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Abstract 

Background:  Early detection of esophageal cancer is critical to improve survival. Whilst studies have identified bio-
markers, their interpretation and validity is often confounded by cell-type heterogeneity.

Results:  Here we applied systems-epigenomic and cell-type deconvolution algorithms to a discovery set encom-
passing RNA-Seq and DNA methylation data from esophageal adenocarcinoma (EAC) patients and matched 
normal-adjacent tissue, in order to identify robust biomarkers, free from the confounding effect posed by cell-type 
heterogeneity. We identify 12 gene-modules that are epigenetically deregulated in EAC, and are able to validate all 12 
modules in 4 independent EAC cohorts. We demonstrate that the epigenetic deregulation is present in the epithelial 
compartment of EAC-tissue. Using single-cell RNA-Seq data we show that one of these modules, a proto-cadherin 
module centered around CTNND2, is inactivated in Barrett’s Esophagus, a precursor lesion to EAC. By measuring DNA 
methylation in saliva from EAC cases and controls, we identify a chemokine module centered around CCL20, whose 
methylation patterns in saliva correlate with EAC status.

Conclusions:  Given our observations that a CCL20 chemokine network is overactivated in EAC tissue and saliva 
from EAC patients, and that in independent studies CCL20 has been found to be overactivated in EAC tissue infected 
with the bacterium F. nucleatum, a bacterium that normally inhabits the oral cavity, our results highlight the possibil-
ity of using DNAm measurements in saliva as a proxy for changes occurring in the esophageal epithelium. Both the 
CTNND2/CCL20 modules represent novel promising network biomarkers for EAC that merit further investigation.
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Background
One of the most urgent needs in the clinical management 
of esophageal cancer is a reliable test for early detec-
tion of disease, which would help significantly towards 
improving what are currently dismal 5-year survival rates 

[1–3]. Given the low compliance to undergo endoscopy, 
an early detection test would ideally also be non-invasive 
and cheap enough to implement for routine screening. 
While many studies have identified promising epigenetic 
biomarkers for esophageal cancer [4–9], a key draw-
back hampering biological interpretation and successful 
validation is cell-type heterogeneity of analyzed tissues 
[10–13]. Cell-type heterogeneity refers to the presence 
of stromal cells, notably immune cells and fibroblasts, 
in addition to the resident epithelial cells of the tissue, 
with variations in the corresponding cell-type fractions 
generally accounting for most of the data-variance when 

Open Access

*Correspondence:  aeteschendorff21@outlook.com; l.lovat@ucl.ac.uk
1 CAS Key Lab of Computational Biology, Shanghai Institute for Nutrition 
and Health, University of Chinese Academy of Sciences, Chinese 
Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
2 Division of Surgery and Interventional Science, University College 
London, Gower Street, London WC1E 6BT, UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7410-6527
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-022-01243-5&domain=pdf


Page 2 of 14Maity et al. Clinical Epigenetics           (2022) 14:23 

analyzing DNA methylation or gene-expression [10]. 
Thus, it is important to adjust for such cell-type hetero-
geneity when inferring cancer biomarkers.

Here we aimed to identify robust biomarkers for 
esophageal adenocarcinoma (EAC) by using state-of-the-
art computational methodology to address the challenges 
posed by cell-type heterogeneity and multiple-testing. 
Specifically, we improve robustness and the false positive 
rate by not searching for individual differentially altered 
genes, but by searching for gene-modules that are jointly 
differentially methylated and differentially expressed, 
using our previously validated FEM (Functional Epige-
netic Modules) algorithm to identify such modules in 
the context of a high quality protein–protein-interaction 
(PPI) network [14, 15]. A number of such integrative 
module detection algorithms have since emerged [16, 17], 
the rationale being that DNAm changes in disease often 
accompany gene expression changes that map to specific 
biological pathways and functional modules [15]. This 
systems-approach can therefore remove false positives 
and ensure the likelihood of discovering true positives, 
despite the crude nature of the underlying PPI networks. 
Because of the confounding effect posed by cell-type 
heterogeneity, we here extend FEM, by combining it 
with HEpiDISH [18], an algorithm designed to perform 
cell-type deconvolution of complex epithelial tissues. 
Briefly, we apply HEpiDISH to estimate total epithelial, 
immune and fibroblast fractions in the EAC samples 
from the TCGA cohort [19], and which are subsequently 
used to infer statistics of differential DNA methylation 
and mRNA expression reflecting associations with EAC 
that are not driven by underlying changes in cell-type 
composition. Following identification of FEM-modules 
associated with EAC, we perform extensive validation 
in independent EAC cohorts, and finally explore the 
potential utility of specific modules for early detection of 
EAC. We do this in the context of a single-cell RNA-Seq 
dataset comprising cells from Barrett’s esophagus, a pre-
malignant lesion that precedes EAC development. Our 
findings also lead us to explore the inferred gene-mod-
ules in the context of DNAm in saliva, an easily accessible 
tissue that contains a significant proportion of squamous 
epithelial cells [18, 20–22], which may serve as a suitable 
surrogate for recording DNAm changes in the cells that 
give rise to Barrett’s esophagus and EAC.

Results
Identification of epigenetically deregulated gene‑modules 
in EAC
The overall strategy to detect biomarkers for early detec-
tion of esophageal cancer was largely driven by power 
considerations and availability of appropriate datasets 
(Fig.  1). The underlying idea behind our strategy was 

to leverage the higher effect sizes and larger number of 
samples of EAC-tissue cohorts to identify EAC-biomark-
ers (Fig.  1a), and subsequently to filter these for poten-
tial relevance in early detection, either in preneoplastic 
esophageal tissue or in suitable surrogate tissues like 
saliva (Fig.  1b). In order to identify robust biomarkers 
associated with EAC, we combined a systems-epigenom-
ics algorithm called FEM (Functional Epigenetic Mod-
ules) [14, 15] with a cell-type deconvolution algorithm 
called HEpiDISH [18], applying them both in an inte-
grative fashion to the TCGA EAC cohort [19] (Fig.  1a). 
This cohort has genome-wide DNAm (12 normal-adja-
cent + 50 EAC) and RNA-Seq (8 normal-adjacent + 79 
EAC) data available, allowing us to identify joint DNAm 
and mRNA expression changes in a predominantly stage 
T1-3 EACs cohort (approximately 20% of the tumors are 
T1, 34% T2, 41% T3 and only 5% T4). By using FEM [14], 
we search for hotspots (gene-modules) of joint differ-
ential DNAm and mRNA expression between EAC and 
normal-adjacent tissue in the context of a protein–pro-
tein-interaction (PPI) network (Fig.  1a), a strategy that 
maximizes the chance of discovering true positive associ-
ations [23] and which we have previously and successfully 
applied to other cancer-types [15]. However, because 
normal and cancer tissue represent admixtures of esoph-
ageal epithelial cells with immune and other stromal cells 
(e.g. fibroblasts), we here extended the FEM algorithm 
to adjust for stromal heterogeneity when computing dif-
ferential DNAm and mRNA expression statistics (Meth-
ods). In more detail, we used our HEpiDISH framework 
[18] to estimate total epithelial, total fibroblast and total 
immune cell fractions in each of the esophageal TCGA 
samples (Additional file 1: Fig. S1). SVD-analysis on the 
DNAm dataset revealed that the top principal compo-
nent correlated most strongly with normal-cancer status 
(Additional file 1: Fig. S1). Cell-type fractions correlated 
strongly with lower ranked components but marginally 
also with PC1. Hence, when identifying differentially 
methylated genes (DMGs) and differential expressed 
genes (DEGs) between normal and cancer tissue, we 
used the estimated cell-type fractions as covariates in the 
linear regression models, so as to avoid confounding by 
potential changes in cell-type composition. Using this 
strategy, we identified a total of 12 gene-modules (Fig. 2, 
Additional file 1: Table S1, Additional file 1: Fig. S2), cen-
tered around 12 marker “seed” genes, which included 
CTNND2, CCL20 and NCAM1. For instance, the module 
around CTNND2 revealed widespread promoter hyper-
methylation and downregulation of many proto-cadherin 
genes, including CTNND2 itself (Fig. 2). In contrast, the 
CCL20 module was dominated by promoter hypometh-
ylation and overexpression, suggesting activation of this 
chemokine-network in EAC (Fig. 2). For each module we 
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computed a “FEM-activation score” (Methods) reflecting 
the degree of deregulation, which was generally speak-
ing independent of tumor-stage (Additional file  1: Fig. 
S3). Despite some of the genes in these modules (e.g. 
CTNND2, CDH18, CCL20) displaying copy number vari-
ation (CNV) in esophageal cancer [19], we verified that 
the statistics of differential DNAm and mRNA expres-
sion for all gene module members were very robust upon 
adjustment for CNV-status (Additional file  1: Figs. S4, 
S5), thus demonstrating that CNV is not a confounder.

Validation of epigenetically deregulated gene‑modules 
in independent cohorts
To ascertain the biological significance of the 12 gene-
modules, we collated a total of 4 independent EAC cohorts, 
2 profiling mRNA expression and 2 profiling DNAm 

(Additional file 1: Table S2). For each module in each data-
set, we computed a score (FEM-score), assessing the level 
of epigenetic or transcriptomic deregulation of each sam-
ple, and asked if the FEM-scores can discriminate normal 
from cancer tissue (Methods). In the case of DNAm we 
were able to validate all 12 modules with high statistical 
significance in both cohorts (Fig. 3). In the case of mRNA 
expression, the majority of modules were validated in at 
least one of the two cohorts (Additional file 1: Figs. S6–S9). 
Thus, this demonstrates that FEM has indeed identified 
bona-fide epigenetic and transcriptomic markers of EAC.

Deregulation of FEM‑modules occurs in the epithelial 
compartment
Next, we wanted to assess in which cell-types the 
cancer-associated molecular alterations underlying 
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our FEM-modules occur. To this end, we applied Cell-
DMC [24], an algorithm designed to detect cell-type 
specific DNAm changes to the discovery EAC DNAm 
dataset from the TCGA (Methods), in order to iden-
tify cell-type specific differentially methylated genes 
(cts-DMGs). For most FEM-modules, about half 
of the significantly differentially methylated genes 
within a module were predicted to be cts-DMGs, 

and by far these were mostly epithelial cts-DMGs 
(Fig.  4a). For instance, 24 of the 41 DMGs in the 
CTNND2-module were epithelial cts-DMGs, with 
only 1 being specific to the fibroblast compartment 
and none being specific to the immune-cell compart-
ment. Only the CCL20-module exhibited an equal 
number of cts-DMGs in the epithelial and fibroblast 
compartments.
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The CTNND2 module is deregulated in the epithelial cells 
of Barrett’s Esophagus
To ascertain that our modules are capturing molecu-
lar changes in the epithelial cells of the esophagus, and 
to also explore the timing of the molecular alterations, 
we analyzed a Smart-Seq2 single-cell RNA-Seq dataset 
derived from 4 patients with Barrett’s esophagus (BE) 
at each of 4 sites, including normal squamous epithelial 
cells as well as epithelial cells derived from BE, duode-
num and stomach [25] (Methods). Indeed, we reasoned 
that some of our FEM-modules may already exhibit alter-
ations in the epithelial cells from BE, which would make 
them more attractive for early detection strategies. Using 
the Seurat pipeline (Methods) we inferred a total of 6 
clusters, with tissue/site and patient distributed unevenly 
across these clusters, but with the tissue/site dominat-
ing the source of variation and clustering (Fig. 4b). Next, 
we computed the FEM-score of our modules in each of 
the single cells (Methods). Unfortunately, due to the 
relatively high dropout rate, we could only compute the 
FEM-score for the CTNND2 module, since only for this 
module did we find enough gene members with variable 
expression across the 1038 cells (588 BE & 450 normal-
squamous). However, in each of the 4 patients the cal-
culated FEM-score of the CTNND2 module was higher 
in the epithelial cells from BE compared to the adjacent 
normal squamous epithelium, and results were highly 

significant when merging the cells from all 4 patients 
together (Fig.  4c). Thus, these data indicate that the 
molecular alterations underlying the CTTND2-module 
is present in the esophageal epithelium as an early field-
defect in BE.

Association of CCL20 module with EAC in saliva
Next, we assessed the 12 FEM-modules in two cohorts 
of saliva specimens (Cohorts 1 and 2) from subjects 
representing 4 different stages in EAC development, 
including normal (N, n(Cohort1) = 65, n(Cohort2) = 5), 
nondysplastic BE (NDBE: n(1) = 33, n(2) = 15), high 
grade dysplasia (HGD: n(1) = 14, n(2) = 15) and can-
cer (C: n(1) = 51, n(2) = 14) (Methods). Illumina DNAm 
profiles were generated for these cohorts using the EPIC 
platform that measures over 850,000 CpGs. The rationale 
for testing these modules in saliva at the DNAm level is 
that saliva contains a proportion of epithelial cells, likely 
derived from the buccal epithelium, which we posit may 
be informative of the DNAm changes seen in BE, HGD 
and EAC tissue.

To explore this, we first aimed to demonstrate that 
saliva contains a significant fraction of epithelial cells, 
and that these cells derive from the buccal epithelium of 
the oral cavity. We applied our HEpiDISH algorithm [18] 
to the two saliva cohorts in order to estimate the epithe-
lial fraction. This confirmed that epithelial fractions were 
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non-negligible, and interestingly, that they increased 
with cancer stage in both cohorts (Fig.  5a). To confirm 
the source of epithelial cells, we built a novel DNAm 
reference matrix with representative DNAm profiles for 
squamous buccal epithelium, EAC cell-lines and immune 
cells (Methods), and reapplied our HEpiDISH algorithm 
[18, 26] to infer corresponding cell-type fractions in our 
saliva samples. In both cohorts, this revealed an excellent 
correlation of the estimated buccal squamous epithelial 
content with the total epithelial fraction as determined 
with our previous DNAm reference matrix (Fig.  5b). In 
contrast, no correlations were observed between the total 
epithelial fraction and the fraction of esophageal adeno-
carcinoma cells (Fig.  5c). This confirms that the epithe-
lial fraction in saliva derives from the adjacent squamous 
buccal epithelium. Finally, we computed the FEM-scores 
for all our modules in two saliva cohorts, which revealed 
a number of associations (Additional file  1: Figs. S10, 
S11). However, upon careful inspection most associations 
did not validate between Cohorts 1 and 2, with the excep-
tion of the CCL20 module, which did reveal a consist-
ent increase with disease stage in both cohorts (Fig. 5d). 
Specifically, the CCL20 module displayed an AUC = 0.65 

(P = 0.002) for discriminating normal from cancer in 
Cohort-1, and an AUC = 0.7 (P = 0.11) in Cohort-2, the 
non-significance in Cohort-2 attributable to the much 
smaller sample size of Cohort-2 (Fig. 5d, Additional file 1: 
Figs. S10, S11). Although these associations were partly 
driven by the increased epithelial fraction, the asso-
ciations with EAC-status remained marginally signifi-
cant under a linear regression model where we adjusted 
for the epithelial content (Cohort-1: t = 1.9, P = 0.06; 
Cohort-2: t = 1.8, P = 0.09). Thus, these data suggest that 
there are DNAm changes of the CCL20 module in saliva 
of EAC-cases that “mimick” those seen in EAC-tissue.

Discussion
Here we have identified two promising network bio-
markers for EAC, one characterized by promoter hyper-
methylation and underexpression of a proto-cadherin 
gene module centered around CTNND2, and another 
module characterized by promoter hypomethylation 
and overexpression of a chemokine-network centered 
around CCL20. Unlike previous studies, we identi-
fied these biomarkers by adjusting for variations in the 
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stromal compartment between normal and EAC-tissue, 
using state-of-the-art cell-type deconvolution meth-
ods, and furthermore demonstrating that the underlying 
DNAm chances are occurring primarily in the epithelial 

compartment of cells. In support of this we analysed 
scRNA-Seq data, demonstrating that the CTNND2-
module is aberrantly deregulated in the epithelial cells 
derived from Barrett’s Esophagus in each of 4 separate BE 
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patients. Thus, we have identified a potential field defect 
in BE that could be informative of disease progression. 
Admittedly, this association would be more relevant if 
demonstrated in BE patients with HGD, yet given that 
the CTNND2 module is not only deregulated in BE but 
also in EAC, it is highly plausible that the CTNND2 mod-
ule would also be deregulated in intermediate stages such 
as BE + HGD lesions. Caution must be exercised however 
as our findings in BE are based on only 4 samples and 
results were derived from a scRNA-Seq data exhibiting 
over 90% sparsity. In any event, our data makes a strong 
case for scaling up scRNA-Seq studies to larger numbers 
of patients. While a number of previous studies have 
already indicated the potential importance of CTNND2/
WNT-signaling in EAC [27], a potentially more strik-
ing observation is that deletion of CTNND1 has been 
shown to lead to esophageal squamous cell carcinoma 
(ESCC) development [28, 29]. Thus, it would appear that 
CTNND-genes play key tumor suppressor roles in both 
types of esophageal cancer, with their inactivation being 
mediated by potentially different molecular mechanisms 
(promoter hypermethylation in the case of CTNND2 
and deletion in the case of CTNND1), which is possibly 
related to the different etiology of EAC vs ESCC.

CCL20/chemokine signaling has also been previously 
implicated in esophageal cancer [30]. Our observation 
that the CCL20 module appears to be overactivated in 
both EAC tissue as well as in saliva from EAC patients is 
striking, because an independent study has shown CCL20 
to be strongly overexpressed in EAC-tissue displaying 
elevated levels of the bacterium F. nucleatum [31], a bac-
terium that also inhabits the oral cavity. It is therefore 
plausible that epigenetic changes associated with this 
bacterium in esophageal tissue could also be present in 
the buccal epithelial cells of the oral cavity. Of note, BE 
and EAC develop from metaplasia where squamous epi-
thelial cells get replaced by columnar epithelium, thus 
the cell-of-origin of EAC is likely to be a basal progeni-
tor squamous epithelial cell, similar to the cells in the 
buccal epithelium, thus providing further rationale as to 
why buccal epithelial cells may be an informative surro-
gate tissue of EAC. While we admit that this is hypotheti-
cal, our data clearly suggests an important future line of 
investigation: given that buccal swabs contain a much 
larger fraction of epithelial cells compared to saliva [18, 
21], it would be interesting for future studies to jointly 
measure the microbiome and DNA methylome in such 
swabs, so as to explore the hypothesis that CCL20 (and 
DNAm alterations occurring elsewhere in the genome) 
is epigenetically deregulated as a function of F.nucleatum 
levels. Given the relative ease-of-access of buccal swabs, 
this could provide a promising avenue for developing 
non-invasive screening strategies for esophageal cancer. 

There is also another reason why buccal swabs or saliva 
may be an appropriate tissue for assessing esophageal 
cancer risk. We have previously observed that DNAm 
changes that accrue in the buccal epithelium of smokers 
are very similar to those seen in a wide range of differ-
ent epithelial cancer-types, including lung and esophagus 
[32]. It is likely that such common DNAm changes are 
driven by an increased cellular turnover and mitotic-rate 
associated with factors such as inflammation [33–35]. 
Inflammation could also be driven by bacterial infec-
tions, in addition to gastroesophageal reflux disease, 
the main risk factor for EAC. Thus, it is plausible that 
DNAm changes occurring in the buccal epithelium may 
record DNAm changes in other tissue-types that are also 
exposed to the same pathogen (F.nucleatum) or carcino-
gen (smoking).

Besides the sparsity and low number of clinical samples 
of the scRNA-Seq data, another major limitation of this 
study is the substantial inter-cohort and inter-individual 
variation of the epithelial fraction in saliva. These differ-
ences between individuals and cohorts likely stem from 
differences in sample collection and processing, but may 
also be influenced by confounders such as alcohol con-
sumption, gingivitis or other medical conditions of the 
oral cavity. Of note, such high inter-individual variability 
has also been observed in buccal swabs [18, 20]. Thus, 
moving forward, future work will need to understand the 
sources of inter-individual variability in epithelial frac-
tions within saliva and buccal swabs.

Conclusions
In summary, by using innovative computational methods, 
we have here identified CTNND2 and CCL20 modules 
that represent two promising novel network biomarkers 
for early detection of EAC. We propose future studies to 
fully explore the clinical significance of these modules.

Methods
Normalization and preprocessing of tissue EAC datasets
TCGA EAC DNAm, mRNA expression and CNV dataset
We used the DNAm, mRNA expression and CNV data-
sets from the TCGA [19]. These datasets were normal-
ized as described by us previously [36, 37]. Briefly, in the 
case of DNAm data, missing values in the level-3 data 
were imputed using impute.knn [38] with k = 5 and an 
imputation threshold of 30% (i.e. only probes with less 
than 30% missing values imputed, rest of probes were 
removed), followed by BMIQ normalization [39]. There 
were 12 normal-adjacent + 50 EAC samples measured 
with Illumina 450  k beadarrays, and 8 normal-adja-
cent + 79 EAC samples measured with RNA-Seq.
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Validation bulk tissue DNAm datasets

–	 Krause et al. [40] is an Illumina 450 k DNAm data-
set comprising genome-wide DNA methylation 
profiles for 250 samples including 125 EAC and 64 
normal adjacent squamous samples. Data is available 
from GEO (http://​www.​ncbi.​nlm.​nih.​gov/​geo/ under 
accession number GSE72872). Raw idat files were 
processed with minfi [41]. Probes with SNPs or with 
more than 25% missing values were removed. Rest 
of probes were imputed with impute.knn [38] with 
k = 5. Type-2 probe bias was corrected using BMIQ 
[39]. One sample was removed due to low quality as 
assessed using BMIQ, resulting in 63 normal adjacent 
and 125 EAC samples.

–	 Kaz et  al. [42] is an Illumina 450  k DNAm dataset 
comprising genome-wide DNA methylation pro-
file of 127 esophageal samples, including 24 EAC 
and 11 normal adjacent squamous. Data is available 
from GEO (http://​www.​ncbi.​nlm.​nih.​gov/​geo/ under 
accession number GSE89181). Raw idat files were 
processed as described for Krause et al.

Validation bulk tissue gene expression datasets

–	 Krause et al. [40] performed Illumina gene expression 
(HumanHT-12 V4.0 bEAChip) profiling of 65 esoph-
ageal samples (48 EAC, 17 normal adjacent squa-
mous). We downloaded the provided log-normalized 
dataset from GEO (http://​www.​ncbi.​nlm.​nih.​gov/​
geo/ under accession number GSE72874) and per-
formed inter-sample normalization using quantile 
normalization with limma R package [43].

–	 Lu et  al. [44] used Affymetrix Human Gene 1.0 ST 
Arrays to profile 10 normal adjacent squamous 
and 12 EAC. Raw data was downloaded from GEO 
(http://​www.​ncbi.​nlm.​nih.​gov/​geo/​under accession 
number GSE92396). We successively applied intra-
sample and inter-sample normalization in the dataset 
using affy and limma R packages, respectively.

scRNA‑Seq dataset of Barrett’s Esophagus (BE)
We analysed a scRNA-Seq Smart-Seq2 dataset from Owen 
et  al. [25] which profiled BE specimens as well as normal-
adjacent tissue for a number of different patients. We down-
loaded the gene-count matrix from the website provided 
with the publication, and processed it with the Seurat pipe-
line [45]. We selected cells with at least 200 expressed genes, 
and selected genes expressed in at least 3 cells. Counts were 
then log-normalized using a scale factor of 104. In total we 
obtained 2009 cells from 4 different patients and from 4 

distinct tissues: normal esophagus (n = 450), duodenum 
(n = 349), gastric (n = 622) and BE (n = 588). To assess the 
sources of variability in this dataset we ran the standard Seu-
rat pipeline, including variable feature selection (with vari-
ance stabilization), PCA, graph-based clustering and tSNE 
visualization. Graph-based clustering was done over 8 com-
ponents (inferred with ElbowPlot function) and at a resolu-
tion of 0.1, which resulted in 6 clusters.

Inference of FEM‑modules from TCGA EAC dataset
To identify epigenetically deregulated gene-modules in 
EAC, we applied our Functional Epigenetic Module (FEM) 
algorithm [14]. Briefly, this approach integrates DNA 
methylation with gene expression data in the context of a 
protein–protein-interaction (PPI) network to identify hot-
spots (gene-modules) where there is substantial coordi-
nated DNAm and gene expression changes. The algorithm 
consists of three steps: (1) quantify t-statistics of differen-
tial DNAm (DM) and gene expression (DE) between adja-
cent normal and EAC for each gene in the PPI network, 
(2) the edges of the network are weighted according to an 
integrated statistic for each gene defining the edge, where 
the integrated statistic per gene is obtained from the cor-
responding differential DNAm and differential expression 
statistics, and (3) inference of hotspots as subnetworks 
of particularly high modularity, i.e. subgraphs where the 
average weighted edge density is high compared to the rest 
of the network. The PPI network consists of 11,751 genes 
annotated to NCBI Entrez identifiers and is derived from 
the Pathway Commons resource [46, 47]. In step-(1), in 
order to arrive at a single statistic for DM, we summarize 
DNAm for each gene as the average over TSS200 probes 
(i.e. probes within 200 bp of the TSS). If such probes are 
not available, we use 1st Exon probes instead, and if also 
not available then we use the average over TS1500 probes. 
This strategy is motivated by the fact that for these regions, 
there is generally an inverse relation between DNAm and 
gene expression, and the algorithm seeks to identify gene 
modules where this pattern is observed frequently. To 
derive the statistics for DM and DE we then use the limma 
R-package [43, 48, 49]. In step-(2), the integrated statistic 
per gene is then constructed as

where H(x) is a Heaviside function, H(x) = 1 if x > 0 and 
H(x) = 0 if x < 0. If genes g and h are connected in the PPI 
network, we then assign the edge weight by taking the 
average of the corresponding integrated statistics of the 
genes, i.e.
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To infer the modules (“FEM-modules”) in step-3, we 
then use a local greedy adaptation of a powerful spin-
glass algorithm [23, 50]. The spin-glass algorithm tries to 
minimize the following Hamiltonian energy function

where sg is the spin-state (i.e., module) the gene g belongs 
to, δ

(

x, y
)

= 1 iff x = y and 0 otherwise, and pgh∼wg .wh. is 
the null probability (once normalized) with wg . denoting 
the weighted degree of gene g. In the local greedy version 
we try to grow modules around a number of “seed-genes” 
defined as the highest ranked genes by the integrated 
statistic t(I)g  . We choose on the order of 100 seed genes, 
to ensure that most of the network is explored. In pre-
vious studies we have found that this number of seed 
genes works well and already leads to redundant mod-
ules. The spin-glass parameter γ was chosen to be 0.5, 
as this parameter choice typically leads to modules in 
the size range of 10–100, which is the optimal size-range 
as shown by us previously [23]. The statistical signifi-
cance of the modules is determined in two complemen-
tary ways: a module is grown from a given seed-gene in 
a deterministic fashion by adding the neighboring gene 
that minimizes the Hamiltonian energy and this process 
is continued until no further additions can decrease the 
energy function. This assesses the significance of the 
edge-weight density of the module in relation to the rest 
of the network and is strongly influenced by the topology 
of the network. As a second topology-independent test, 
we assess statistical significance of the inferred modules 
using a Monte Carlo (MC) randomization procedure 
(1000 Monte-Carlo runs), where we randomize the sta-
tistics over the network (thus keeping the topology fixed), 
recomputing modularity scores for each module and 
subsequently comparing the observed modularity to that 
of this empirically generated null distribution. The final 
FEM-modules are those with a P < 0.05.

Computation of FEM‑score in validation tissue EAC 
datasets
In the case of the DNAm validation sets, we first summa-
rized the Illumina 850 k/450 k DNAm values to the pro-
moters of the genes involved in a given module. This is 
done following our previously validated procedure [14]. 
This procedure averages the DNAm values of CpG probes 
mapping to within 200 bp of the TSS of each gene. If no 
probes map to within 200  bp, we use probes mapping 
to the 1st Exon, and if not available, we resort to probes 
mapping 1.5  kb upstream of the TSS. Subsequently, we 

wgh = 0.5 ∗

(

t(I)g + t
(I)
h

)

H({s}) = −

∑

g �=h

{

wgh − γ pgh
}

δ
(

sg , sh
)

select the genes in the module that were significantly dif-
ferentially methylated in the original EAC TCGA cohort. 
For each of these genes, we then z-score normalize their 
DNAm profile over all samples within the given valida-
tion cohort, using the mean and standard deviation as 
estimated over the samples from normal/healthy individ-
uals. That is, if xgs denotes the DNAm value for gene g in 
sample s, we compute

where µgN , σgN denote the mean and standard deviation 
DNAm of gene g across the normal samples. The FEM-
score for module m in sample s is then obtained as

where |m| is the number of significantly differentially 
methylated genes in the module (as determined by the 
discovery TCGA EAC dataset) and Sign

(

tg
)

 is the sign 
(+ 1/− 1) of the corresponding t-statistic of differential 
DNAm from the TCGA EAC cohort. Thus, the FEMscore 
assesses whether the deviation in DNAm relative to the 
normal state is consistent with the pattern observed in 
the TCGA EAC cohort, with a higher FEMscore in cancer 
patients indicating a coordinated epigenetic deregulation 
consistent with that seen in the discovery TCGA set.

In the case of the gene-expression datasets, the FEM-
score of the module was computed by z-score normaliz-
ing the expression values of the module genes, using the 
mean and standard deviation of the gene over the nor-
mal samples, in direct analogy to the DNAm case. Here, 
only genes that were significantly differentially expressed 
in the discovery TCGA EAC cohort are used. Given the 
z-scores, the FEMscore is then obtained as the weighted 
average over all significant module genes, with the weight 
being + 1 if the gene is overexpressed in cancer relative 
to normal according to the TCGA dataset, and − 1 if 
underexpressed.

Computation of FEM‑score in scRNA‑Seq data of BE
Here we selected cells from normal esophagus (n = 450) 
and BE (n = 588), and ran the above analysis to compute 
FEM-scores in each single cell, using the normal cells 
to define the z-score transformation. FEM-scores could 
only be reliably computed for the CTNND2-module: the 
number of significantly differentially expressed genes 
(from the TCGA EAC cohort) in each module that were 
also variable in the scRNA-Seq dataset was less than 5 for 
all modules except CTNND2 for which the number of 
variable genes was 11. FEM-scores were then compared 

zgs =
xgs − µgN

σgN

FEMscorems =
1

|m|

∑

g∈m

Sign
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tg
)

zgs
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between the normal and BE cells using Wilcoxon rank 
sum tests, stratified by patient.

Computation of FEM‑score in TCGA ESCA data
The procedure for computing the FEM-score in the 
TCGA data was slightly different from the previously 
described one, because for the TCGA we have both 
DNAm and RNA-Seq data. Briefly, the FEM-score for 
module m in sample s was computed as

where |m| is the number of significantly and consistently 
differentially methylated and differentially expressed 
genes in the module (as determined in the TCGA data-
set itself ), and where z(M)

gs  and z(R)gs  are the correspond-
ing z-scores for the DNAm and RNA-Seq datasets. By 
consistently differentially methylated and differentially 
expressed we mean that the pattern is anti-correlative 
(i.e., promoter hypermethylation and underexpression, 
or promoter hypomethylation and overexpression). The 
z-scores were computed as described previously, with 
the exception of the scores for the DNAm data where 
we added a constant offset term to the standard devia-
tion, since the number of normal-adjacent samples with 
both DNAm and mRNA data is small (n = 6) and this can 
lead to spurious low variances and inflated scores in the 
DNAm-case. Specifically, for the DNAm-data we defined

where γ was determined by requiring that the stand-
ard deviation of the z-scores for DNAm, as evaluated 
genome-wide over all genes in the experiment, equals the 
standard deviation of the z-scores for RNA-Seq data.

Saliva sample collection
Saliva was collected from two groups of patients: the 
primary “training” cohort of 192 patients was col-
lected through the SPIT Study (Saliva to predict risk 
of disease using transcriptomics and epigenetics, 
ISRCTN11921553) at 15 hospitals in the United King-
dom. This study was ethically approved by the West 
Midlands-Coventry and Warwickshire Research Eth-
ics Committee (REC Reference No: 17/WM/0079). 
The validation cohort of 49 patients were collected 
through the BOOST Study (Barrett’s oesophagus sur-
veillance with optical biopsy using spectroscopy and 
enhanced endoscopic imaging to target high-risk 
lesions, ISRCTN58235785) at a single hospital site 
(UCLH). This study was ethically approved by the 

FEMscorems =
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∣

∣
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z(M)
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London-Dulwich Research Ethics Committee (REC 
Reference No: 08/H0808/8). All participants gave writ-
ten consent.

Patients were instructed to fast for a minimum of one 
hour and then to spit repeatedly into a saliva DNA col-
lection device to a total of 2  mL. The primary cohort 
used Oragene DNA OG-500 (DNAGenotek, Ottawa, 
Canada) and the validation cohort used SimplOFy™ 
(Oasis Diagnostics® Corporation, Vancouver, Canada). 
Saliva was sent to the central laboratory at UCL and 
stored at − 80 °C until extraction.

DNA Extraction was carried out using the Zymo 
Quick-DNA™ Miniprep Plus Kit (Zymo Research, 
Irvine CA, USA). DNA quality was assessed using the 
Agilent Bioanalyser (Agilent Inc, Santa Clara, CA, 
USA). Only samples with a 260/280  nm ratio of > 1.5 
were used. Bisulphite conversion was undertaken using 
the Zymo EZ-96 DNA methylation kit (Zymo Research, 
Irvine CA, USA) and samples containing 500 ng DNA 
were then DNAm profiled using the Illumina Infin-
ium HumanMethylationEPIC BeadChip (Illumina San 
Diego, CA, USA).

Analysis of saliva DNAm datasets
Raw signal intensities were processed from idat files 
through a standard pipeline that we have extensively vali-
dated [18]. Briefly, we processed idat files with the minfi 
R-package with no background correction and using the 
Illumina definition of beta-values. Probes with P values 
of detection < 0.05 were declared reliable measurements, 
the rest being set to NA. We removed cross-reactive 
probes, probes with more than 4 SNPs, probes with a 
SNP at the interrogated CpG, and probes with less than 
90% coverage. Remaining NAs were imputed with the 
impute R-package using impute.knn function with k = 5 
[38]. Type-2 probe bias was corrected using our BMIQ 
algorithm [39]. The final beta-valued data matrix for the 
discovery cohort contained 689,033 probes and 163 sam-
ples, of which 65 were from healthy controls, 33 from 
patients diagnosed with non-dysplastic Barrett’s Esopha-
gus (NDBE), 14 with high-grade dysplasia (HGD) and 
51 with EAC. In the case of the validation cohort, a total 
of 49 samples passed QC, of which 5 were normal, 15 
NDBE, 15 HGD and 14 EAC.

Computation of FEM‑score in saliva EAC DNAm datasets
We applied the same procedure as for the tissue DNAm 
validation sets described above. Here, the normal sam-
ples used for performing the z-score transformation 
are the saliva samples from the age-matched healthy 
controls.
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Estimation of cell‑type fractions in tissue and saliva DNAm 
datasets
In the case of the TCGA EAC cohort we estimated cell-
type fractions from the Illumina 450 k DNAm data with 
our HEpiDISH algorithm [13, 18]. Briefly, this uses a 
DNAm reference matrix defined over 3 broad cell-types 
(total epithelial, total fibroblast and total immune-cell), 
in conjunction with Robust Partial Correlations (RPC) 
to yield estimates for the total epithelial, total fibroblast 
and total immune-cell fractions in each of the TCGA 
samples. In the case of the saliva DNAm datasets, the 
same procedure was applied to obtain total epithelial 
and total immune-cells fractions (the fibroblast frac-
tion in saliva is negligible, which was also confirmed by 
HEpiDISH).

To assess the source of epithelial cells in saliva, we 
built a separate DNAm reference matrix defined over 
3 main cell-types: squamous epithelial cells, epithe-
lial cells representative of EAC cell-lines, and a generic 
immune-cell. In detail, the Illumina 450  k DNAm data 
from 48 purified immune-cells (6 × 8 cell-types) was 
derived from Reinius et  al. [51]. From Iorio et  al. [52] 
we obtained Illumina 450  k DNAm profiles for a total 
of 7 EAC cell-lines (ESO26, ESO51, FLO-1, KYAE-1, 
OACM5-1, OACP4C an SK-GT-4). For the squamous 
epithelial cells we first identified buccal swabs with over 
95% purity, as determined with our HEpiDISH algorithm 
with the DNAm reference matrix defined above, and as 
applied to our large buccal swab 450  k DNAm dataset 
of 790 buccal swabs [32]. We only considered never-
smokers to avoid DNAm changes induced by smoking. 
This resulted in 10 buccal swab samples of high epithe-
lial purity, which we took as representative for putative 
squamous epithelial cells in saliva. To select the features 
(CpGs) defining our DNAm reference matrix, we per-
formed differential DNAm analysis between the 48 IC, 
7 EAC cell-line and 10 squamous epithelial cell samples 
using the limma empirical Bayes framework [49, 53]. 
Specifically, we performed 3 pairwise comparisons (IC 
vs. EAC + SqEpi), (SqEpi vs IC + EAC) and (EAC vs. 
IC + SqEpi). In all cases, we selected features with an 
FDR < 0.05 and a difference in mean DNAm greater than 
0.9, except for the second comparison where we relaxed 
the threshold a little to 0.875. This ensured similar num-
bers of differentially methylated CpGs (DMCs): 136, 
123 and 153 for the 3 comparisons, respectively. This 
resulted in a DNAm reference matrix defined over 412 
unique CpGs and 3 cell-types (total IC, squamous epi-
thelial, EAC). To estimate cell-type fractions in saliva, 
we then applied our HEpiDISH/RPC algorithm with this 
DNAm reference matrix.
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