/4 for MLH1, 3/5 for NDRG4; Fig. 1E, F). Largest vari-
ation in genomic location was observed for SDC2; how-
ever, none of these included an extracted CG (Fig. 1G).

These results show that there is a large variation in 
the investigated genomic locations among the different 
assays, whereas most studies do not specify a specific 
rationale for their used genomic location. Next to these 
variations in genomic location, we also observed a large 
variation in diagnostic performance even within the 
same genes. As previously postulated, the exact stud-
ied genomic location could influence the diagnostic 

performance of a biomarker, emphasizing the impor-
tance of considering genomic location of the assay 
upfront [1, 7, 8]. Currently, to our knowledge, no guide-
lines for identifying the optimal genomic location for 
diagnostic DNA methylation biomarkers are described. 
However, we previously recommended using TCGA 
data to identify the genomic location where the differ-
ence in methylation between normal and tumor tissue 
is largest. In theory, these locations might represent the 
most clinically relevant methylation sites for diagnos-
tic purposes. Even though TCGA is a very accessible 
data source, it is limited in the amount of covered CGs. 
TCGA data is based on Infinium 450 K microarrays, of 

Table 1  Summary of the 11 most studied DNA methylation biomarkers for CRC in liquid biopsies

Gene Number of articles Liquid biopsy type Sensitivity range Specificity range

ALX4 3 [14–16] Serum 46.6–88.0% 66.3–70.0%

2 [17, 18] Plasma 28.5–80.0% 41.0–99.0%

APC 2 [19, 20] Stool - -

1 [21] Serum 6.1% 100%

2 [17, 22] Plasma 20.8–42-0% 67.6–94.2%

CDKN2A 3 [19, 23, 24] Stool 20.0–40.0% 96.8–100%

1 [25] Serum 59.0–80.0 100%

2 [17, 26] Plasma 9.3–61.1% 96.1%

1 [27] Peripheral blood 55.4% 98.5%

MGMT 3 [19, 28, 29] Stool 46.0–51.7% 93.8%

1 [30] Serum 90.0% 100%

2 [17, 22] Plasma 5.7% 99.0%

MLH1 3 [19, 20, 28] Stool 30.0% -

1 [21] Serum 42.9% 97.6%

1 [17] Plasma 45.1% 46.9%

NDRG4 6 [31–36] Stool 28.6–76.2% 80.0–97.5%

2 [17, 37] Plasma 9.3–27.0% 95.0–100%

1 [35] Total blood 54.8% 78.1%

1 [35] Urine 72.6% 85.0%

SDC2 2 [36, 38] Stool 81.1% 93.3%

2 [31, 39] Serum 71.2–87.0% 95.2–95.6%

1 [17] Plasma 24.4% 94.1%

1 [40] White blood cells - -

sFRP1 2 [16, 41] Stool 52.0–89.0% 86.0–92.0%

1 [42] Serum 77.7% 70.0%

2 [17, 43] Plasma 21.8–62.9% 91.7–93.1%

sFRP2 9 [24, 29, 32, 34, 44–48] Stool 57.1–94.2% 54.0–100%

2 [45, 48] Serum 66.9–86.8% 93.7%

2 [17, 49] Plasma 20.2–54.4% 72.3–82.4%

TFPI2 4 [34, 36, 50, 51] Stool 31.4–89.0% 79.0–100%

1 [17] Plasma 7.3% 98.0%

VIM 4 [28, 52–54] Stool 38.3–81.0% 82.0–100%

2 [15, 55] Serum 31.1–32.6% 60%

1 [17] Plasma 17.6% 88.2%
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Fig. 1  A–K Genomic locations, extracted CG’s (from TCGA) and diagnostic performances of the investigated assays per marker. : CpG islands, : 
CGs, : extracted CGs (obtained from TCGA), : primers, : probes, TSS: transcription start site, Sens: sensitivity, Spec: specificity
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which the probes do not necessarily cover the most rel-
evant CGs among the genome [1]. However, all genomic 
regions illustrated in this overview were covered by 
Illumina 450  K methylation array probes according to 
MEXPRESS. To assure full genomic coverage, sequenc-
ing prior to deciding on the genomic location covered 
in the methylation assay would be required. This has 
not always been feasible in the past, especially for small 
research groups with limited funding. The decreased 
sequencing costs and the availability of sequencing 
facilities (in both academic and commercial setting) 
combined with publicly available DNA methylation 
and gene expression data now provide opportunities to 
identify the most optimal genomic location for a DNA 
methylation marker [1]. Unfortunately, these sequenc-
ing data are rarely publicly available, which did not 
allow us to consider these in this manuscript.

Primer and probe assessment
Of the 47 assays used to measure the 11 included mark-
ers, 16 (34%) were MSP assays, 25 (53%) were qMSP 
assays with probe, and 6 (13%) were qMSP assays with 
SYBR (Fig. 2). As bisulfite-conversion changes unmeth-
ylated cytosines to uracil, while methylated cytosines 
remain unchanged, the CpG dinucleotides and non-
CpG cytosines in the primers define the discriminative 
power of the primers to distinguish methylated from 
unmethylated DNA [9]. As an alternative to this damag-
ing and fragmenting bisulfite conversion, an enzymatic 
modification kit to enable distinguishing methylated 
from unmethylated DNA has become available that is 
less damaging to the DNA in terms of fragmentation 
[56]. This novel enzymatic conversion could therefore 
impact assay design. However, as specific issues of, 
e.g., bisulfite conversion have been described in detail 
before [57], they are not evaluated in this manuscript.

In the MSP assays, 1 forward and 1 reverse primer 
(6.25%) failed to include at least 2 CpG dinucleotides 

Fig. 1  continued
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(Fig.  2A), whereas 2 forward primers and 1 reverse 
primer (4.8%) failed to include at least 2 CpG dinu-
cleotides in the qMSP assays (Fig.  2B). All probes 
met this criterium (Fig.  2B). Additionally, in the MSP 
assays 2 forward primers and 1 reverse primer (9.4%), 
and 5 forward primers and 9 reverse primers (22.6%) 
in the qMSP assays failed to include at least 4 non-
CpG cytosines (Fig. 2). Almost half of all probes (48%) 
in the qMSP assays with probe did not meet this crit-
erium (Fig.  2B). Not meeting these criteria could lead 
to inefficient annealing and unspecific binding of the 
primers and probes, resulting in inconclusive findings. 
Inefficient annealing could result in false negatives 
due to the lack of amplification, even when the target 
sequence is available. Unspecific binding could result 
in false positives due to binding even when the target 
sequence is not fully complementary to the primer or 
probe [9, 58–61].

Next, 6 reverse primers (18.8%) in the MSP assays, and 
6 forward and 14 reverse primers (32.2%) in the qMSP 
assays did not carry a CpG dinucleotide at the most 3’ 
end of the primer (Fig. 2). Not including a CpG dinucleo-
tide at the most 3’ end of the primer might also result in 
inefficient or a lack of annealing, and unspecific binding, 
which could induce both false negative and false positive 
results [9, 58–61]. Optimal primer/probe length of 20–30 
bases and 12–20 bases for minor groove binder (MGB) 
probes was met in 84.4% of the MSP primers, 69.4% of 
qMSP primers and 67% of the probes (Fig. 2). An addi-
tional 15.6% of the MSP primers, 29.2% of qMSP primers 
and 33% of probes were suboptimal in length (17–19 or 
31–36 bases, < 12 or > 20 bases for MGB probes; Fig.  2). 
Among the probes suboptimal in length, 87.5% were 
molecular beacon probes. MGB probes generally allow a 
shorter probe sequence because of the increase in Tm by 
the MGB addition, which was accounted for in the results 
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[62]. Molecular beacon probes carry an additional 5–7 
bases complementary to each other at the start and end 
of the sequence, which means these probes are generally 
longer compared to Taqman probes [63]. In order to take 
these specific characteristics into account, the primer/
probe length criterium was extended to 17–19 bases and 
to 31–36 bases. Nevertheless, 12.5% of these molecular 
beacon probes did not comply to the extended primer 
length criterium. This could potentially lead to inefficient 
or lack of annealing as well.

Eighty-one percent of MSP primer sets, and 55% of 
the qMSP primer sets had a similar melting tempera-
ture (Tm), meeting the criterium (i.e., Tm forward and 
reverse primers ≤ 2  °C difference). For the qMSP assays 
with Taqman probe, 75% of the probes met the criterium 
(i.e., Tm 5–10  °C higher than the corresponding primer 
set), and all of the MGB probes met the criterium (i.e., 
Tm 5–15  °C higher than the corresponding primer set; 
Fig.  2B). Not adhering to these Tm criteria could again 
lead to inefficient annealing of (one of ) the primers or 
probe. For probes, an additional criterium was assessed 
(i.e., no G base at the most 5’ end of the probe), which 
was met in 95.8% of the included probes. A G base at the 
most 5’ end of the probe might prematurely quench the 
fluorophore, resulting in false negative results [64].

Last, optimal amplicon sizes of maximum 120  bp 
were used in 62.5% of the MSP assays, and 76.7% of the 
qMSP assays with probe or SYBR. An additional 25% 
of MSP assays and 13.3% of qMSP assays with probe or 
SYBR used suboptimal amplicon sizes (121–159  bp), 
and 12.5% of MSP assays, and 10% of qMSP assays 
exceeded the acceptable  160  bp amplicon size (Fig.  2). 
As DNA in liquid biopsies mostly originates from apop-
totic and necrotic cells and in this case has to be bisulfite 
converted, it is highly fragmented with an estimated 
maximum of ~ 160  bp. However, depending on sample 
type, cell-free DNA in liquid biopsies can be as small 
as < 100  bp which should be taken into account when 
designing an assay [65–69].

Although assay design varied widely, the major crite-
ria to distinguish methylated from unmethylated DNA 
were covered in most assays. However, several factors 
should receive additional consideration, such as primer 
length and Tm (Fig.  2). Probe design factors tend to 
score poorer compared to primer design factors, and 
generally, qMSP assays scored worse compared to MSP 
assays across all criteria (Fig. 2). In addition to the scored 
items, it is important to adhere to general primer/probe 
design criteria like a CG content of 30–80% and to ensure 
that no dimers or hairpin loops form [64, 70–72]. Fur-
ther, it is important to consider genetic background and 
to make sure no prevalent single nucleotide polymor-
phisms (SNPs) appear at the 3’ end of the primer, to 

allow efficient annealing [73]. Moreover, assays including 
appropriate controls and a reference gene are most likely 
to generate reliable results [74].

To measure DNA methylation, several different tech-
niques are currently available for research purposes, 
of which MSP and qMSP are most widely used. In gen-
eral, qMSP assays with probe revealed more design flaws 
compared to both MSP and qMSP with SYBR assays. In 
the assays with a probe, especially the items regarding 
probe design showed low scores (Fig. 2). This emphasizes 
the difficulty of designing qMSP assays where the addi-
tion of a probe introduces another layer of complexity 
to the designing process. However, it can be questioned 
whether it is a necessity to fully optimize all separate 
subcomponents of primer and probe design, as assays 
with suboptimal scores for some criteria may also work. 
For example, if one of the primers in a set fails to meet 
the criterium of including ≥ 4–5 non-CpG cytosines per 
primer, the other primer could compensate, and the assay 
might work without any problems. This emphasizes that 
primers and probes should be designed as an assay, rather 
than single components.

Often, (nested) MSP assays are used in biomarker stud-
ies because they require substantially less DNA input 
compared to qMSP assays. Because of its quantitative 
nature and the specific binding properties of the utilized 
probe, qMSP with probe might be preferred over MSP 
assays for specific research questions. However, qMSP 
assays with SYBR are prone to false-positive results, as 
SYBR is an intercalating dye that binds to all double-
stranded DNA [75].

After designing an assay, it is advised to perform an in 
silico analysis of this assay to check for dimers, hairpins 
and 3’-end primer stability, as extensively described by 
Davidović et al. [58]. In addition, assays should be opti-
mized in terms of PCR conditions, such as PCR compo-
nent concentrations and annealing temperature, using 
gradient PCRs. Bisulfite-converted fully methylated, 
fully unmethylated and no template controls, as well as 
non-converted DNA and a non-converted no template 
control should be used in the assay optimization process 
[76, 77]. Next, pilot studies using small sample sets of 
interest can evaluate the feasibility of an assay for cancer 
diagnosis, and minimize false positive and false negative 
results. Additionally, when analyzing quantitative data, 
it is important to select an appropriate cutoff value to 
determine whether a sample is methylated or unmethyl-
ated, and several methods to determine the optimal cut-
off have previously been postulated [78, 79]. Different 
cutoffs among studies examining the same assays could, 
among others, explain the large variation in diagnostic 
performance, and could therefore hamper comparability 
of studies [78, 79].
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Conclusions
In this study, using CRC markers as an example, we 
emphasized the importance of assay design for diagnostic 
DNA methylation biomarkers, indicating that a rational 
choice of genomic location and proper primer/probe 
design upfront are crucial when striving toward a clini-
cally relevant and useful biomarker. This not only applies 
for diagnostic biomarkers, but for all DNA methylation 
markers intended to discriminate between two patient 
categories, such as prognostic and predictive biomark-
ers. However, only using the recommendations summa-
rized in Box 1 does not guarantee a successful clinically 
relevant assay. Next to the factors discussed in this arti-
cle, additional experimental factors can influence the 
diagnostic performance of DNA methylation biomark-
ers, such as sample type, quality and composition, assay 
amplicon size, and bisulfite conversion efficiency [11, 57, 
80–85], as well as methodological factors such as sample 
size, using appropriate controls and statistical analyses. 
Nevertheless, considering both assay location and assay 
design upfront could greatly improve future DNA meth-
ylation biomarker development and inter-study compa-
rability. To achieve this, future research should focus on 
linking the technical considerations discussed here to 
diagnostic parameters and clinical outcome. By optimiz-
ing these technical considerations in DNA methylation 
biomarker development, clinically relevant DNA meth-
ylation biomarkers are more likely to be developed.

Methods
Search strategy and study selection
A systematic search until December 2020 was performed 
in Pubmed, Embase, Cochrane library and Google 
Scholar, to identify all diagnostic DNA-methylation 
biomarker studies for CRC. Only original articles in 
the English language were considered; reviews, editori-
als and conference abstracts were excluded. Only arti-
cles studying DNA methylation through MSP (nested/
direct) and qMSP (probe/SYBR), which provided the 
assay sequences in the article, and studied liquid biop-
sies (blood, serum, plasma, stool or urine) were included. 
Articles discussing hereditary cancer syndromes were 
excluded. From all diagnostic DNA methylation mark-
ers for CRC reported in the included studies, eleven were 
selected for further evaluation (ALX4, APC, CDKN2A, 
MGMT, MLH1, NDRG4, SDC2, SFRP1, SFRP2, TFPI1 
and VIM) as they were described in at least five studies. 
Diagnostic performance (sensitivity and specificity) was 
extracted for all genes when available. Although it is one 
of the most commonly studied biomarkers for early CRC 
detection, SEPT9 was excluded due to the fact that most 
studies (62%) used one of the two commercial assays to 
measure SEPT9 methylation.

Identification optimal genomic location within TCGA data
In order to identify the genomic location where the meth-
ylation difference between normal and tumor tissue is the 
largest, the online available TCGA data visualization tool 
MEXPRESS [86, 87] was used. TCGA methylation data of 
the genes of interest in the CRC patient dataset (COAD) 
were assessed. MEXPRESS visualizes data for specific 
genes, and all Illumina 450  K methylation array CpGs 
that have been linked to that gene. All CpGs, irrespective 
of their location relative to the gene, were assessed. The 
three locations with the largest methylation difference 
between normal and tumor tissue (tumor hypermethyl-
ated compared to normal in all genes, except for MGMT) 
were extracted and will be referred to as ‘the extracted 
locations’ throughout this manuscript.

Primer and probe quality assessment
In order to assess primer and probe quality, two inde-
pendent observers (M.M. & K.L.) scored all primers and 
probes according to criteria were constructed based on 
both literature and expert experience (Table 2). Although 
we are aware that designing the perfect primers and 
probes is challenging, and many different criteria have 
been postulated, we attempted to evaluate the optimal 
design criteria.

All criteria apply to (q)MSP primers and probes 
on the bisulfite-converted sequence of the gene of 

Box 1  Recommendations for DNA methylation assay design

DNA methylation assay design recommendations

Genomic location
 • Before designing a DNA methylation biomarker assay, make a rational 
choice for the genomic location of the assay
    • For example, sequencing or publicly available data such as TCGA to 
identify the optimal genomic location

Primer- and probe design
 • Ensure the primers and probes are able to discriminate unmethylated 
from methylated DNA
    • Appropriate amount of CpG dinucleotides and non-CpG cytosines in 
primers and probe
 • Ensure the primers and probes have the ability to anneal efficiently
    • CpG dinucleotides at most 3’ end of primer, primer length, avoiding 
premature quenching of probe fluorophore
 • Ensure primers and probes are designed as an assay, rather than single 
primers and probes
    • Similar Tm between primers and appropriate Tm of probe relative to 
the Tm of the primers
 • Consider sample type in assay development
    • For liquid biopsies, the total assay amplicon size should be maximum 
120 bp

Assay optimization
 • In silico analysis of assay
 • Optimize PCR conditions
    • Use appropriate controls
 • Perform pilot studies
    • Determine cutoff
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interest, and to the methylation-specific primer set 
in case of (q)MSP without probe. As bisulfite-conver-
sion changes unmethylated cytosines to uracil, while 
methylated cytosines remain unchanged [9], primers 
and probes should be designed to distinguish methyl-
ated from unmethylated DNA and to anneal efficiently. 
Therefore, at least 2–3 CpG dinucleotides and 4–5 

non-CpG cytosines should be included in the primer or 
probe [9, 58–61]. For optimal annealing, a CpG dinu-
cleotide should be at the most 3’ end of each primer, 
and preferably the other CpGs are also at the 3’ end 
of the primer [9, 58–61]. Also, the ideal primer length 
is 20–30 bases [58], and preferably the forward and 
reverse primer should have a similar Tm (calculated 

Table 2  Primer and probe assessment definitions
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using Gene Runner software). When using a probe, 
ideally it is 20–30 bases long, and the Tm is 5–10  °C 
above the primers’ Tm (calculated using Gene run-
ner software); when using an MGB probe, its length is 
preferentially 12–20 bases long, and the Tm of MGB 
probes should preferably be 5–15 °C above the primers’ 
Tm (calculated using Primer Express software) [64, 72, 
88–90]. Additionally, the most 5’ end of the probe can-
not be a G, as this might quench the fluorophore [64]. 
Last, liquid biopsies mostly carry highly fragmented 
cell-free DNA of maximum ~ 160  bp (length of DNA 
wrapped around one nucleosome), and DNA is addi-
tionally fragmented by bisulfite conversion. Therefore, 
amplicon size was evaluated, with the preferred ampli-
con size being a maximum of 120 bp [65–69]. All prim-
ers and probes were scored according to these criteria 
(defined in Table  2). In case a nested approach was 
used, the inner assay was evaluated. For molecular bea-
con probes, one of our criteria might not be completely 
suitable, as (to our knowledge) no design tools exist to 
calculate the Tm of these probes. Therefore, we were 
unable to assess the Tm of these probes, and they were 
specifically marked within Fig. 2. Green dots represent 
optimal design, orange dots represent suboptimal, but 
acceptable design. Red dots do not necessarily mean a 
primer or probe does not work, but rather that there is 
an increased risk of technical problems with the primer 
or probe for that specific criterium (Table  2). Black 
dots mean that the criterium was not assessed for that 
probe, as it was a molecular beacon probe.
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