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PERSPECTIVE

Cell‑type heterogeneity: Why we should 
adjust for it in epigenome and biomarker 
studies
Luo Qi1 and Andrew E. Teschendorff1,2*   

Abstract 

Most studies aiming to identify epigenetic biomarkers do so from complex tissues that are composed of many dif-
ferent cell-types. By definition, these cell-types vary substantially in terms of their epigenetic profiles. This cell-type 
specific variation among healthy cells is completely independent of the variation associated with disease, yet it domi-
nates the epigenetic variability landscape. While cell-type composition of tissues can change in disease and this may 
provide accurate and reproducible biomarkers, not adjusting for the underlying cell-type heterogeneity may seriously 
limit the sensitivity and precision to detect disease-relevant biomarkers or hamper our understanding of such bio-
markers. Given that computational and experimental tools for tackling cell-type heterogeneity are available, we here 
stress that future epigenetic biomarker studies should aim to provide estimates of underlying cell-type fractions for all 
samples in the study, and to identify biomarkers before and after adjustment for cell-type heterogeneity, in order to 
obtain a more complete and unbiased picture of the biomarker-landscape. This is critical, not only to improve repro-
ducibility and for the eventual clinical application of such biomarkers, but importantly, to also improve our molecular 
understanding of disease itself.
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Background
The cell-types that are present within a given tissue or 
organ are distinguished by a unique gene and protein 
expression profile [1]. This functional molecular profile is 
epigenetically determined via a complex interplay of his-
tone modifications, chromatin accessibility and covalent 
DNA methylation marks [2]. Thus, epigenetic profiles are 
highly cell-type specific.

Clinical interest in measuring epigenetic profiles 
stems from the fact that such epigenetic profiles are 
often altered in disease and in association with disease 
risk factors [3–9], with some evidence also pointing to a 

potentially causal or causally-mediating role [3, 10–12]. 
DNA-based epigenetic marks like DNA methylation 
(DNAm) are also fairly stable and amenable to genome-
wide measurement in large numbers of samples and in 
many types of clinical specimens [13, 14], including blood 
[15–17], cell-free DNA in serum [18, 19] and formalin-
fixed paraffin embedded (FFPE) tissue [20–22], making it 
a very attractive substrate for biomarker studies. Indeed, 
the sensitivity of technologies like the Illumina DNAm 
beadarray is such that one can detect DNAm changes 
as small as 1–5% with over 90% sensitivity [23, 24]. This 
high sensitivity and precision has been confirmed by 
many biomarker studies: for instance, smoking-associ-
ated DNAm changes in blood tissue are characterized by 
such small effect sizes and are highly reproducible [25, 
26].
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However, a key challenge for the biological interpreta-
tion of such epigenetic changes remains in that epige-
netic measurements are generally performed on DNA 
extracted from heterogeneous sample specimens. This 
is because measuring epigenetic profiles, including DNA 
methylation, at cell-type resolution and for all cell-types 
in the tissue is currently very costly or technically chal-
lenging [27], and in the case of single-cells only gener-
ates very sparse and incomplete data [28, 29], which is 
therefore impractical for biomarker studies which aim to 
measure genome-wide profiles in hundreds if not thou-
sands of clinical samples. Thus, the obtained measure-
ments on bulk samples only reflects an average DNAm 
profile over all cells and cell-types within the specimen. It 
follows that this average DNAm profile will be affected by 
factors such as the cell-type composition of the sample, 
which could vary substantially between individuals. Thus, 
it might be difficult to ascertain in which cell-types a par-
ticular 5% change in DNAm is happening. Although sim-
ilar considerations apply to other epigenetic marks such 
as histone modifications and chromatin accessibility, for 
reasons given above this perspective focuses on DNAm.

One of the first studies to demonstrate the big effect 
that cell-type heterogeneity (CTH) can have on subse-
quent statistical inference was an Epigenome-Wide Asso-
ciation Study (EWAS) performed in blood tissue from 
Rheumatoid Arthritis (RA) cases and controls [15]. In 
this study it was shown that there were a large number 
of CpGs differentially methylated between RA cases and 
controls, owing to a substantial shift in the granulocyte 
to lymphocyte proportions between cases and controls. 
While such alterations in blood composition could poten-
tially be useful as a diagnostic marker (assuming they are 
specific to the disease), they don’t reflect disease-associ-
ated DNAm alterations that occur in a given cell-type. It 
is now widely recognized that the large number of differ-
entially methylated cytosines (DMCs) detected in this RA 
EWAS study is a reflection of the inflammatory response 
to the disease, which is therefore of limited interest for 
identifying disease risk markers. As shown by Liu et  al. 
the great majority of these DMCs disappear once we 
adjust for the underlying changes in cell-type composi-
tion between RA cases and controls [15]. Another impor-
tant and more recent application where adjustment for 
CTH is critical, is in the construction of diagnostic and 
pre-diagnostic disease predictors (e.g. cancer) from cell-
free DNAm in serum, where such adjustment is neces-
sary to remove the contaminating effect of lymphocyte 
DNA [18, 19, 30]. As shown in these studies, adjustment 
for CTH is critical to achieve the reported high predic-
tion accuracies.

Although many other studies have re-emphasized the 
critical need to adjust for cell-type heterogeneity when 

analysing DNAm data [31–33], it is surprising that many 
epigenome studies continue to ignore this major con-
founder when identifying biomarkers [34–37], or when 
proposing novel disease classifications [38–40]. In our 
opinion, there are two reasons for this. First, adjusting for 
cell-type heterogeneity, specially in complex solid tissues, 
can be technically challenging and investigators may not 
even be aware that tools for such adjustments or partial 
adjustments exist. For instance, all Cancer Genome Atlas 
(TCGA) projects [41–46] do not adjust for CTH when 
proposing novel cancer taxonomies. Second, there is a 
common belief that adjustment for cell-type heterogene-
ity is not really necessary when searching for biomarkers, 
based on the premise that any biomarker with high pre-
diction accuracy is valuable irrespective of the underlying 
biological process driving the association. While this 2nd 
argument is entirely valid, it does not justify not perform-
ing additional analyses that adjust for cell-type hetero-
geneity (CTH), as these additional analyses can lead to 
important novel biological insight or novel biomarkers. 
The purpose of this perspective is therefore to reinforce 
the argument and rationale for performing adjustments 
for CTH, as well as to make the community aware that 
appropriate computational tools for such corrections are 
available and that they often work better and cheaper 
than laborious experimental alternatives (e.g. generating 
epigenetic profiles in purified samples).

Why we should adjust for cell‑type heterogeneity
One important argument in favor of performing a dif-
ferential DNAm analysis that adjusts for CTH comes 
from consideration of the relative data variance that can 
be attributed to the various factors, including CTH and 
the phenotype or exposure of interest. In general, given 
a genome-wide DNA methylation dataset where sam-
ples are drawn from different genetic backgrounds (e.g. 
ethnicity) and sexes, these factors are likely to dominate 
the data variance alongside CTH. That these three factors 
would dominate the DNAm variation landscape is intui-
tively clear. First of all, it is well known that a substantial 
proportion of DNAm is under genetic influence [47] and 
in many instances the effect sizes are quite substantial, 
i.e. over 50% DNAm differences between the homozygote 
A/A and B/B genotypes is common. Thus, top principal 
components (PCs) are likely to correlate with ethnicity 
if the study contains roughly equal numbers of samples 
from each ethnic group. Variation associated with sex is 
also expected to contribute substantially to the data vari-
ance, assuming that probes on the X and Y chromosomes 
are retained and assuming the study contains balanced 
numbers of each gender. In the case of CTH, a substan-
tial proportion of the DNA methylome differs between 
major cell-types, e.g. between neutrophils and CD4+ T 
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cells, or between epithelial and fibroblast cells [48–50], 
with over 80% differences in DNAm at individual loci 
being very common [49]. Thus, if cell-type composition 
of a tissue also varies between individuals, then this can 
be a major source of data variation, and indeed in the 
great majority of studies and irrespective of tissue-type, 
the top PC is most often driven by such variations in 
CTH (Fig.  1a). Depending on the phenotype or expo-
sure of interest, the data variance driven by CTH could 
be substantially higher than that associated with the 
phenotype/exposure (Fig. 1a). For instance, components 
of variation associated with age or smoking are gener-
ally ranked much lower than those associated with CTH, 

with the corresponding variance often a factor of 5 or 10 
lower than that associated with CTH. On the other hand, 
a phenotypic comparison between cancer and normal tis-
sue is generally associated with a substantial remodelling 
of the DNA methylation landscape and would generally 
account for the top PC alongside CTH (Fig. 1a).

Hence, the importance of CTH adjustment is primarily 
a function of the relative data variance that can be attrib-
uted to the phenotype/exposure relative to CTH. For 
biomarker studies performed in easily accessible tissues 
like blood, serum, saliva, buccal swabs, vaginal swabs 
and cervical smears, the effect sizes associated with the 
typical phenotypes or exposures of interest are generally 
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Fig. 1  The need to adjust for CTH in epigenome studies. a A comparison of the relative data variance, expressed as a fraction of the total variance 
accounted by the top 15 PCs (y-axis, fVAR), explained by each of the top-15 principal components (PCs) (x-axis) for 3 separate epigenome studies, 
with datapoints annotated to the main factor driving that PC. CTH = cell-type heterogeneity; Ethn = ethnicity; EADC = esophageal adenoma 
carcinoma; ER = estrogen receptor status. The tissue-type and number of samples in each study are given above plots. These plots derive from 
Illumina DNA methylation data from the following published works: Blood [51], Saliva [49] and Breast [52]. Briefly, the blood dataset is from 
healthy individuals, saliva samples are from EADC patients and matched healthy controls, and the breast tissue data is from breast cancers and 
normal-adjacent tissue. In the case of blood, the top-PC correlates with CTH, PC-2 correlates with ethnicity and PC-3 with age. b Sensitivity, 
false positive rate (FPR) and precision to detect 1000 simulated DMCs introduced in 139 monocyte samples from BLUEPRINT with an exposure 
distinguishing 69 cases from 70 controls. In each panel, we display the metrics when inferring DMCs from realistic mixtures of 3 cell-types 
(neutrophils, CD4+ T cells and monocytes) (Mix, red), when inferring DMCs from these same mixtures whilst adjusting for CTH (Mix CTH, blue) and 
when inferring DMCs from the purified monocyte samples (Mono, green). c For the same simulated data as in (b), the unsupervised hierarchical 
clustering obtained when clustering the 139 monocyte samples over the top 2 PCs correlating with the exposure (top panel), when clustering 
the 139 mixtures over the top 2 PCs correlating with the exposure without any adjustment for CTH (middle panel), and when clustering the 139 
mixtures over the top 2 PCs correlating with the exposure after adjustment for CTH (lower panel). Note that in the second case, i.e. when clustering 
over the top 2 PCs derived from the mixtures without adjustment for CTH, that these PCs only exhibited very marginal associations with the 
exposure, hence why the samples do not segregate by exposure
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quite small (usually less than 20% DNAm changes), which 
means that the majority of the DNAm variation would be 
associated with CTH, clearly justifying the need to adjust 
for that variation.

A second important reason for performing the adjust-
ment for CTH is that ultimately we would like to know 
if an observed DNAm change is independent of a change 
in cell-type composition, and if so, in which specific 
cell-types that alteration is happening in. This is clearly 
important if the aim is to understand how an exposure 
affects a specific cell-function, or which particular sign-
aling pathways and cell-types are affected. The power 
to retrieve such important knowledge would be much 
reduced if DMCs were swamped by those arising due to 
changes in cell-type composition. In other words, the list 
of DMCs, and subsequent Gene Set Enrichment Analy-
sis (GSEA) results would be much more informative if 
derived from a CTH-adjusted analysis.

To illustrate the negative impact that not adjust-
ing for CTH can have, we performed a simple simula-
tion experiment: using Illumina 450k DNAm data from 
BLUEPRINT encompassing 139 matched neutrophil, 
CD4+ T cell and monocyte samples [50], we artificially 
generated 1000 DMCs in 69 of the 139 purified mono-
cyte samples, with effect sizes drawn randomly between 
0.01 and 0.2 (i.e. 1–20% DNAm changes). Effect sizes of 
1–10% are typical of EWAS done in blood and in rela-
tion to factors such as smoking [25], obesity [53] or age 
[54], whilst larger effect sizes (> 10%) are often observed 
in solid tissues in relation to a disease like cancer [55]. 
We here did not consider effect sizes larger than 20% 
because although such larger DNAm changes are indeed 
observed in relation to cancer [56] or genotype [57], they 
are generally speaking not as frequent as those involv-
ing smaller effect sizes. We further required the DMCs 
to be cell-type specific markers. We generated mix-
tures of the 3 cell-types using the 139 neutrophil and 
139 CD4+ T cell samples matched to the 139 monocyte 
specimens, with cell-type fractions drawn from empiri-
cal distributions derived from whole blood [58]. We then 
computed the sensitivity, false positive rate (FPR) and 
precision when identifying DMCs from the mixtures, 
adjusting and not adjusting for CTH, and benchmarked 
these measures against those obtained by identifying 
DMCs from the purified monocyte samples themselves. 
This simple analysis clearly shows that not adjusting for 
CTH would lack power to detect any DMCs in a cell-type 
that is not a major component of the tissue (e.g. mono-
cytes in whole blood) (Fig.  1b). In contrast, adjusting 
for CTH, the power would be 10% at a precision of over 
95%, which means that we would be able to detect 100 
DMCs with 95% confidence (Fig. 1b). Although in theory 
one could in principle build a highly accurate predictor 

from just one true DMC (a scenario of low sensitivity but 
high precision as captured by our simulation model), it 
is clear that the ability to detect a larger number of true 
DMCs is important for building more robust predictors. 
A clear real-world example where adjustment for CTH is 
critical to achieve high prediction accuracies (AUC > 0.8) 
has been in the context of diagnostic and pre-diagnostic 
cancer classifiers built from cell-free DNAm markers 
in serum [18, 19, 30]. In this context, the need to adjust 
for CTH stems from the fact that most cell-free DNA in 
serum derives from circulating lymphocytes, hence can-
didate biomarkers are often pre-screened by comparing 
DNAm patterns between cancer-tissue and blood [18, 19, 
30].

The need for CTH-adjustment would also be impor-
tant in the context of unsupervised classification analyses 
where the aim would be to propose novel molecular sub-
types of a particular disease. In Fig. 1c we provide a clear 
example of how an unadjusted unsupervised clustering 
analysis would fail to detect hidden DNAm variation 
associated with an exposure or factor of interest. Indeed, 
it is worth mentioning here again that all major Cancer 
Genome Atlas (TCGA) projects [41–46] have proposed 
molecular classifications which are largely confounded 
by underlying variations in cell-type composition. Thus, 
most proposed molecular classifications of disease do not 
necessarily reflect the specific patterns of DNAm change 
present in the individual cell-types of a tissue. Instead, 
they predominantly reflect variations in cell-type com-
position. For instance, mesenchymal and immune-cell 
enriched subtypes have been observed in many different 
solid cancer types, including brain [59] and breast [41], 
and that these subtypes reflect increased presence of 
fibroblasts and immune-cells is now well established [60].

In relation to all previous arguments in favour of adjust-
ing for CTH, we should clarify that this is always meant as 
an analysis to be done in addition to the standard unad-
justed one. Indeed, an unadjusted analysis can detect 
shifts in cell-type composition that are associated with 
the phenotype or exposure of interest, and which could 
reflect important biological processes that have diagnos-
tic or prognostic value. A case in point is the increased 
infiltration of CD8+ T cells in breast tumor tissue, which 
correlates with good outcome [61]. To emphasize this 
further, CTH-adjusted and unadjusted analyses largely 
yield complementary results and insights. For instance, 
by performing a CTH-adjusted analysis of buccal-swab 
DNAm profiles it has been shown that smoking-associ-
ated DNAm changes may differ between those occurring 
in the immune and squamous epithelial subsets of the 
tissue, with important implications for our understand-
ing of how such DNAm alterations could mediate the 
risk of smoking-related diseases such as mouth cancer or 
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cardiovascular disease [62, 63]. However, it is also worth 
pointing out that there could be other scenarios, for 
instance if the same DNAm changes are happening in all 
the underlying cell-types or in the dominant cell-type(s) 
of a tissue, where CTH-adjusted and unadjusted analyses 
would yield very similar results. For instance, there is evi-
dence that DNAm changes associated with aging [54] and 
SNPs [50, 64] are largely independent of cell-type. In gen-
eral, our proposed strategy to perform both adjusted and 
unadjusted analyses would lead to three classes of DMCs: 
(1) a set that is only significant in the unadjusted analy-
sis, (2) a set that is only significant in the adjusted analy-
sis, and (3) a set that is significant in both. As discussed 
above, their biological interpretations would be different: 
set (1) would correspond to biomarkers that are driven 
entirely by shifts in cell-type composition, set (2) would 
correspond to DMCs that are occurring in at least one 
of the cell-types and therefore independent of shifts in 
cell-type composition, whilst set (3) is more complex as 
it can include DMCs that are occurring in all underlying 
cell-types, or only in a predominant cell-type, or DMCs 
that are driven by both changes in cell-type composition 
as well as changes in individual cell-types. As to which 
set of biomarkers to take forward, the key priority would 
be to test their reproducibility using independent valida-
tion sets. Any biomarker that is highly reproducible and 
displays high sensitivity and specificity has great clinical 
potential, irrespective of whether it belongs to set (1), (2) 
or (3). Overall, our recommendation and guideline is to 
always perform both adjusted and unadjusted analyses, 
because only by doing both can we obtain a more com-
plete picture and understanding of the observed DNAm 
changes.

Adjusting for cell‑type heterogeneity: feasibility
Most of the community is now well aware that adjust-
ment for CTH can be accomplished with relative ease 
in tissues like blood or cord blood using what is known 
as a reference-based cell-type deconvolution algorithm 
[65, 66]. There are two  elements  necessary for  a ref-
erence-based approach: (1) a DNAm reference matrix 
defined over a selected set of cell-type specific marker 
CpGs and all main cell-types within a tissue, (2) a statisti-
cal algorithm which, given this reference matrix and an 
independent DNAm profile of a sample, yields cell-type 
fraction estimates for all main cell-types in the given 
sample.

The main limitation of a reference-based approach 
is the availability or construction of a DNAm reference 
matrix. However, for specific tissues like blood and cord 
blood such DNAm reference matrices have been built 
[58, 65, 66] and adjustment for CTH in these tissues 
can be easily performed, at least at the resolution of 6–7 

cell-types. It is worth highlighting here that the observed 
correlation between DNAm-based cell-type fraction esti-
mates and those obtained experimentally (e.g. FACS/
MACS-sorting) are excellent (typical R2 ~ 0.8), to the 
degree that the DNAm-based estimates could be viewed 
as providing the better gold-standard [67, 68]. For other 
tissues like saliva or buccal swabs, which contain squa-
mous buccal epithelial cells in addition to the immune 
cells found in blood, reference-based cell-type decon-
volution is possible using algorithms such as HEpiDISH 
[49], a method that infers cell-type fractions in a step-
wise hierarchical fashion, first inferring fractions for the 
total epithelial and total immune cell fractions using an 
appropriately built DNAm reference matrix, and subse-
quently estimating fractions for all immune cell subsets 
using a separate carefully constructed DNAm reference 
matrix. These DNAm reference matrices are all avail-
able from the EpiDISH R-package and webserver [69]. 
For more complex solid tissues such as lung, which also 
contain stromal cells such as fibroblasts, the DNAm 
reference matrix within HEpiDISH can also be used to 
infer total epithelial, total fibroblast and total immune-
cell fractions [49, 70]. A similar strategy is used by the 
MethylCIBERSORT algorithm [71]. More recently, the 
EpiSCORE algorithm [72], which leverages the high 
resolution nature of a tissue-specific scRNA-Seq atlas to 
impute a corresponding DNAm reference matrix, can be 
used to infer cell-type fractions in a much wider range 
of tissue types, including brain, liver, pancreas and skin. 
While it is clear that for solid tissue types the currently 
available DNAm reference matrices are not complete or 
may contain false positives, it is worth emphasizing that 
the inference of cell-type fractions is mathematically 
speaking a relatively robust procedure, i.e. it can tolerate 
missing minor cell-types or a number of false positives in 
the reference matrix [49]: similar to a voting algorithm, 
as long as the majority of the entries in the DNAm ref-
erence matrix are approximately correct, this will allow 
the algorithm to converge onto a relatively good proxy of 
the true cell-type fractions in the sample. Thus, while the 
quality of DNAm reference matrices for solid tissues will 
undoubtedly improve in the near future, either through 
improved imputation strategies, or because of improve-
ments in single-cell methylomics that will enable direct 
construction of these reference DNAm matrices, the cur-
rent ones are reasonably accurate to allow adjustment for 
CTH, as shown in the case of breast or lung tissue [72]. 
Indeed, CTH-adjustment when identifying DMCs should 
yield complementary and valuable insights to those of an 
unadjusted analysis. In particular, the ability to disentan-
gle DMCs arising from a shift in cell-type composition 
from those present in the actual cell-types of the tissue is 
an important step towards a better understanding of the 
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role of epigenetics in disease risk and disease progres-
sion. In addition, by estimating cell-type fractions in a 
given sample, this also opens up the possibility to infer 
cell-type specific differential DNAm using algorithms 
such as CellDMC [62], TOAST [73] and HIRE [74]. For 
instance, such an approach has led to the identifica-
tion of a novel Endothelial-to-Mesenchymal transition 
(EndoMT) DNAm signature in lung cancer [72], or a 
novel smoking-associated DNA hypermethylation signa-
ture associated with acute myeloid leukemia [75].

Conclusions
In summary, the scientific rationale for not adjusting for 
CTH when inferring biomarkers from complex tissues, 
or when proposing novel molecular classifications of 
disease is weak. Given that single-cell epigenomics will 
remain costly and unscalable to large numbers of indi-
viduals in the near future, computational methods offer 
a cheap and equally accurate means to adjust for CTH. 
We strongly recommend the use of such methodology for 
an improved and more complete interpretation of epig-
enomic and biomarker data.
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