
Marino et al. Clinical Epigenetics           (2022) 14:21  
https://doi.org/10.1186/s13148-022-01239-1

RESEARCH

Aberrant epigenetic and transcriptional 
events associated with breast cancer risk
Natascia Marino1,2* , Rana German1, Ram Podicheti3, Douglas B. Rusch3, Pam Rockey1, Jie Huang3, 
George E. Sandusky4, Constance J. Temm4, Sandra Althouse5, Kenneth P. Nephew6, Harikrishna Nakshatri7, 
Jun Liu3, Ashley Vode1, Sha Cao5 and Anna Maria V. Storniolo1,2 

Abstract 

Background: Genome-wide association studies have identified several breast cancer susceptibility loci. However, 
biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected 
in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores 
donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and 
transcriptome (Illumina’s HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was 
used to confirm gene expression dysregulation.

Results: Transcriptomic analysis identified 69 differentially expressed genes between women at  high and those at 
average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes 
were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were over-
expressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 
DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-
related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 
women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk 
subjects were identified.

Conclusions: Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may 
contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast 
tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new 
preventive approaches.
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Background
Genetic and epigenetic alterations in breast cancer (BC) 
have been widely investigated. However, when, during 
the carcinogenesis process, these events first emerge 
remains unknown. The identification of molecular aber-
rations associated with BC development can provide a 

conceptual framework for a deeper understanding of this 
complex disease.

Genome-wide association studies (GWAS) have 
detected more than 170 genomic loci harboring com-
mon variants associated with BC risk including modi-
fier alleles with high (e.g., BRCA1, BRCA2, TP53, 
PTEN) to moderate penetrance (e.g., BRIP1, CHEK2, 
ATM, and PALB2) [1–4]. Nevertheless, many variants 
are located in noncoding or intergenic regions and their 
functional role in cancer transformation remains largely 
unknown. Recently, transcriptome-wide association 
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studies were used to integrate GWAS and gene expres-
sion datasets and identified 154 genes whose predicted 
expression associated with the risk for BC [5–9]. How-
ever, these studies drew data from the Genotype-Tissue 
Expression (GTEx) project, and, because of the use of 
autopsy-derived normal breast tissues, the breast-spe-
cific transcriptome profilings may be  questionable. The 
relative lack of molecular profiling of normal breast tis-
sue from subjects who are disease-free makes the field 
challenging.

Many studies searching for cancer biomarkers have 
identified gene expression signatures, epigenetic signa-
tures, loss of heterozygosity and allelic imbalance result-
ing from the development of malignancy [10]. Among the 
molecular processes linked with cancer, DNA methyla-
tion has a key role in early cancer development through a 
process known as epigenetic reprogramming [11], poten-
tially leading to silencing and loss of expression of tumor 
suppressor genes [12], and genomic instability [13].

Here, we performed an integrated analysis of DNA 
methylation and transcriptome profiling of cancer-free 
breast tissues donated by healthy women at either aver-
age or high risk for BC. In addition to early epigenetic 
events, we identified two molecules, FAM83A and NEK2, 
overexpressed in high-risk breasts and, therefore, poten-
tial markers of BC susceptibility. Moreover, using a sub-
cohort of repeated breast tissues donation by the same 
donors, we confirmed that the molecular changes iden-
tified in high-risk subjects are age-independent. These 
findings will lead to a deeper understanding of BC sus-
ceptibility and also provide the scientific community with 
the molecular profiling of the true normal breast tissue.

Results
Study cohort used to investigate molecular aberrations 
in association with breast cancer (BC) risk
To identify transcriptomic and epigenetic differences 
linked with BC risk, we analyzed cancer-free breast tis-
sue cores donated by 146 healthy women (median age: 

39 years), including 112 Caucasian, 24 African American, 
and 10 Asian subjects (Additional file 1: Table S1). Out of 
146 participants, 117 were pre- and 29 post-menopausal 
women. Tyrer-Cuzick model was employed to estimate 
the lifetime risk of developing BC and allocated the sub-
jects into either high- (score ≥ 20%, N = 68) or average-
risk group (score < 20%, N = 78) (Fig.  1A, Table  1 and 
Additional file 1: Table S1).

Characterization of the transcriptome alterations 
in high‑risk breast
We performed a transcriptome analysis of the fresh fro-
zen disease-free breast tissue donated by all the partici-
pants. Differential expression analysis was performed 
using DESeq2. From a total of 22,344 genes, the differ-
ential expression analysis between high- and average-risk 
breasts revealed 1874 transcripts to be significant at 5% 
false discovery rate (FDR). Of these, 1798 transcripts 
also passed the cutoff of t-test p-value ≤ 0.05 (Additional 
file  1: Table  S2). Sixty-nine genes, including 51 upregu-
lated and 18 downregulated genes, were identified with a 
fold change ≥ 2 (Table 1). Because both groups consisted 
of non-malignant breast tissue, a limited number of dif-
ferentially expressed genes was expected [14]. Canoni-
cal pathway analysis revealed enrichment in pathways 
related to kinetochore signaling (p = 1.3E-05), DNA 
damage checkpoint (p = 0.0005), granulocytes adhesion 
(p = 0.002), and the IL17 pathway (p = 0.004) (Fig.  1B, 
Additional file  1: Table  S3). Our data further confirm 
the impact of dysregulated DNA damage in breast car-
cinogenesis, as previously described [15]. Molecular 
network analysis showed an enrichment in functional 
categories involved in cell cycle, DNA replication and 
repair (Fig.  1C, Additional file  1: Table  S3). One of the 
major molecular networks regulating cell cycle is cen-
tered around AKT and the transcription factor FOXM1 
[16].

Except for DCX, the transcriptional changes detected 
between high- and average-risk breasts listed in Table 2 

Fig. 1 Transcriptome profiling of breast tissues from women at either high- or average risk of breast cancer. A Schematics of the study design. 
Cancer-free breast tissue cores (N = 146) were divided in either high-risk or average-risk group according to the Tyrer-Cuzick breast cancer risk 
evaluation score (20% used as threashold). The tissues were processed and analyzed for whole transcriptome and methylome profiling and 
differentially expressed genes (DEG) and differentially methylated sites between high- and average-risk samples were identified. Thirty five 
women (10 high risk and 25 average risk) donated also a second biopsy (D2) allowing to detect age-dependent aberrations. B Pathway analysis 
of the transcripts differentially expressed (FDR < 0.05) between average and high- risk breasts. C Major molecular network of the differentially 
expressed transcripts between the two experimental groups. Genes upregulated in high-risk breasts are in red, while downregulated genes are in 
green. D FAM83A and NEK2 transcription level in breast tissues from women at either average- or high-risk of developing breast cancer. E Upper 
panel: Representative image of the immunofluorescence staining of primary breast epithelial cells with the epithelial marker, E-Cadherin (red), 
mesenchymal marker, Vimentin (green) as control, and nuclear staining, DAPI (blue). E-Cadherin and Vimentin staining of primary cells revealed that 
isolated primary cells are epithelial in nature. Lower panel: FAM83A and NEK2 expression in primary epithelial cells isolated from either average-risk 
(n = 4) and high-risk breast (n = 3). F FAM83A and NEK2 expression in primary and h-TERT immortalized isogenic breast epithelial cells (n = 7) from 
the GSE108541 dataset. G) Representative images of immunohistochemical staining for FAM83A and NEK2 are shown at 20X magnification. Staining 
quantification is expressed as positivity and H-score. Data are shown as mean ± standard error. #FDR < 0.005, *p < 0.05,**p < 0.001, ***p < 0.0001. 
Pvalue is calculated using either unpaired nonparametric Mann–Whitney test or nonparametric Wilcoxon test

(See figure on next page.)



Page 3 of 17Marino et al. Clinical Epigenetics           (2022) 14:21  

Average High
0

50

100

150

FA
M

83
A 

ex
pr

es
si

on
 (m

ap
pe

d 
re

ad
 c

ou
nt

s)
A

E

F

Average High
0

50

100

150

N
EK

2 
ex

pr
es

si
on

 (m
ap

pe
d 

re
ad

 c
ou

nt
s)

D
#

#

B

C

FAM83A

NEK2

G Average risk High risk
*** ***

Average High
0

50

100

150

H
-S
co

re

Average High
0.0

0.2

0.4

0.6

0.8

P
os

iti
vi
ty

Average High
0.0

0.2

0.4

0.6

0.8

1.0

P
os

iti
vi
ty

Average High
0

50

100

150

H
-S

co
re

R
el

at
iv

e 
ex

pr
es

si
on

 
(v

er
su

s 
βa

ct
in

) ±
SE

M *

*

G
SE

10
85

41
 e

xp
re

ss
io

n 
da

ta
 (m

ap
pe

d 
re

ad
s) *

***

Fig. 1 (See legend on previous page.)
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Table 1 Gene expression differences in high- versus average-risk breasts (FC > 2; FDR < 0.05)

Gene name Description log2fca FDR % genetic 
 alterationsb

Tumor/ Normal 
expression (p 
value)c

Copy number variation (CNV)d Oncoscore

CNV = 2 (%), p value CNV = − 2 (%), p 
value

MEPE Matrix extracellular 
phosphoglycoprotein

2.28 2E-02 0.7 0.02 (n.s.) 12 (0.6), n.s 2 (0.1), < 0.001 15.6

OPRPN Opiorphin prepro-
peptide

2.10 3E-03 1.3 N.A 31 (1.4), n.s 0 (0) N.A

CXCL13 C-X-C motif 
chemokine ligand 13

2.07 4E-03 1.3 6.6 (0,003) 26 (1.2), n.s 0 (0) 33.7

APELA Apelin receptor early 
endogenous ligand

1.87 8E-04 0.3 N.A N.A 0 (0) N.A

CA6 Carbonic anhydrase 6 1.78 6E-04 0.8 0 (n.s.) 2 (0.1), n.s 3 (0.1), < 0.001 14.4

DIO2 Iodothyronine deio-
dinase 2

1.60 2E-03 0.6 1.94 (n.s.) 13 (0.6), n.s 0 (0) 7.7

FEZF2 FEZ family zinc 
finger 2

1.55 7E-03 0.7 0.04 (< 0.001) 3 (0.1), n.s 0 (0) 16.1

TNNT1 Troponin T1%2C slow 
skeletal type

1.52 9E-03 2.3 51.87 (n.s.) 36 (1.7), n.s 0 (0) 12.3

MMP3 Matrix metallopepti-
dase 3

1.43 2E-02 1.8 5.66 (< 0.001) 26 (1.2), n.s 1 (0.04), < 0.001 31.9

SERPINA12 Serpin family A mem-
ber 12

1.42 2E-02 0.9 1.26 (< 0.001) 12 (0.6), n.s 1 (0), < 0.001 11.9

C8B Complement C8 beta 
chain

1.42 3E-02 1.8 0.014 (n.s.) 37 (1.7), n.s 1 (0), < 0.001 7.3

KCNJ13 Potassium voltage-
gated channel sub-
family J member 13

1.41 3E-03 0.6 0.16 (0.03) 2 (0.1), n.s 1 (0), < 0.001 9.0

CXCL6 C-X-C motif 
chemokine ligand 6

1.37 5E-03 2.2 0.10 (0.04) 43 (2), n.s 0 (0), n.s 31.0

SLC12A1 Solute carrier family 
12 member 1

1.33 1E-02 0.9 0.48 (< 0.001) 4 (0.2), n.s 1 (0), < 0.001 5.6

CYP24A1 Cytochrome P450 
family 24 subfamily A 
member 1

1.33 3E-02 7.0 0.22 (n.s.) 164 (7.5), < 0.001 1 (0), n.s 30.2

ASB5 Ankyrin repeat and 
SOCS box contain-
ing 5

1.29 4E-03 1.3 0.01 (n.s.) 6 (0.3), n.s 5 (0.2), < 0.001 0.0

NPY2R Neuropeptide Y 
receptor Y2

1.27 3E-02 1.0 0.003 (< 0.001) 10 (0.5), n.s 0 (0) 7.9

C2CD4A C2 calcium depend-
ent domain contain-
ing 4A

1.26 2E-02 0.6 0.9 (< 0.001) 12 (0.6), n.s 1 (0), < 0.001 11.2

GABRR1 gamma-aminobutyric 
acid type A receptor 
rho1 subunit

1.26 3E-02 1.1 1.03 (0.03) 13 (0.6), n.s 5 (0.2), < 0.001 8.7

KIAA1210 KIAA1210 1.25 7E-03 1.6 0.43 (n.s.) 18 (0.8), n.s 3 (0.1), < 0.001 0.0

MMP10 Matrix metallopepti-
dase 10

1.23 2E-02 1.6 7.07 (< 0.001) 26 (1.2), n.s 1 (0), < 0.001 38.2

FAM83A Family with sequence 
similarity 83 member 
A

1.22 5E-03 16.0 1.23 (< 0.001) 503(23.1), < 0.001 0 (0) 74.5

LPO Lactoperoxidase 1.21 1E-02 7.0 0.5 (< 0.001) 168 (7.7),2E-24 1 (0), n.s 11.5

CRISP2 Cysteine rich secre-
tory protein 2

1.19 3E-02 1.5 0.06 (0.01) 31 (1.4), 3E-05 0 (0) 8.2

NMU Neuromedin U 1.19 2E-02 0.8 3.6 (< 0.001) 18 (0.8), n.s 1 (0), < 0.001 41.6

MAGEB4 MAGE family member 
B4

1.18 9E-03 0.8 8.6 (0.004) 10 (0.5), n.s 2 (0.1), < 0.001 55.9
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Table 1 (continued)

Gene name Description log2fca FDR % genetic 
 alterationsb

Tumor/ Normal 
expression (p 
value)c

Copy number variation (CNV)d Oncoscore

CNV = 2 (%), p value CNV = − 2 (%), p 
value

MAG Myelin associated 
glycoprotein

1.17 4E-02 2.3 5.3 (< 0.001) 42 (1.9), 0.001 0 (0) 13.2

DAPL1 Death associated 
protein like 1

1.17 5E-03 0.7 0.09 (n.s.) 10 (0.5), n.s 0 (0) 14.0

PRSS51 Serine protease 51 1.16 2E-02 1.6 N.A 0 (0) 0 (0) N.A

PBK PDZ binding kinase 1.14 4E-03 3.0 15.7 (< 0.001) 20 (0.9), n.s 15(0.7), < 0.001 28.3

KRT77 Keratin 77 1.13 4E-02 0.8 0.04 (n.s.) 12 (0.6), n.s 0 (0) 0.0

CALML3 Calmodulin like 3 1.12 3E-02 4.0 0.15 (n.s.) 108 (5), < 0.001 0 (0) 37.7

ACBD7 Acyl-CoA binding 
domain containing 7

1.12 3E-03 2.3 1.13 (0.002) 78 (3.6), < 0.001 0 (0) 0.0

UNC5D Unc-5 netrin recep-
tor D

1.11 2E-02 8.0 0.001 (n.s.) 152 (7), n.s 6 (0.3), < 0.001 44.8

ESCO2 Establishment of 
sister chromatid 
cohesion N-acetyl-
transferase 2

1.11 2E-03 3.0 8.02 (< 0.001) 20 (0.9), n.s 14(0.6), < 0.001 25.1

BARX1 BARX homeobox 1 1.09 4E-02 5.0 1.54 (9E-08) 9 (0.4), n.s 1 (0), < 0.001 22.3

CTXND1 Cortexin domain 
containing 1

1.09 3E-02 0.0 N.A 0 (0) 0 (0) N.A

SYT13 Synaptotagmin 13 1.08 4E-03 1.3 4.6 (< 0.001) 36 (1.7), < 0.001 1 (0), n.s 38.8

PRAME Preferentially 
expressed antigen in 
melanoma

1.06 2E-02 1.2 1.8 (< 0.001) 21 (1), n.s 1 (0), < 0.001 82.6

SLC39A12 Solute carrier family 
39 member 12

1.05 4E-03 2.4 0.18 (n.s.) 72 (3.3), < 0.001 1 (0), n.s 12.0

IGHV2-26 Immunoglobulin 
heavy variable2-26

1.04 4E-02 0.1 N.A 0 (0) 0 (0) N.A

APLN Apelin 1.04 7E-04 0.6 0.93 (n.s.) 16 (0.7), n.s 2 (0.1), < 0.001 13.8

IGHV3-30 Immunoglobulin 
heavy variable3-30

1.04 2E-02 0.1 N.A 0 (0) 0 (0) 48.0

LPAR3 Lysophosphatidic 
acid receptor 3

1.04 8E-03 0.9 0.28 (n.s.) 13 (0.6), n.s 0 (0) 12.9

ECEL1 Endothelin convert-
ing enzyme like1

1.03 2E-02 0.8 0.9 (n.s.) 1 (0), n.s 1 (0), < 0.001 N.A

DCX Doublecortin 1.03 6E-03 0.5 0.1 (0.02) 13 (0.6), n.s 2 (0.1), < 0.001 8.7

NEK2 NIMA related kinase 2 1.02 7E-03 12.0 25.78 (< 0.001) 473 (21.8), < 0.001 0 (0) 61.4

CWH43 Cell wall biogen-
esis 43 C-terminal 
homolog

1.02 3E-02 1.0 0.5 (< 0.001) 6 (0.3), n.s 0 (0) 12.9

PRSS21 Serine protease 21 1.01 3E-02 5.0 0.2 (n.s.) 154 (7.1),5E-102 0 (0) 46.3

FOXI3 Forkhead box I3 1.01 2E-02 0.3 0.01 (< 0.001) 10 (0.5), n.s 0 (0) 8.5

FCER2 Fc fragment of IgE 
receptor II

-0.98 1E-03 1.3 0.07 (0.04) 11 (0.5), n.s 2 (0.1), < 0.001 17.1

DACH2 Dachshund family 
transcription factor 2

− 1.01 1E-02 0.8 0.3 (n.s.) 17 (0.8), n.s 9 (0.4), < 0.001 25.3

LILRB5 Leukocyte immuno-
globulin like receptor 
B5

− 1.02 8E-04 2.1 0.15 (< 0.001) 39 (1.8), n.s 0 (0) 0.0

SBK3 SH3 domain binding 
kinase family member 
3

− 1.03 7E-03 2.3 N.A 48 (2.2), n.s 0 (0) 0.0

TRDN Triadin − 1.03 3E-02 2.3 0.02 (n.s.) 41 (1.9), n.s 1 (0), < 0.001 1.0
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Table 1 (continued)

Gene name Description log2fca FDR % genetic 
 alterationsb

Tumor/ Normal 
expression (p 
value)c

Copy number variation (CNV)d Oncoscore

CNV = 2 (%), p value CNV = − 2 (%), p 
value

NXF3 nuclear RNA export 
factor 3

− 1.04 3E-03 0.6 0.9 (n.s.) 8 (0.4), n.s 4 (0.2), < 0.001 32.2

LILRA6 leukocyte immuno-
globulin like receptor 
A6

− 1.05 2E-03 2.1 1 (n.s.) 39 (1.8), n.s 1 (0), n.s 0

SYNDIG1L synapse differentia-
tion inducing 1 like

− 1.07 9E-03 0.5 N.A 8 (0.4), n.s 1 (0), < 0.001 0

ARPP21 cAMP regulated 
phosphoprotein 21

− 1.13 2E-02 1.1 0.42 (n.s.) 11 (0.5), n.s 1 (0), < 0.001 24.04

SLC22A12 solute carrier family 
22 member 12

− 1.13 2E-02 1.1 0.9 (< 0.001) 20 (0.9), n.s 0 (0) 8.9

CCL24 C–C motif chemokine 
ligand 24

− 1.17 1E-02 0.7 0.98 (< 0.001) 21 (1), n.s 0 (0) 16.2

TPSD1 tryptase delta 1 − 1.17 2E-02 5.0 0.55 (0.04) 170 (7.8), < 0.001 0 (0) 0

PROK2 prokineticin 2 − 1.19 2E-02 0.7 0.24 (0.01) 5 (0.2), n.s 1 (0), 0.001 18.8

HBG2 hemoglobin subunit 
gamma 2

− 1.59 4E-02 1.0 0.2 (n.s.) 19 (0.9), n.s 0 (0) 11.3

FGF8 fibroblast growth 
factor 8

− 1.68 3E-04 0.3 0.88 (0.005) 2 (0.1), n.s 1 (0), < 0.001 14.3

SULT1C2 sulfotransferase fami-
ly1C member2

− 1.74 2E-03 0.5 1.6 (0.02) 9 (0.4), n.s 0 (0) 21.8

MS4A6E membrane spanning 
4-domains A6E

− 2.24 4E-02 0.9 N.A 23 (1.1),n.s 0 (0) 0

N.A., not available; a, log fold change; b, breast cancer data from cBioportal; c: from UALCAN portal; d: data retrieved from the METABRIC, number of samples with 
either CNV = 2 or − 2 (%), p value

Table 2 The 20 most differentially methylated regions between the high- and average-risk breast tissues

# High- versus average-risk value

Genomic Locus Overlapping Gene Feature Gene Name Description ∆Z# FDR

Chr8:120,669,501 Intron SNTB1 syntrophin beta 1 2.4 7E-53

Chr18:6,803,751 Intron ARHGAP28 Rho GTPase activating protein 28 2.0 3E-35

Chr6:12,944,751 Intron PHACTR1 phosphatase and actin regulator 1 1.9 1E-31

Chr21:30,743,501 promoter KRTAP21-4P keratin associated protein 21–4 2C pseudogene 1.9 6E-31

Chr2:115,663,751 Intron DPP10 dipeptidyl peptidase like 10 1.8 2E-30

Chr4:87,111,001 Intron AFF1 AF4/FMR2 family member 1 1.8 2E-29

Chr3:33,638,251 Intron CLASP2 cytoplasmic linker associated protein 2 1.8 2E-29

Chr14:106,498,501 Intron LINC01881 long intergenic non-protein coding RNA1881 1.8 2E-29

Chr6:129,416,001 Intron LAMA2 laminin subunit alpha 2 1.8 4E-29

Chr14:31,750,251 Intron NUBPL nucleotide binding protein like 1.8 2E-28

Chr8:37,842,001 Coding ADGRA2 adhesion G protein-coupled receptor A2 − 1.2 1E-12

Chr1:44,724,501 Coding C1orf228 chromosome 1 open reading frame 228 − 1.2 9E-13

ChrX:46,575,001 Coding CHST7 carbohydrate sulfotransferase 7 − 1.2 5E-13

Chr14:104,729,501 Coding ADSSL1 adenylosuccinate synthase like 1 − 1.3 1E-15

Chr2:202,774,251 Intron/promoter ICA1L islet cell autoantigen 1 like − 1.3 1E-15

Chr1:155,190,001 Coding MUC1 mucin 1, 2C cell surface associated − 1.4 2E-17

Chr20:3,751,751 Coding HSPA12B heat shock protein family A (Hsp70) member 12B − 1.4 8E-18

Chr11:58,141,001 Intron OR9Q1 olfactory receptor family 9 subfamily Q member 1 − 1.6 4E-22

Chr1:45,803,751 Coding MAST2 microtubule associated serine/threonine kinase 2 − 1.6 3E-23

Chr7:636,001 Intron PRKAR1B protein kinase cAMP-dependent type I regulatory subunit beta − 1.7 1E-24
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are independent of both racial background and meno-
pausal status of the tissue donors (Additional file  1: 
Table S4 and Additional file 2: Fig. S1).

METABRIC, cBioportal, UALCAN and Oncoscore 
databases were interrogated to determine the cancer-
related relevance of the 69 differentially expressed 
genes. Among them, FAM83A and NEK2 showed over-
expression in BC (p > 0.001), high genetic alteration fre-
quency (> 10%), high gene amplification rate, and an 
Oncoscore > 50, and therefore were selected for further 
investigation (Table 1 and Additional file 2: Fig. S2) [17–
19]. The expression of FAM83A and NEK2 in the breasts 
of high- and average-risk women is shown in Fig.  1D. 
We detected a 4.5-fold increase in FAM83A and 2.2-fold 
increase in NEK2 expression in primary epithelial cells 
isolated from the breast of high-risk women when com-
pared with cells isolated from breast tissue of average-
risk women (Fig. 1E). Overexpression of both targets was 
detected also in a dataset of hTERT-immortalized epi-
thelial cells as compared with the isogenic primary cells 
[20] (Fig. 1F). Moreover, immunostaining of a breast tis-
sue microarray showed a 1.4 fold increase in FAM83A 
protein levels in the breast tissues from women at high 
risk of BC as compared with the breast tissues from sub-
jects at average risk (p < 0.0001, Fig. 1G, Additional file 2: 
Fig. S3A and Additional file 1: Table S5). FAM83A over-
expression in normal breast tissues was associated with 
parity (p < 0.001), tobacco use (p = 0.01), and family his-
tory of BC (p = 0.02) (Additional file 1: Table S6). On the 
contrary, NEK2 staining showed no difference in pro-
tein levels between the two groups (Fig.  1G). No differ-
ence in Ki67, estrogen receptor alpha (ERα), FOXA1, and 
GATA3 staining between high- and average-risk breasts 
was observed (Additional file 2: Fig. S3B and Additional 
file  1: Table  S5). This data shows that FAM83A expres-
sion changes are specific to breasts of women at high risk 
of developing BC.

Genome‑wide DNA methylation analysis reveals 1698 
aberrant DNA methylation sites in normal breast tissue 
of high‑risk women
With the goal of identifying alterations in regulatory 
regions leading to BC susceptibility, we performed a 
methylome analysis using the MethylCap-seq approach. 
Differential analysis of the methylated regions detected 
in the breasts from average-risk women and those from 
women at high risk of cancer revealed a wide chromo-
somal distribution of the epigenetic alterations (Fig. 2A). 
DNA methylation changes with a ∆Z ≥ 1 (hypermethyl-
ated) or ≤ -1 (hypomethylated) were selected. We iden-
tified 1698 regions methylated that differentiate the 
breast tissue of high-risk women from that of women at 
average risk (FDR ≤ 5%), mapping to 1115 unique genes 

(Additional file 1: Table S7). Neither FAM83A or NEK2 
genomic loci were found among the regions affected 
by BC risk-related DNA aberrations, suggesting that an 
alternative process than DNA methylation may regu-
late their expression. The twenty most hypermethyated 
and hypomethylated regions are shown in Fig.  2B and 
Table  2. Interindividual variability in DNA methylation 
can be observed within each experimental group. Among 
the detected DNA methylation changes, 98.9% consisted 
of hypermethylated loci (p = 9 ×  10− 8; Fig.  2C). More 
than 90% of hypermethylated loci localized in regulatory 
regions including the promoter, untranslated region, and 
introns, whereas only 41% of hypomethylated loci local-
ized in these regions (Fig. 2C).  Hypomethylated regions 
were found predominantly in the gene body (59%), a phe-
nomenon that has been linked with the activation in can-
cers of aberrant intragenic promoters that are normally 
silenced [21, 22].

Pathway analysis revealed the involvement of cell adhe-
sion (aka synaptogenesis, p = 1.2E-06), ErbB (p = 3.7E-04) 
and protein kinase A (p = 4.8E-04) signaling pathways 
(Fig. 2D, Additional file 1: Table S8). Notably, one of the 
molecular networks showed ESR2 as the central mol-
ecule (Fig.  2E). Although ESR2 expression decreased 
in high-risk breasts (fold change = 0.82), the intronic 
ESR2 hypermethylation showed no inverse correla-
tion with ESR2 expression (r = -0.03, p = 0.4; Additional 
file  2: Fig. S4A-C). One of the hypomethylated genes, 
MUC1 (∆Z = 1.4, FDR = 1.6E-17) is reported to be aber-
rantly overexpressed in over 90% of breast tumors [23, 
24] (Additional file 2: Fig. S4D). However, no significant 
difference in MUC1 expression was observed between 
high- and average-risk breasts (Additional file  2: Fig. 
S4E). In the analyzed cohort, DNA methylation was not 
highly affected by either racial background or menopau-
sal status of the tissue donors (FDR > 0.05; Additional 
file 1: Table S9). Finally, we found overlap between DNA 
methylation changes in high-risk breasts and breast can-
cer-related DNA methylation signatures such as those 
identified by Saghafinia et  al.(4%, 25/666, [25]), Chen 
et  al.(6%, 10/174, [26]), de Almeida et  al.(9%, 25/285, 
[27]), and Xu et  al. (9%, 37/414, [28]) (Additional file 1: 
Table S10).

DNA methylation and gene expression changes 
in high‑risk breast show a weak correlation
To identify potential epigenetically regulated genes 
linked with BC risk, we performed a Pearson’s correla-
tion test on paired DNA methylation and gene expres-
sion data (Fig. 3). Among the 69 differentially expressed 
genes in Table 1, the expression level of eight genes was 
associated with aberrant intronic DNA methylation, 
including six genes showing a direct correlation (APELA, 
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DIO2, FEZF2, LPAR3, UNC5D, and PRSS51) and two 
genes (PROK2 and SULT1C2) with a negative correla-
tion (Fig. 3A). Furthermore, among the DNA methylation 
changes in Table  2, only the intronic hypermethylation 
of PHACTR1 (∆Z = 1.88, FDR = 1.0E-31) was negat-
evely correlated with PHACTR1 expression (fold 
change = 0.77, FDR = 0.006, r = -0.21) (Fig.  3B). Overall, 
the correlations identified were weak (r: -0.2,-0.5), sug-
gesting that other regulatory events (chromatin modifi-
cations, gene amplification, nucleotide variants), rather 
than DNA methylation aberrations, may be the deter-
minants of the transcriptomic changes observed in the 
high-risk breasts as compared with average-risk breasts.

Age‑related molecular changes in cancer‑free breast 
tissues in relation with cancer risk
Age is the strongest demographic risk factor for most 
human malignancies, including BC. Age-related tran-
scriptome and DNA methylation aberrations were 
investigated on breast tissues cores donated by 35 
women at two separate time points (Additional file  1: 
Table S11). Differential expression analysis (FDR < 0.05) 
between the two donation time points revealed the dys-
regulation of 205 genes involved in LXR/RXR activation 
(p = 7E-04), immune response (p = 2E-03), and senes-
cence (p = 7E-03) (Additional file  1: Tables S12 and 
S13). Among 25 age-related transcriptomic changes 

Fig. 2 Methylome profiling of breast tissues from women at either high- or average risk of breast cancer. A Chromosomal distribution of the DNA 
methylation aberrations observed in high-risk versus average-risk group. B Heatmap of the 20 highest differentially methylated regions in high-risk 
breasts as compared with average-risk breasts at FDR < 0.05. The overlapping gene name is indicated on the left. C Genomic localization (intron, 
coding, promoter or UTR) of the DNA methylation aberrations including regions either hypo- or hyper-methylated in high-risk versus average-risk 
breasts. Data are shown as percentage of each genomic localizaton versus the total number of sites. D Pathway analysis of the genes affected by 
DNA methylation aberrations (FDR < 0.05) in high-risk breasts as compared with breast from women at average risk for breast cancer. E One of the 
molecular networks including the genes affected by DNA hypermethylation
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with a fold change (fc) ≥ 2 and FDR < 0.05  seven genes 
showed the highest expression level and included 
two upregulated genes, CETP (fc=2.4;FDR = 0.04) 
and HP (fc = 2.3; FDR = 0.03), and  five downregu-
lated  genes, SLC5A1 (fc = 0.4; FDR = 0.03), SLCO1A2 

(fc = 0.4; FDR = 0.03), GRIA4 (fc = 0.4; FDR = 0.01), 
IL22RA2 (fc = 0.4; FDR = 0.01), and CHRM1 (fc = 0.4; 
FDR = 0.03) (Additional file  2: Fig. S5). Furthermore, 
age-dependent dysregulation of the following five genes 
was enhanced in breast tissues from high-risk women: 
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Fig. 3 Correlation between degree of DNA methylation and gene expression. A Pearson’s correlation analysis between DNA methylation value 
and expression of the genes found differentially expressed between high- and average-risk breasts. B Pearson’s correlation analysis of the DNA 
methylation and expression of PHACTR1, hypermethylated in the breasts of high-risk women. r is the correlation coefficient and p is pvalue
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NEURL1, USP50, GRIA4, SPDEF, and DNM3 (Fig. 4A). 
Notably, the expression of GRIA4 (r = -0.43, p = 0.04) 
and DNM3 (r = -0.47, p = 0.03) showed a negative cor-
relation with their DNA methylation pattern, thus sug-
gesting a potential epigenetic regulation for these two 
molecules (Fig.  4B). Neither FAM83A or NEK2 were 
found among the genes affected by age-dependent tran-
scriptomic changes.

Age-dependent DNA methylation aberrations 
affected 301 loci corresponding to 280 unique tran-
scripts (Additional file  1: Table  S14). As previously 
reported [29], age-related DNA methylation altera-
tions consisted  predominantly of  hypermethylation 

events (85.4%) and affected the intronic regions 
(Fig.  4C). DNA methylation measurements were pre-
viously used to develop epigenetic biomarkers of 
aging, otherwise known as “DNA methylation age” or 
the “epigenetic clock” [30, 31]. We observed a limited 
overlap between the 301 DNA methylation aberra-
tions and the epigenetic clocks described by Horvath 
et  al.(1.4%, [31]), whereas 73 genes associated with 
the differentially methylated  bins in our dataset over-
lapped with age-associated DNA methylation altera-
tions reported by Johnson et al.(24.2%, [29]) (Fig. 4D). 
Finally, we identified age-related DNA methylation 
aberrations enhanced in high-risk breasts, localized on 

Fig. 4 Age-related transcriptome and DNA methylation changes in healthy breast tissues. A Differentially expressed genes between the first (D1) 
and second (D2) donation time point in the breast tissues from average (blue bars) and high- (orange bars) risk women. Ratio between D2 and D1 
is shown. B Pearson’s correlation test between DNA methylation and transcription of GRIA4 and DNM3 in average- and high-risk breasts at the two 
time points, D1 and D2, C Number of genomic locations (intron, coding regions, promoter, UTR) of the age-related DNA methylation events. N.A.: 
not available. D Venn diagram of the DNA methylation changes associated with age comparing our data set (D2/D1) with Horvath’ epigenetic clock 
(353 CpGs) or Johnson’s age-associated loci (787 CpGs) E Differentially methylated regions between the first (D1) and second (D2) donation time 
point in the breast tissues from average (blue bars) and high- (orange bars) risk women. Ratio between D2 and D1 is shown. *p < 0.05; **p < 0.001
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four genes: PTPRM, SPOCK1, KCNH1, and CFAP43. 
(p < 0.001, Fig. 4E and Additional file 1: Table S14).

Discussion
This study aimed to define the distinct features of cancer-
free breast tissues from women at high risk for breast 
cancer (BC) and, thus, identify molecular markers that 
could potentially screen for women susceptible to can-
cer. We conducted transcriptome and methylome analy-
ses using breast tissue cores donated by healthy women. 
The participants were divided into two cohorts based on 
their risk of developing breast cancer, according to the 
Tyrer-Cuzick lifetime risk assessment score: high-risk 
(≥ 20%) and average-risk (< 20%) [32]. Among the genes 
upregulated in high-risk breast, we identified two prom-
ising markers of BC susceptibility, FAM83A and NEK2. 
Furthermore, when investigating DNA methylation aber-
rations in high-risk breasts, we detected 4–10% overlap 
with cancer-related signatures.

Our transciptomic analysis of high- and average-risk 
breasts revealed significant changes in the expression of 
69 genes (FDR < 0.05). Pathway analysis suggested the 
activation of cell cycle and cell adhesion in the high-risk 
breasts. Furthermore, one of the molecular networks 
including the differentially expressed genes revealed the 
involvement of FOXM1 signaling. FOXM1 itself is upreg-
ulated 1.6 fold in high-risk breasts (p = 0.001). The tran-
scription factor FOXM1 regulates the transcription of 
cell-cycle genes essential for transit from the G1/S phase 
into the G2/M phase, such as cyclin A2, JNK1, ATF2, 
and CDC25A phosphatase as well as genes critical for 
chromosome segregation and cytokinesis [33]. FOXM1 
is overexpressed and plays  a critical role in tumorigen-
esis, metastasis, and drug resistance in a broad range of 
human cancer types, such as lung, gastric, and breast 
cancers [16]. Compounds targeting FOXM1 expression 
or activity are under investigation [16]. Our results sug-
gest that the transcriptional dysregulation detected in 
high-risk breasts may be driven by FOXM1.

Two genes, FAM83A and NEK2, both upregulated 
in high-risk breast, showed a high Oncoscore (75.5 and 
61.4, respectively), and have been reported amplified 
in BC. FAM83A is the smallest member of the eight-
member FAM83 family of proteins, that share a con-
served amino-terminal Domain of Unknown Function 
(DUF1669 domain)  [34]. It was identified based on its 
transforming potential [35–37]. FAM83A upregula-
tion has been detected in multiple human tumor types, 
including breast, lung, pancreatic and cervical cancer 
[37–44]. Lee et al. [45, 46] revealed the ability of FAM83A 
to confer resistance to epidermal growth factor receptor- 
tyrosine kinase inhibitors (EGFR-TKIs) through interac-
tions with c-RAF and PI3K p85 in BC. The authors also 

showed that BC patients with high FAM83A expression 
had a worse prognosis. FAM83A depletion suppressed 
proliferation and invasiveness    in vitro as well as tumor 
growth  in vivo [36]. Based on the aforementioned stud-
ies, FAM83A is considered a candidate oncogene. Our 
findings suggest that FAM83A may be one of the first 
molecules dysregulated in cancer transformation and 
thus a marker of BC susceptibility. The functional role of 
FAM83A in BC inititation is currently being investigated 
by our team. Moreover, our DNA methylation data, in 
agreement with previous literature, suggest that FAM83A 
overexpression is mainly driven by genomic amplifica-
tion rather than epigenetic regulation [47, 48]. Additional 
studies such as dual color fluorescence in situ hybridiza-
tion and deep whole genome sequencing of DNA from 
breast tissues of high-risk women are required to support 
this hypothesis.

The NIMA-related kinase 2 (NEK2) protein belongs 
to a family of serine/threonine kinases, which have a 
role in mitotic progression by initiating the separation 
of centrosomes [49]. NEK2 overexpression was previ-
ously reported in BC as result of gene amplification [47, 
50]. NEK2 depletion blocks cell cycle progression and 
tumor cell growth, making it an ideal therapeutic target 
[51]. Notably, FOXM1 is reported to both bind NEK2 
promoter and interact with NEK2  [52, 53]. Our study 
further suggests a role of NEK2 dysregulation in breast 
carcinogenesis. However, we did not observe changes in 
NEK2 protein levels in breast tissues of high-risk women, 
suggesting a disconnect between mRNA and protein lev-
els, which is not uncommon, due to a more complex reg-
ulatory pathway. Our observations indicate that,  while 
increased NEK2 mRNA expression may be indicative of 
BC risk, post-transcriptional events may bring NEK2 to 
its basal protein level. NEK2 may have a more critical 
functional role in  a late phase of BC development. Fur-
ther investigation of the role of NEK2 in breast carcino-
genesis is needed.

We observed DNA methylation changes in high-risk 
breasts, consisting mostly of hypermethylation (98.8%) 
in the intronic regions (88%). Previous studies reported 
aberrant hypermethylation in normal breast tissue adja-
cent to the tumor [54]. Hypermethylation in specific gene 
promoters is indeed linked to carcinogenesis through 
transcriptional silencing of tumor suppressor genes or 
regulatory regions within the genome, leading to dys-
regulation of cell growth, cancer initiation and progres-
sion [55–57]. We identified a 4–10% overlap between 
methylome aberrations in high-risk breasts and previ-
ously reported cancer-related signatures [25–28]. The 
limited overlap may be linked to the different technical 
approaches (Methyl-capture vs Infinium HumanMeth-
ylation450  array) but may also suggest that most of 
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the cancer–related epigenetic marks are newly acquired 
during cancer initiation rather than being imprinted into 
the genome. Moreover, neither FAM83A or NEK2 was 
found among the genes affected by DNA methylation, 
suggesting that a different regulatory process may con-
trol their transcription. Although the expression  of epi-
genetic modifiers such as DNMTs remain unaffected, we 
detected the upregulation in high-risk breasts of HASPIN 
(fc = 1.7; FDR < 0.005), a serine/threonine kinase involved 
into the phosphorylation of the histone H3 during mito-
sis [58], suggesting that other genetic and epigenetic 
mechanisms rather than DNA methylation may drive the 
transcriptomic aberrations detected in high-risk breasts.

Age is the strongest demographic risk factor for most 
human malignancies, including BC [59]. The limited size 
of our age-related  cohort (N = 35) prevented us from 
subdividing the subjects by age at tissue donation. Nev-
ertheless, we identified age-related transcriptomic aber-
rations enhanced in high-risk breasts including GRIA4 
and DNM3, which resulted as  potentially epigenetically 
regulated. In terms of DNA methylation aberrations, we 
found a limited overlap between the age-related DNA 
methylation changes from our cohort and the  epige-
netic clock from Hovarth et  al. [31] (Additional file  1: 
Table S14). However, a 24.2% overlap of our dataset with 
age-related DNA methylation aberrations described 
by Johnson et al. [29] was detected. The limited overlap 
is probably due to the different platform used for DNA 
methylation detection (Infinium Human Methylation 450 
array vs Methyl-Cap-seq) and the type of analysis (epi-
thelium-specific deconvolution vs whole tissue) [29, 31]. 
Notably, we identified specific age-related DNA meth-
ylation changes, located on PTPRM, KCNH1, SPOCK1, 
CFAP43 gene region, enhanced in the high- versus aver-
age-risk breasts.

This study harbors some limitations: the relatively small 
sample size prevented us from investigating in details 
cancer-related variables such as racial background. The 
selection of normal breast tissue cores with high content 
in epithelial compartment limited the number of avail-
able samples (Additional file 2: Fig. S6). Outcome data for 
the women at high risk for BC is not available at this time; 
however, this cohort is under an ongoing annual medi-
cal follow up. Because of the faster processing time and 
smaller cost, we performed whole tissue analysis instead 
of the more epithelium-specific laser microdissection or 
single-cell analysis. This limits the compartment specific-
ity of the data but generates a more comprehensive view 
of the molecular features of the entire breast tissue core. 
Further deconvolution analysis may overcome this limi-
tation [60, 61].

Conclusions
The present study reveals transcriptomic and epigenetic 
aberrations linked with BC risk and, thus, provides an 
avenue for deciphering the functional relevance of genes 
involved in BC development. We defined a panel of 1698 
methylated regions that could be used to predict BC 
risk. Moreover, among the transcriptional targets here 
identified, FAM83A showed an increase in both mRNA 
and protein expression in the breast of women at high 
BC risk, and therefore may represent a novel tissue bio-
marker of BC risk.

Methods
Study cohorts
Breast specimens were obtained from the Susan G. 
Komen Tissue Bank at the IU Simon Comprehensive 
Cancer Center (KTB) and donated voluntarily upon 
informed consent by healthy women. Subjects were 
recruited under a protocol approved by the Indiana Uni-
versity Institutional Review Board (IRB protocols num-
ber 1011003097 and 1607623663). Subject demographics 
and breast cancer (BC) risk factors were collected using a 
questionnaire administered by the KTB and summarized 
in Additional file  1: Table  S1, S5 and S11. Breast tissue 
cores are collected by using a needle biopsy as previously 
described [14]. The study cohort consisted of two groups: 
1) For the transcriptome and methylome analyses, 146 
women (median age: 39  years) were selected based on 
the lack of clinical and histological breast abnormalities 
and high content in breast epithelial compartment (cel-
lularity > 40%). Germline mutation status of the subjects 
was obtained from KTB. Data were retrieved from the 
LifeOmic’s Precision Health Cloud platform (https:// 
lifeo mic. com/ produ cts/ preci sion- health- cloud/). Nine 
established breast cancer–predisposition genes (BRCA1, 
BRCA2, PALB2, ATM, CHECK2, BARD1, RAD51C, 
RAD51D, CDH1) were evaluated for variants identi-
fied as “pathogenic” or “likely pathogenic” in the Clin-
Var database (https:// previ ew. ncbi. nlm. nih. gov/ clinv ar/) 
(Additional file 1: Table S1) [2, 3].

Thirty-five of these 146 women, including 10 at high 
risk and 25 at average risk for BC, donated their breast 
tissue at two time points at intervals from 1–10  years 
(mean: 3.2) between the tissue donations (Fig.  1A and 
Additional file  1: Table  S11). 2) In a second analysis, 
paraffin-embedded breast tissue blocks related to 395 
healthy women were obtained from the KTB and used 
to generate tissue microarrays. The cohort included 287 
Caucasian, 66 African American, 49 Asian, with age 
ranging from 18 to 61 (Additional file 1: Table S5).

https://lifeomic.com/products/precision-health-cloud/
https://lifeomic.com/products/precision-health-cloud/
https://preview.ncbi.nlm.nih.gov/clinvar/
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Breast cancer risk assessment
Lifetime risk of developing BC was estimated by using 
the Tyrer-Cuzick risk score (IBISv8) [32] and a thresh-
old of 20% to separate high- (≥ 20%) from average-risk 
(< 20%) individuals. The Tyrer-Cuzick model was selected 
over the other risk estimation tools for its accuracy and 
inclusion of young subjects [62].

Tissue processing and nucleic acid extraction
To limit stromal contamination, only breast tissue sam-
ples abundant in epithelial compartment (cellular-
ity > 40%) were selected and processed. Total DNA and 
RNA were isolated from fresh frozen breast tissue biop-
sies (80-150  mg) using AllPrep DNA/RNA/miRNA kit 
(Qiagen). Tissues were homogenized by using 2 ml pre-
filled tubes containing 3  mm zirconium beads (Bench-
mark Scientific, cat.# D1032-30), 350  µl Lysis Buffer 
and 2-Mercaptoethanol, and BeadBug 6 homogenizer 
(Benchmark Scientific) in a cold room at the following 
conditions: 4000  rpm for 45  s was repeated twice with 
90  s rest time. The concentration and quality of total 
RNA and DNA samples were first assessed using Agilent 
2100 Bioanalyzer. A RIN (RNA Integrity Number) and 
DIN (DNA integrity number) of six or higher is required 
to pass the quality control.

Whole transcriptome analysis
cDNA library was prepared using the TruSeq Stranded 
Total RNA Kit (Illumina) and sequenced using Illu-
mina HiSeq4000. Data included 146 paired-end fastq 
sequence libraries (raw read length: 38 × 2). Reads were 
adapter trimmed and quality filtered using Trimmomatic 
ver. 0.38 (http:// www. usade llab. org/ cms/? page= trimm 
omatic) setting the cutoff threshold for average base qual-
ity score at 20 over a window of 3 bases. Reads shorter 
than 20 bases post-trimming were excluded. About 94% 
of the reads have both the mates passing the quality fil-
ters. Cleaned reads mapped to Human genome reference 
sequence GRCh38.p12 with gencode v.28 annotation, 
using STAR version STAR_2.5.2b [63]. Only samples with 
about 99% of the cleaned reads aligned to the genome 
reference. Differential expression analysis was performed 
using DESeq2 ver. 1.12.3 (https:// bioco nduct or. org/ packa 
ges/ relea se/ bioc/ html/ DESeq2. html). Counts table con-
taining mapped read counts for each gene, to be used 
as input for DESeq2 was generated using featureCounts 
tool of subread package (https:// doi. org/ 10. 1093/ bioin 
forma tics/ btt656). Alternatively, we ran t-tests compar-
ing the normalized read counts for the set of replicates 
from High risk samples to those for the set of replicates 
from Average risk samples. The normalized read counts 
were obtained from the DESeq2 run described above. 

The pvalues from the t-test were corrected for multiple 
testing using Benjamini–Hochberg method.

DNA methylation analysis
Library was generated by using MethylCap Library 
Kit (Diagenode, Denville NJ, US) according to the 
manufacturer′s protocols followed by single-end 75-bp 
sequencing on Illumina Nextseq4000. Internal controls 
and duplicate samples were used to account for any batch 
effect and technical artifact. The data comprises of 146 
paired end read libraries in FASTQ format. These librar-
ies represent replicates for two samples—High risk (68 
libraries) and Average risk (78 libraries). The libraries 
were sequenced across multiple runs and the combined 
read counts for each library were generated. Reads were 
adapter trimmed and quality filtered using Trimmo-
matic 0.38 (http:// www. usade llab. org/ cms/? page= trimm 
omatic) with the cutoff threshold for average base quality 
score set at 20 over a window of 3 bases. Reads shorter 
than 20 bases post-trimming were excluded. Approxi-
mately, 96% of the sequenced reads passed the quality fil-
ters to be considered "cleaned" reads. This quality control 
reduced the number of samples to 57 high- and 55 aver-
age-risk. Cleaned reads were mapped to Human genome 
reference GRCh38.p12 using BWA ver. 0.7.15 [64]. Insert 
sequences were imputed from the concordantly mapped 
read pair alignments. More than 95% of the cleaned 
read pairs were concordantly mapped. A previously 
described differential methylation analysis using either 
Zratio or ΔZ [65, 66] was applied to the current methyl-
capture dataset with a slight improvisation on the valida-
tion of the significance of differential methylation. For 
any given local bin of a given width on the genome, the 
method compares across samples, variation in dedupli-
cated insert coverage distribution quantified as the bin’s 
z-score with respect to a larger genome region containing 
the bin. For this analysis, we used local non-overlapping 
bins with a fixed width of 250 bp with their z-scores com-
puted relative to 25  KB regions. Z-score is the number 
of standard deviations by which the bin coverage varies 
from the larger region’s mean coverage. A significant dif-
ference in Z-scores, calculated as either as ΔZ or Zratio 
between the samples would indicate potential differen-
tial methylation for that bin, as previously described [67]. 
The analysis identified 159,438 bins, each 250 bp wide, to 
be potentially differentially methylated between High risk 
and Average risk samples with z-ratios or ΔZ significant 
at 5% FDR and p-values from t-test ≤ 0.05. Based on posi-
tional overlap, these bins were annotated using annota-
tion from gencode v28.

http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic


Page 14 of 17Marino et al. Clinical Epigenetics           (2022) 14:21 

Data analysis
Ingenuity Pathways Analysis (IPA, Qiagen, Redwood 
City, CA) was used for canonical pathway and molecular 
network analyses [68]. Publicly available transcriptomic 
data from primary and immortalized breast epithelial 
cells were obtained from GEO (https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc= GSE10 8541) [20]. Analy-
sis of The Cancer Genome Atlas (TCGA) was performed 
by interrogating both cBioPortal (https:// www. cbiop 
ortal. org/) and UALCAN (http:// ualcan. path. uab. edu/) 
databases [69]. Copy number variations (CNV) analysis 
was obtained from the interrogation of the Molecular 
Taxonomy of Breast Cancer International Consortium, 
METABRIC [17, 18]. Oncoscore was used to rank genes 
according to their association with cancer, based on 
the available scientific literature (http:// www. galseq. 
com/ next- gener ation- seque ncing/ oncos core- softw are/; 
accessed on 3/31/2021) [19].

Primary breast epithelial cells and immunofluorescence
Primary breast epithelial cells were generated from cryo-
preserved breast tissue cores obtained from the KTB as 
previously described [14, 20]. Immunofluorescence stain-
ing was performed as previously described [14]. Briefly, 
5000 cells were cultures overnight into each well of an 8 
well-chamber slide (BD Biosciences, San Jose, CA) and 
fixed with acetone: methanol (1:1) at -20  °C for 10 min. 
After washing and blocking (PBS1X, 5% normal goat 
serum, 0.1%TritonX-100) steps, cells were incubated 
with primary either rabbit anti-vimentin (Cell Signaling, 
D21H3, 1:100) or mouse anti-E-cadherin antibody  (Cell 
Signaling, 14472, 1:50) overnight. Upon three washes 
with PBS, cells were incubated with secondary antibod-
ies (goat anti- mouse Alexa Fluor 568 or goat anti-rabbit 
Alexa Fluor 488; Thermo Fisher Scientific, 1:500) for 1 h 
at room temperature. After three washes with PBS, the 
coverslide was mounted using DAKO fluorescent mount-
ing medium (S3023 Agilent, Santa Clara, CA) and the 
staining was visualized using a fluorescent microscope 
(Eclipse TS100, Nikon Instruments inc, Melville, NY).

Quantitative real time polymerase chain reaction (qPCR)
Total RNA was extracted from cells using AllPrep DNA/
RNA/miRNA kit (Qiagen). Reverse transcription was 
performed using SuperScript™ IV VILO™ Master Mix 
(Invitrogen cat#: 11756050) according to the manu-
facturer’s instructions. qPCR was performed using 
the TaqMan™ Universal PCR Master Mix (Applied Bio-
systems, cat# 4304437) and the following TaqMan Gene 
Expression Assays (Applied Biosystems/Thermo Fisher 
Scientific, Grand Island, NY): ACTB (Hs99999903_m1), 
FAM83A (Hs04994801_m1), and NEK2 (Hs00601227_
m1). qPCR reactions were run on a StepOne Plus 

Real-Time PCR System (Applied Biosystems/Thermo 
Fisher Scientific), and data analyzed using the StepOne 
Software v2.3 (Applied Biosystems). Relative quantifica-
tion was calculated with reference to ACTB and analyzed 
using the comparative  CT method. qPCR experiments 
were performed in triplicate.

Tissue microarray (TMA) immunohistochemistry (IHC) 
analysis
Normal breast tissues microarrays from 683 women 
were generated from paraffin-embedded blocks 
obtained from the KTB at the Tissue procurement & 
Distribution core of the IU Simon Comprehensive Can-
cer Center. Due to loss of material during TMA con-
struction and processing,   only  58% (n = 395) of these 
tissue biopsies were interpretable. TMA was analyzed 
with the following antibodies FAM83A (Protein Tech 
20618-1-AP, 1:100), NEK2 (MyBioSource MBS9607934, 
1:100), Ki67 (DAKO IR 626, ready-to-use), estrogen 
receptor alpha (ERα) (clone:EP1, DAKO IR 084, ready-
to-use), FOXA1 (Santa Cruz Biotechnology sc-6553, 
1:100), and GATA3 (Santa Cruz Biotechnology sc-268, 
1:50) [70]. IHC was performed in a Clinical Laboratory 
Improvement Amendments (CLIA)-certified histopa-
thology laboratory and evaluated by 3 pathologists in a 
blinded manner. Quantitative measurements generat-
ing positivity and H-score were obtained via the auto-
mated Aperio Imaging system using an FDA-approved 
algorithm [71].

Statistical analysis
Comparisons between groups were done using either 
Student’s t-test or nonparametric Mann–Whitney test 
on GraphPad Prism 9. Difference between groups is con-
sidered significant at p-values < 0.05. Pearson’s correla-
tion analysis was performed to determine the strength 
and direction of the linear relationship between DNA 
methylation and transcription for given targets. Only 
correlations with a p < 0.05 are shown. For transcrip-
tome and methylome data, differential analysis was 
performed using DESeq2 and the previously described 
Z-score method [65, 66], respectively. P-values < 0.05 
are considered significanct and are corrected for mul-
tiple testing using the Benjamini–Hochberg False Dis-
covery Rate (FDR) algorithm. For the tissue microarrays 
analysis nonparametric Wilcoxon rank-sum tests were 
used for unpaired analyses, as positivity and H-scores 
were not normally distributed, whereas nonparametric 
Wilcoxon signed-rank tests were used for paired analy-
ses. The statistical software SAS version 9.4 (SAS Insti-
tute Inc., Cary, NC) was used to complete the statistical 
analyses with  p < 0.05 considered significant. Baseline 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108541
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108541
https://www.cbioportal.org/
https://www.cbioportal.org/
http://ualcan.path.uab.edu/
http://www.galseq.com/next-generation-sequencing/oncoscore-software/
http://www.galseq.com/next-generation-sequencing/oncoscore-software/


Page 15 of 17Marino et al. Clinical Epigenetics           (2022) 14:21  

demographic characteristics were summarized as median 
(range) for continuous variables and number and per-
centage for categorical variables. Comparisons between 
groups were done using Chi-square tests (or Fisher’s 
Exact test, where appropriate) for categorical variables, 
or Wilcoxon test for continuous variables.
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