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Abstract 

Background: Myeloid‑derived suppressor cells (MDSCs), which include monocytic (mMDSCs) and granulocytic 
(gMDSCs) cells, are an immunosuppressive, heterogeneous population of cells upregulated in cancer and other 
pathologic conditions, in addition to normal conditions of stress. The origin of MDSCs is debated, and the regulatory 
pattern responsible for gMDSC differentiation remains unknown. Since DNA methylation (DNAm) contributes to line‑
age differentiation, we have investigated whether it contributes to the acquisition of the gMDSC phenotype.

Results: Using the Illumina EPIC array to measure DNAm of gMDSCs and neutrophils from diverse neonatal and adult 
blood sources, we found 189 differentially methylated CpGs between gMDSCs and neutrophils with a core of ten 
differentially methylated CpGs that were consistent across both sources of cells. Genes associated with these loci that 
are involved in immune responses include VCL, FATS, YAP1, KREMEN2, UBTF, MCC-1, and EFCC1. In two cancer patient 
groups that reflected those used to develop the methylation markers (head and neck squamous cell carcinoma 
(HNSCC) and glioma), all of the CpG loci were differentially methylated, reaching statistical significance in glioma 
cases and controls, while one was significantly different in the smaller HNSCC group.

Conclusions: Our findings indicate that gMDSCs have a core of distinct DNAm alterations, informing future research 
on gMDSC differentiation and function.
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Introduction
A heterogeneous population of immune cells, termed 
myeloid-derived suppressor cells (MDSCs) [1], are 
defined phenotypically by their immunosuppressive 
properties. These cells arise due to various normal stress-
ful states and other pathological conditions that induce 
a condition reminiscent of emergency myelopoiesis 
[2]. For example, neonates have an under-developed 

anti-microbial host defense. It is now recognized that 
MDSCs play an important role in regulating the earliest 
immune response [3], as they are quite prevalent in cord 
blood. Similarly, pregnant women have been reported 
to have expanded populations of gMDSCs, presumably 
playing a significant role in producing maternal–fetal 
tolerance [4]. Finally, MDSCs are commonly produced 
in numerous cancers [5]. In these conditions, the normal 
myeloid differentiation pathway is altered; the mature 
pool of myeloid cells becomes depleted, prompting the 
genesis of MDSCs that are detectable in peripheral blood 
[6]. MDSCs suppress the proliferation and function of 
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T cells and have impaired migratory properties [7]. In 
cancers, this is thought to create a favorable microenvi-
ronment for tumors to grow while evading the immune 
system [6].

Since the initial identification of immunosuppressive 
MDSCs, researchers have focused on further character-
izing these cells, including how they are induced in these 
many stressful states. MDSCs can be divided into mono-
cytic (mMDSCs), and granulocytic (gMDSCs) popula-
tions based on surface phenotype [8]. Because of their 
granulocytic origin, it is commonly thought that gMD-
SCs harbor an immunosuppressive phenotype that is 
derivative of the neutrophil lineage [9]. Despite numer-
ous studies to develop specific markers of gMDSCs, there 
is no consensus immunophenotype. The most common 
feature used to distinguish these cells is their lower den-
sity than granulocytic cells, thus co-purification with 
peripheral blood mononuclear cells following density 
gradient centrifugation [10].

The precise mechanisms of differentiation or acti-
vation that give rise to MDSCs remain unclear. Since 
DNA methylation (DNAm) has been explored exten-
sively in studies seeking to define the molecular basis of 
hematopoietic lineage differentiation [11, 12], as well as 
in lineage activation (e.g., NK cells) [13], DNAm is an 
excellent candidate for playing an essential role in gen-
erating gMDSCs. Patterns of methylation in promoters, 
enhancers, and gene bodies can strongly correlate with 
gene expression [14] and define differentially methylated 
regions (DMRs) used to predict cell lineage [15, 16]. For 
example, stable and heritable changes in DNAm, regard-
less of environmental influences, define lineage in T-cell 
differentiation [17]. Regulatory T cells have been shown 
to have stable and invariant methylation marks that 
define their phenotype [18, 19]. Taken together, these 
data suggest that DNA methylation analysis could pro-
vide powerful markers of differentiation states of poly-
morphonuclear leukocytes (PMNs) that may help define 
the nature of gMDSCs.

The few DNAm analyses that have been conducted 
point to the value of this approach, though prior stud-
ies have not explored cells isolated from diverse biologic 
sources. For example, when comparing methylation of 
inhibitory/suppressive molecules in MDSCs to antigen-
presenting cells, CpG islands in the promoter regions 
of TGF-β1, TIM-3, and ARG1 were highly unmethyl-
ated [20]. Here, researchers hypothesize that epigenetic 
mechanisms could control the genesis of suppressive 
molecules in the tumor microenvironment that contrib-
ute to immune tolerance [20]. In another study looking 
at infiltrating MDSCs in the context of colorectal can-
cer, genes associated with DNAm-mediated transcrip-
tional silencing and suppression pathways like WNT 

were upregulated in these cells [21]. Further, some data 
suggest that DNAm may play a vital role in the genesis 
of MDSCs, in addition to function. Researchers have 
also found that demethylated CpG sites characteristic of 
dendritic cell differentiation were not demethylated in 
MDSCs [22]. MDSCs show hypermethylation and gene 
repression in immunogenic regions important for their 
immunosuppressive properties, which could specifically 
be involved in the “switch” from immunogenic to tolerant 
in a tumor environment [22].

While DNAm of MDSCs has been studied in the 
context of specific cancer types and immunosuppres-
sion, epigenetic characterization of multiple sources of 
gMDSCs has not yet been done. Given the extreme het-
erogeneity of neutrophils in different clinical in vivo envi-
ronments, our central objective was to directly examine 
the DNA methylome of gMDSCs arising in different bio-
logic contexts to epigenetically phenotype these cells. We 
followed the recommended phenotypic features of gMD-
SCs as described in Bronte et al., 2016 to guide the isola-
tion of putative gMDSCs from diverse sources [23]. The 
approach focused on identifying consistent alterations, 
allowing us to uncover a core set of DNAm alterations 
that are associated with the genesis of immune sup-
pression and thus potential markers of this phenotype. 
To implement this, the DNAm of gMDSCs and neutro-
phils from two distinct age populations were compared: 
adult blood, where gMDSCs were collected from cancer 
patients and a pregnant mother, and from umbilical cord 
blood. These analyses revealed several robust differences 
in DNAm, consistent across both the adult and cord 
blood datasets, where some of the alterations associated 
with genes that have known immune functions. We then 
compared the whole blood methylation value for the 
identified loci in cancer patient studies to test whether 
they were altered in cancer.

Materials and methods
Patient samples (discovery)
The Institutional Review Boards approved biological 
sample collections from their respective institutions. Dei-
dentified whole blood samples were obtained from adults 
following written informed consent; head and neck can-
cer patient samples were collected from the Dana Farber 
Cancer Institute (Boston, MA) from newly diagnosed 
patients before initiation of treatment. Whole blood 
was obtained from a newly diagnosed glioma patient at 
the Rhode Island Hospital (Providence, RI), following 
all applicable IRB guidelines. Cord blood and mater-
nal blood samples were obtained at Women and Infants 
Hospital (Providence, RI) from discarded cords and 
consenting pregnant women, following the institutional 
guidelines. Hospital personnel collected all samples 
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during regular standard of care visits, except for cord 
blood samples obtained from discarded umbilical cords. 
Samples were drawn and transported to the laboratory 
at Brown University within 0.5–3  h. The list of samples 
included in the analyses is summarized in Fig. 1A.

Discovery sample processing
Blood was diluted threefold in PBS (pH 7.4, without cal-
cium or magnesium; ThermoFisher cat no 10010023) 
supplemented with 2  mM EDTA (Fluka cat no 03690-
100  ml), and run over a Ficoll density gradient (den-
sity 1.077  g/ml; GE Healthcare cat no 17-1440-02). The 
PBMC fraction, which also contains low-density granu-
locytic cells, was collected and washed with HBSS (no 
calcium or magnesium; ThermoFisher cat no 14170112) 
supplemented with 2  mM EDTA, to remove platelets. 
The following cell-surface markers were labeled for sort-
ing granulocytes: CD11b-PE (clone REA592; Miltenyi), 
CD14-eVolve605 (clone 61D3, eBiosciences) or CD14-
Superbright600 (also clone 61D3, Thermo), CD15-
APC (clone VIMC6, Miltenyi), CD33-PEVIO770 (clone 
AC104.3E3, Miltenyi), CD66b-FITC (clone REA306, 
Miltenyi), HLA-DR-PerCPVio700 (clone AC122, Milte-
nyi), and viability dye efluor450 (eBiosciences). All anti-
bodies (including new batches) were titrated for optimal 
signal prior to initiation of cell sorting experiments. 
Gating was optimized using FMO controls before the 
initiation of sorting experiments. Each sorting session 
began by setting compensation with fresh compensation 
controls using beads, either AbC Anti-Mouse Bead Kit 
(ThermoFisher cat no A10344) or MACS anti-human Igκ 
Comp Bead kit (Miltenyi cat no 130-104-187). In cases 
with HNC samples, antibody labeled cells were ‘lightly 
fixed’ with IC Fixation Buffer (ThermoFisher cat no 
00-8222-49) at 4 °C for 10 min, washed, and stored over-
night at 4 °C before cell sorting. Cell sorting was carried 
out at the Brown University Flow Cytometry and Sorting 
Facility on a 5-laser, 20-parameter BD FACSAria IIIu.

Samples were gated for live, singlet cells, and, based on 
forward scatter vs. side scatter, the granulocytic fraction 
containing gMDSCs was gated for CD11b+, CD33+, 
CD14−, CD15+, HLA-DR- and CD66b+. Neutrophils 
were collected from 2 ml of whole blood using Magnetic 
Activated Cell Sorting methods (MACSxpress human 
neutrophil isolation kit, Mitenyi cat no 130-104-434) 
with some modification: cells were processed in HBSS 
(no calcium or magnesium) supplemented with 2  mM 
EDTA. Neutrophils were negatively selected using two 
rounds of the kit antibody cocktail, resuspended in sup-
plemented HBSS, checked for viability (trypan blue), 
and counted. Aliquots of cells were frozen at − 80 °C for 
later downstream processing and analyses. One aliquot of 

fresh cells was reserved for antibody labeling and FACS 
phenotype verification.

Suppression assay
The suppression assay was carried out for representative 
gMDSC discovery samples using heterologous gMDSCs 
and PBMCs (containing target T cells). PBMC aliquots 
were generated from healthy donor leukoreduction filters 
obtained from the local blood donation center (Rhode 
Island Blood Center). White blood cells were back-
flushed with 250  ml PBS (no calcium or magnesium) 
at a rate of approximately 25  ml/min to avoid excessive 
pressure. The PBMC fraction was collected from a Ficoll 
gradient as described above (see Sample Processing) and 
cryopreserved in single experiment aliquots. Just before 
use, the PBMCs were thawed, washed, labeled with Cell-
Trace Far Red Cell Proliferation Kit (ThermoFisher cat no 
C34572) per manufacturer’s instructions, and stimulated 
with 30U human IL-2 IS premium grade (Miltenyi cat no 
130-097-745) per ml of cell suspension and 1ul of Dyna-
bead Human CD3/CD28 T Cell Activation Kit (Ther-
moFisher cat no 11161D) per 1 ×  105 (100 ul) PBMCs.

Live gMDSCs were sorted into complete RPMI: RPMI 
1640 (ThermoFisher cat no 11875168), supplemented 
with 10% FBS (ThermoFisher cat no 16000044), 1 × pen/
strep/l-glutamine (ThermoFisher cat no 10378016), 
washed and resuspended at 1 ×  105 gMDSCs/100ul 
medium. Granulocytic MDSCs were co-cultured with 
activated PBMCs in 96-well tissue culture plates in a 1:1 
ratio and cultured under standard conditions (37 °C with 
5%  CO2). After 4–5 days, cells were harvested, activation 
beads removed, and cells labeled for CD66b to deter-
mine gMDSCs, and CD3 (clone BW264/56; Miltenyi), 
CD4 (clone SK3; BioLegend), and CD8 (clone BW135/80; 
Miltenyi) to determine T-cell populations. The signal 
from Far Red dye was used to determine the prolifera-
tion of CD4+ and CD8+ cells in the presence or absence 
of gMDSCs. Proliferation metrics were calculated using 
the FlowJo 10 Proliferation Tool. Both Division Index 
(the average number of cell divisions across all cells in 
the original population, regardless of whether they have 
divided or not) and the Proliferation index (the number 
of cell divisions/the number of cells that divided).

DNA isolation and methylation array of discovery 
and testing samples
Fresh frozen cell pellets from training samples were 
extracted for DNA using the Zymo Quick-DNA Mini-
Prep Plus kit (cat no D4068) per manufacturer’s instruc-
tions. To maximize DNA recovery from lightly fixed 
frozen cells, pellets were subjected to a high heat/high 
pH method of Campos and Gilbert [24]. Briefly, fixed 
cells are incubated for 40 min in 0.1 M sodium hydroxide, 
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Fig. 1 Study design and resulting overlaps of DMRs identified. A Diagram of the study design. Briefly, we (1) obtained diverse sources of gMDSCs 
and neutrophils (2) Measured DNAm with the Illumina EPIC array (3) Pre‑processed the datasets (4) Identified DMRs using statistical tests (5) Defined 
a core set of DMRs and then (6) Tested the core DMRs in DNAm from cancer studies. B Venn diagram of putative DMRs identified and the overlaps 
between the sets. This includes any loci that met the thresholds set and the subset of the top 100 DMRs that were identified by smallest q‑value. 
The numbers in the rings are the number of CpG loci in that set
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1% SDS solution at 99 °C, allowed to cool for 5 min, and 
organically extracted. Samples were precipitated with 
sodium acetate (pH 5.s; ThermoFisher cat no R1181) and 
isopropanol in the presence of GlycoBlue carrier (Ther-
moFisher cat no AM9516). Testing sample DNA was 
extracted from whole blood using either Qiagen DNEasy 
Blood & Tissue Kit (cat no 69504) or Zymo Quick-DNA 
MiniPrep Plus kit (cat no D4068) per manufacturer’s 
instructions.

DNA was sent to either the USC Molecular Genomics 
Core facility or the Avera Institute for Human Genetics 
to process samples for the Illumina EPIC Human DNA 
Methylation Beadchip. Both facilities bisulfite convert 
using Zymo Research products. The DNA from fixed 
samples was processed by the USC Core and treated with 
the Illumina FFPE QC and Infinium HD FFPE Restore 
Solution kits.

The neutrophil adult blood methylation data are from 
Salas et al. [25], and the neutrophil cord blood methyla-
tion data are from publicly available Illumina array data 
on umbilical blood cells (FlowSorted.CordBloodCom-
bined.450 k) [26].

Statistical analysis
Identifying DMRs
To identify putative DMRs between neutrophils and 
gMDSCs from adult blood, a series of linear regression 
models were fit independently to each CpG by modeling 
CpG-specific methylation beta-values as the depend-
ent variable and cell identity as the independent variable 
(n = 8 gMDSC, n = 6 neutrophil) (Fig. 1A). Linear regres-
sion models were adjusted for sex. The regression coeffi-
cient for cell-type identity and its corresponding p-value 
were recorded. To correct for multiple testing, the result-
ing p-values were adjusted to control the false discovery 
rate (FDR) using the Benjamini–Hochberg method [24]. 
As a filtering step, the recommended general-purpose 
masking from Zhou et  al. [27] was used, along with 
removing CpG loci located on the X and Y chromosomes 
and removing “ch” and “rs” probes. Putative neutrophil/
gMDSC DMRs were defined as the 100 CpG loci with the 
smallest adjusted p-value and an absolute delta-beta (dif-
ference in mean beta-value between gMDSCs and neu-
trophils) greater than 0.2.

Similarly, to identify putative DMRs between neu-
trophils and gMDSCs from cord blood, a series of two-
sample t-tests were conducted to test the difference in 
CpG-specific DNAm between neutrophils and gMDSCs 
(n = 6 gMDSC, n = 7 neutrophil) (Fig.  1A). The mean 
difference between neutrophil methylation and gMDSC 
methylation was recorded along with the correspond-
ing p-value from the t-test. Raw p-values were adjusted 
using the Benjamini–Hochberg method [24], followed 

by filtering using the same process described above, and 
putative DMRs were defined similarly as for the adult 
blood. The CpGs in common between these two lists of 
DMRs from adult and cord bloods, were identified, and 
these signature core loci formed the basis of subsequent 
statistical analyses (Fig. 1B).

Case–control study populations
Head and neck squamous cell carcinoma (HNSCC)
We interrogated methylation using the Illumina Human-
MethylationEPIC array for whole blood samples from 100 
cases diagnosed with incident oropharyngeal squamous 
cell carcinoma that were randomly selected from a popu-
lation-based case–control study of head and neck cancer 
in the greater Boston area that has been described else-
where [28]. Briefly, 533 incident cases of HNSCC (phase 
1, December 1999 to December 2003) and an additional 
509 incident cases (phase 2, October 2006 to June 2011) 
were recruited through major teaching hospitals located 
in Boston, Massachusetts. Adult cases (> 18  years old) 
included residents of greater Boston with a confirmed 
incident diagnosis of HNSCC. Cases were excluded if 
tumors originated in the lip, salivary gland, nasopharynx, 
nasal sinus, or cavity. Cases were also excluded if their 
initial primary tumor was diagnosed more than 6 months 
prior to study contact. Based on the American Joint 
Committee on Cancer (AJCC) recommendations, tumors 
were classified as oral cavity, oropharynx, or larynx. We 
randomly selected 100 participants with oropharyngeal 
cancer for the current study (ICD-9 codes 146, 148, 149). 
Cancer-free controls were frequency-matched to cases 
on age and gender. Controls were selected by matching 
their town of residence, age, and sex, as has been previ-
ously described [28].

Glioma
The case–control San Francisco Adult Glioma Study 
(AGS) includes 3,164 glioma patients newly diagnosed 
between 1991 and 2012 who were residents of the SF Bay 
Area or patients of the UCSF Neuro-oncology clinic and 
2,140 subjects without glioma who were residents of the 
SF Bay Area or patients seen in the UCSF phlebotomy 
clinic [29]. Controls were frequency-matched to cases by 
age, race/ethnicity, and gender. Blood samples were col-
lected from glioma patients a median of 100  days after 
they were histologically diagnosed. For this paper, we 
included only AGS subjects who had 850 K methylation 
data available (487 glioma patients and 454 controls).

Evaluating the gMDSC signature loci in cancer
To test whether the identified gMDSC core loci were 
altered in cancer, the whole blood methylation value for 
these loci were compared in two independent cancer 
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patient studies: HNSCC and glioma (Fig. 1A). For each 
study, a series of linear regression models were fit inde-
pendently to each CpG by modeling the CpG-specific 
whole blood methylation beta-value as the dependent 
variable and cancer status as the independent variable 
(n = 100 HNSCC cases and n = 57 controls; n = 487 
glioma cases and n = 454 controls). The models for 
comparing case versus control from the HNSCC study 
also adjusted for cell-type, age, sex, smoking status, 
drinking status and race. The models for comparing 
case versus control from the glioma study also adjusted 
for cell-type, age, sex, smoking status, steroid use, and 
race. Cell-type was included as the predicted propor-
tions of CD4T cells, CD8T cells, monocytes, neutro-
phils, and B-cells, obtained via reference-based cell 
mixture deconvolution [11, 30]. The regression coeffi-
cient for cancer status and its corresponding p-values 
was recorded for each model. A CpG was considered 
to have significantly different whole-blood methylation 
between cancer cases and cancer-free controls if the 
p-value for cancer status was less than 0.05.

Statistical analysis software
All analyses were done in R version 4.1.0.

Results
The overall study design is shown in Fig. 1A. Briefly, we 
isolated neutrophils and gMDSCs from diverse sources, 
profiled their DNA methylation status using the Illumina 
EPIC array and compared the profiles to discover the 
changes in methylation that characterized the gMDSCs. 
After the initial gMDSC isolation we assessed the line-
age of cells and Fig.  2 shows the predicted proportions 
of each of the12 cell-types obtained by reference-based 
cell mixture deconvolution for each of the gMDSC sam-
ples, using the method of Salas et al. [25]. For all isolated 
gMDSC samples, as expected, the most abundant cell-
type was neutrophils (median of 96.6%) (Additional file 1: 
Table S1). This (presumably) shows that the DMRs used 
to predict neutrophil lineage are retained in gMDSCs. To 
ensure our isolation methods captured phenotypically 
active gMDSCs, representative samples from HNSCC, 
cord and maternal sources were assessed for their ability 
to suppress T-cell activity. The suppression assay was car-
ried out using heterologous gMDSCs and PBMCs (con-
taining target T cells). The Proliferation Index (PI) and 
Division Index (DI) were calculated for CD4 and CD8 T 
cells in the presence and absence of our isolated gMDSCs 
from each representative cell source. Both PI and DI were 
significantly diminished in the presence of gMDSCs, 
indicating that these cells could suppress normal T cell 

Fig. 2 gMDSC sample deconvolution. The relative prevalence of each cell type in the low‑density neutrophil fraction. Isolated gMDSCs were 
arrayed and the resulting data combined and assessed by deconvolution to generate relative proportions for each cell type. The means for each cell 
type from all donors are shown
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responses, consistent with the expected gMDSC pheno-
type (Table 1).

Having confirmed the protocols employing density 
gradients and FACS to isolate gMDSCs with an immu-
nosuppressive phenotype, we sought to identify dif-
ferentially methylated regions (DMRs) that distinguish 
between gMDSCs and neutrophils. Initially, both cell 
subtypes were compared in blood from adult donors, 
where DNA methylation (DNAm) was measured using 
the Illumina HumanMethylationEPIC platform. A series 
of linear models were fit independently to each CpG and 
used to test differences in DNAm between gMDSCs and 
neutrophils. The DNA methylation signals were com-
pared at each CpG site and initially sorted based on the 
magnitude of the difference in methylation beta-values 
(commonly referred to delta-beta, which ranges from 
-1 to 1). Figure  3A shows the difference in mean meth-
ylation beta-values between neutrophils and gMDSCs, 
adjusted for sex, for all CpGs in adult blood samples. 
There were 793 CpGs that met our criteria for differential 
methylation (q-value (FDR) < 0.05 and absolute adjusted 
delta-beta > 0.2) (Fig. 1B and Additional file 2: Table S2). 
From these 793 putative DMRs, the top 100 neutrophil/
gMDSC DMRs were defined as the 100 CpG loci with 
the smallest adjusted p-value and neutrophil and gMDSC 
samples were compared using the methylation beta val-
ues in an unsupervised clustering heatmap (Additional 
file 3: Table S3 and Fig. 3B). DNA methylation in leuko-
cytes varies with age, and the age range of the patients 
who provided the adult blood for gMDSC and neutro-
phils differed statistically: neutrophil donor mean age 
was 26.8 years and gMDSC donor mean age, 68.1 years 
(Additional file  4: Table  S4). To mitigate the potential 
false discovery of gMDSC DMRs attributable to the 
effects of age and to enhance the sample heterogeneity, 
we next compared DNAm between gMDSCs and neu-
trophils in cord blood with the same analytic approach. 
Figure  3C shows the difference in mean methylation 
beta-value between neutrophils and gMDSCs from cord 
blood. There were 798 CpGs that met our criteria of 
being differentially methylated (q-value (FDR) < 0.05 and 
absolute delta-beta > 0.2) (Fig.  1B and Additional file  5: 

Table S5). Figure 3D shows a heatmap of the methylation 
beta-values in gMDSC and neutrophils of the top 100 
neutrophil/gMDSC DMRs for each cell type (Additional 
file 6: Table S6). The presence of non-overlapping puta-
tive DMRs illustrates the heterogeneity of these cells. 
There were 603 non-overlapping putative DMRs identi-
fied only in adult blood and 608 non-overlapping puta-
tive DMRs identified only in cord blood. (Fig.  1B). The 
genomic and functional context of these DMRs are also 
heterogeneous (Additional file 7: Table S7).

Despite the great heterogeneity of these cells, there was 
a core of DNAm alterations specific to gMDSCs. When 
we compared adult and cord blood gMDSC DMRs, 190 
CpGs overlapped (Fig. 1B and Additional file 8: Table S8). 
Since these 190 DMRs were derived from independent 
comparisons, we further analyzed these DMRs to assess 
whether the direction of the change in methylation in the 
gMDSCs (when compared with neutrophils) was consist-
ent; for 189 of the 190 DMRs, the direction of the change 
was the same in adult and cord blood. To discover the 
loci reflecting the most prominent, generalizable differ-
ences in DNAm between neutrophils and gMDSC across 
lifespan, we compared the top 100 DMRs in adult blood 
with the top 100 DMRs in cord blood and identified an 
overlap of ten loci (Fig.  1B). These ten loci represent a 
core of differentially methylated CpG loci across diverse 
sources. A heatmap generated of these 10 CpGs is shown 
in Fig.  4. In both adult and cord blood, gMDSCs clus-
ter together, and the neutrophils cluster together across 
these ten loci. As displayed in Table 2, the directionality 
of the change in the beta values of these ten loci also is 
preserved between adult and cord blood. Of the 10 CpG 
sites in the gMDSC signature loci, nine are associated 
with specific genes (Table 2).

Since numerous prior studies have demonstrated that 
gMDSC proportions are increased in the peripheral cir-
culation of cancer patients, we reasoned that if alterations 
in the DNAm of the 189 CpGs represent gMDSCs, one 
might expect whole blood leukocyte DNAm of patients 
with cancers to change together, in a direction commen-
surate with the relatively small change in the prevalence 
of the MDSCs in whole blood. Importantly, we cannot 
interpret the meaning of the directionality of any change 
because we do not have leukocyte counts done at blood 
draw and numerous other cell types likely will change 
in concert with occurrence of the cancer. That is, since 
the relative numbers of leukocytes systematically change 
in cancer patients, the proportional change direction of 
any subtype (especially small subtypes) does not neces-
sarily reflect the numerical change, although the direc-
tion would be hypothesized to be uniform. Hence, we 
compared the case–control delta-beta in the 189 con-
sistent CpG loci signature from whole blood DNAm 

Table 1 %Reduction in Division Index (DI) and Proliferation 
Index (PI) in the presence of gMDSCs from different sources

CD4 CD8

PBMC: gMDSC gMDSC source % ↓ DI % ↓ PI % ↓ DI % ↓ PI

1:1 Cord blood 58.7 8.6 58.7 11.3

1:1 Maternal 43.6 1.8 10.8 13.6

1:1 HNC 58.0 20.7 63.8 10.3

1:1 HNC 30.2 5.3 58.0 21.4
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gMDSC in two cancer patient studies. In the HNSCC 
study, 170 CpG loci had a case–control delta-beta in 
the opposite direction of the corresponding gMDSC-
Neutrophil delta-beta. In the glioma study, 134 CpG loci 
had a case–control delta-beta in the opposite direction 
of the corresponding gMDSC-Neutrophil delta-beta. 
Further, there was an overlap of 122 loci between these 
groups of CpG loci, meaning there were 122 loci that 

had a consistent case–control delta-beta in the two can-
cer studies that were opposite of the respective gMDSC-
Neutrophil delta-beta found from adult and cord blood 
samples (Fig. 5A). To assess the chance of observing 122 
loci with consistent delta-betas in these cancer studies 
that are also in the opposite direction of their respective 
gMDSC-Neutrophil delta-betas, we derived the distri-
bution of the number of loci under the null hypothesis. 

Fig. 3 Identifying putative neutrophil/gMDSC DMRs from adult blood samples and cord blood samples. A Volcano plot of − log 10(q‑value) 
against delta‑beta, which represents the difference in mean methylation beta‑value between neutrophils and gMDSCs, adjusted for sex, in adult 
blood samples. The horizontal black bar represents the threshold of significance (q‑value (FDR) = 0.05) and the two vertical black bars represent the 
threshold for delta‑beta (delta‑beta =  ± 0.2). B Unsupervised clustering heatmap of the top 100 gMDSC DMRs identified in adult blood samples, 
defined as the 100 CpG loci with the smallest adjusted p‑value and absolute adjusted delta‑beta greater than 0.2. Each column represents a sample, 
and each row represents a CpG locus. Above the heatmap, color indicates cell‑type (blue = gMDSC and pink = neutrophil). Within the heatmap, 
color indicates methylation beta‑value (blue = β of 1, or methylated, and yellow = β of 0, or unmethylated). C Volcano plot of − log10(q‑value) 
against delta‑beta, which represents the difference in mean methylation beta‑value between neutrophils and gMDSCs in cord blood samples. 
The horizontal black bar represents the threshold of significance (q‑value (FDR) = 0.05) and the two vertical black bars represent the threshold 
for delta‑beta (delta‑beta =  ± 0.2). D Unsupervised clustering heatmap of the top 100 gMDSC DMRs identified in cord blood samples, defined 
as the 100 CpG loci with the smallest adjusted p‑value and absolute delta‑beta greater than 0.2. Each column represents a sample, and each row 
represents a CpG locus. Above the heatmap, color indicates cell‑type (blue = gMDSC and pink = neutrophil). Within the heatmap, color indicates 
methylation beta‑value (blue = β of 1, or methylated, and yellow = β of 0, or unmethylated)
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This was done by: (1) creating a set of CpG loci with 
consistent gMDSC-Neutrophil delta-betas in adult and 
cord samples (n = 536,320 loci) (2) randomly sample 189 
CpGs from this set (3) count the number of loci where 
the case–control delta-beta for both the HNSCC and 
glioma studies are the opposite direction of the respec-
tive gMDSC-Neutrophil delta-beta. This process was 
repeated 10,000 times and a histogram of the results are 
shown in Fig. 5B. The mean of this distribution is 82 and 
our observed value of 122 falls far outside the range. Of 
the core ten gMDSC signature loci, all ten CpGs were sta-
tistically significantly differentially methylated between 
cancer type and healthy controls in the larger glioma 
study, while for the less well-powered study of HNSCC 

patients, one loci was significantly different in cases com-
pared with controls (Fig. 5C). When the difference in the 
estimate of DNA methylation (mean beta-value) between 
the control and cancer case was compared, the direction 
of the change was consistent in HNSCC and glioma for 
nine of ten of the loci (Fig. 5D).

Discussion
In this study, we have directly compared the DNA meth-
ylation features of putative gMDSCs isolated from differ-
ent sources and have identified the great heterogeneity 
of these cells at the epigenetic level, but also a core of 
common DNAm alterations. The isolation procedures 
used for the discovery samples captured a highly purified 

Fig. 4 Core of differentially methylated CpG loci between gMDSCs and neutrophils from diverse adult and neonatal sources. Unsupervised 
clustering heatmap of the core ten gMDSC loci. Each column represents a sample, and each row represents a CpG locus. Above the heatmap, colors 
indicate sample type (green = adult blood, purple = cord blood) and cell‑type (blue = gMDSC and pink = neutrophil). Within the heatmap, color 
indicates methylation beta‑value (blue = β of 1, or methylated, and yellow = β of 0, or unmethylated)

Table 2 10 CpG overlap between adult blood and cord blood

CpG Chr Gene Genomic context Delta beta AB Delta beta CB P-value AB P-value CB Functional context

cg07140290 chr16 KREMEN2 CpG Island  − 0.26  − 0.32 1.91E−08 2.77E−10 TSS200

cg00112465 chr3 EFCC1 CpG Island  − 0.30  − 0.33 3.01E−06 3.43E−08 TSS1500

cg12697442 chr11 YAP1 CpG Island  − 0.38  − 0.41 2.05E−09 1.35E−09 TSS200

cg25858983 chr17 UBTF North shore  − 0.37  − 0.41 1.24E−07 6.96E−16 5′UTR 

cg06947608 chr10 FATS Open sea 0.45 0.41 5.6E−07 1.44E−09 3′UTR 

cg16996613 chr10 VCL Open sea 0.39 0.43 6.11E−10 7.00E−09 Body

cg26094470 chr10 MSS51 Open sea 0.41 0.38 3.77E−10 1.52E−09 Body

cg15818631 chr12 Open sea 0.26 0.27 2.58E−06 1.57E−10

cg20721090 chr5 MCC1 Open sea 0.28 0.31 4.51E−10 5.24E−08 Body

cg24088279 chr16 CHTF8 Open sea 0.21 0.33 7.20E−06 4.86E−08 Body
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low-density population of cells with an immunopheno-
type and methylation signature consistent with neutro-
phil lineage. This result is in line with previous studies 
[10].

We have identified CpG loci that are differentially 
methylated between gMDSCs and neutrophils. Using 
two age-distinct populations of gMDSCs and neu-
trophils (adult and cord blood samples derived from 
diverse sources), we identified a set of 189 common CpG 
loci, with 10 CpG loci displayed consistent differential 

methylation between the cell subtypes. A number of the 
genes associated with the identified loci are known to 
have roles in immune responses, including some immune 
processes specific to neutrophils.
VCL, for example, codes for the scaffolding protein 

vinculin, which is involved in the maturation of integrin-
based focal adhesions in a fashion previously termed 
‘mechanosensitive’ [31]. Recent work has shown that 
this protein has a role in leukocyte trafficking, includ-
ing a mechanosensitive role for vinculin in neutrophil 

Fig. 5 Assessing uniform change of whole blood DNAm in cancer studies for the 189 consistent loci and the core 10 loci. A Upset plot showing 
the overlap of the 189 DMRs with consistent gMDSC‑Neu delta‑betas in adult and cord blood samples and the respective CpG loci in the 
HNSCC and glioma studies that had case–control delta‑betas in the opposite direction (termed “opposite direction CpGs”). B Histogram of the 
distribution under the null hypothesis of the number of loci with case–control delta‑betas that are in the opposite direction of the respective 
gMDSC‑Neu delta‑beta in both the HNSCC and glioma study. Distribution was created by randomly drawing 189 CpG loci from the set of all loci 
with consistent gMDSC‑Neu delta‑betas and the counting the number of loci that have case–control delta‑betas in the opposite direction of 
gMDSC‑Neu delta‑betas in both the glioma and HNSCC studies. The horizontal red line is at our observed value of 122 loci, far outside the range of 
the distribution. C Upset plot of CpGs that were significantly different between cases and cancer‑free controls from testing the association between 
whole blood methylation beta‑value and cancer status for each of the gMDSC core loci in two cancer studies. D Heatmap of the whole blood 
methylation delta‑beta for cancer versus control in the glioma study population and the HNSCC study population. Each row represents one of the 
core ten loci. The color in the heatmap indicates the delta‑beta value
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adhesion and spreading [32]. Our work suggests, then, 
that vinculin may play an essential role in the genesis 
of particular features associated with gMDSCs. Several 
of the other core loci identified in this study have been 
shown to influence immune activity, through evidence 
of an association with the genesis of MDSCs. Deleting 
FATS, Fragile Site Tumor Suppressor, (one of the 10 com-
mon loci) in mice, has been shown to decrease the preva-
lence of gMDSCs in tumor tissues [33].

Expression of YAP1, or Yes-Associated Transcrip-
tional Regulator, is associated with MDSC expansion 
[34]. Hyperactivated YAP1 signaling in tumors leads to 
MDSC recruitment [35], while blockage of YAP1 leads to 
a decreased induction of MDSCs [34]. This suggests that 
YAP1 expression is heightened in tumors and plays a role 
in recruiting and expanding immunosuppressive MDSCs. 
YAP1 also seems to have a similar function as MDSCs in 
propagating tumor growth—it suppresses T-cell func-
tion and infiltration to the tumor microenvironment [36]. 
Though expression of YAP1 by tumor cells propagates 
tumor growth, recent research has shown that there are 
binary pan-cancer classes where YAP1 displays either 
pro- or anti-cancer activity depending on whether it is 
expressed or silenced in different types of cancer [37]. 
Hence, the role of YAP1 in cancer seems to be complex, 
with our data suggesting that this gene has a direct role in 
gMDSC genesis.
KREMEN2 (cg07140290), encoding Kringle-Contain-

ing TransmembraneProtein 2, is a protein implicated in 
cancer immunosurveillance in relation to WNT signaling 
[38]. Dysregulated WNT signaling culminates in cancer 
progression, malignant transformation, and resistance 
to treatment, undermining cancer immunosurveillance 
[38]. In the context of MDSCs, WNT displays anti-can-
cer effects as WNT/β-catenin signaling limits the tumor-
promoting role of MDSCs, with downstream inhibition 
of β-catenin resulting in MDSC expansion and tumor 
infiltration [38, 39]. WNT/β-catenin within MDSCs 
themselves limits their ability to expand and infiltrate 
tumors. KREMEN2 has potential involvement in these 
pathways because it hinders WNT activation [40].

Some of the identified loci are immunologically rel-
evant, but their association with gMDSCs has not previ-
ously been recognized. Upstream Binding Transcription 
Factor (UBTF) plays a role in innate antiviral immunity 
as part of the pattern recognition receptors, where it 
partners with Interferon Gamma Inducible Protein 16 
(IFI16) to restrict herpes simplex virus replication [41]. 
Interestingly, this process may also have a role in self-
tolerance, as IFI16 forms oligomers spontaneously in 
Sjogren’s syndrome [42]. UBTF also contains a gamma 
activating sequence, suggesting it may operate as part of 
the interferon-gamma pathway [43]. The gene product of 

MCC Regulator of WNT Signaling Pathway (MCC-1) is 
similarly involved in the innate immune response [44], 
although its role in the genesis of gMDSCs is also unclear.

Finally, EF-Hand And Coiled-Coil Domain-Containing 
Protein 1 (EFCC1) has been studied in lung adenocarci-
noma and shown, using immunohistochemical as well 
as RNA expression analysis, to be less prevalent in lung 
cancers and to predict poorer outcome [45]. Our data 
might suggest that some of the cells contributing to this 
assessment are infiltrating gMDSCs, with these having 
more methylated EFCC1 and thus less protein and less 
RNA present. Regardless, our result, combined with the 
work of Xia et al. [45] does point to the potential utility of 
studies of both RNA and protein expression in tumors for 
study of MDSC infiltration. In terms of the other candi-
date loci (Table 2), cg15818631 does not have any associ-
ations with known genes, and CHTF8 has no known role 
in the immune response.

After identifying these the common loci, we inves-
tigated their whole blood methylation status in cancer 
cases and healthy controls. The overlapping set of CpGs 
that represented gMDSCs in the cancer patients exhib-
ited the same change in the direction of the methyla-
tion value compared with controls, suggesting that they 
reflect a co-methylation module, perhaps associated with 
coordinate differentiation. All of the core ten loci were 
significantly different between glioma cases and controls 
while 1 was significantly different in the smaller HNSCC 
study (possibly attributable to issues with power to detect 
small changes in the subtype prevalence); this could indi-
cate that the pattern of altered methylation is partially 
attributable to an altered number of gMDSCs, which are 
known to be produced in cancer [6].

Strengths of this research include replication of our 
analyses in two distinct populations representative across 
the life-course—adult and cord blood. This work is par-
ticularly relevant to cancer, as most gMDSC samples 
came from cancer patients, and the results from discov-
ery applied to cancer cases vs. cancer-free controls.

The use of heterogeneous populations might be a limi-
tation, as some have suggested that low density cells in 
cord blood do not suppress lymphocyte mitogenesis, but 
rather this finding is an artifact of active macrophages 
that eliminate beads that stimulate T cell mitosis [46]. 
Regardless, the similar isolation procedures for both 
populations produced 190 CpGs with altered methyla-
tion that overlapped between these cell subtypes. Other 
limitations of this research include a relatively small sam-
ple size, although this allowed for the identification of ten 
loci with significantly altered methylation between gMD-
SCs and neutrophils in both adult and cord blood. While 
the scope of our research was to identify DNAm mark-
ers of gMDSCs, opportunities for future work include 
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further investigation of these candidate loci. For exam-
ple, lineage differentiation has long been known to be 
associated with microRNA expression [47] and further 
evaluation of the mechanistic importance of our findings 
should include detailed integration of these data with an 
assessment of altered microRNA. We’ve further investi-
gated the whole blood DNAm of these loci in two differ-
ent cancer types and found that nine of the ten loci were 
consistently different in cancer patients than controls. 
Together, our data indicate that gMDSCs have a core of 
distinct DNAm changes from neutrophils that inform 
future research on gMDSC differentiation and function.
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