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Abstract 

Background:  Lung cancer is one of most common cancers worldwide, with a 5-year survival rate of less than 20%, 
which is mainly due to late-stage diagnosis. Noninvasive methods using 5-hydroxymethylation of cytosine (5hmC) 
modifications and fragmentation profiles from 5hmC cell-free DNA (cfDNA) sequencing provide an opportunity for 
lung cancer detection and management.

Results:  A total of 157 lung cancer patients were recruited to generate the largest lung cancer cfDNA 5hmC dataset, 
which mainly consisted of 62 lung adenocarcinoma (LUAD), 48 lung squamous cell carcinoma (LUSC) and 25 small 
cell lung cancer (SCLC) patients, with most patients (131, 83.44%) at advanced tumor stages. A 37-feature 5hmC 
model was constructed and validated to distinguish lung cancer patients from healthy controls, with areas under the 
curve (AUCs) of 0.8938 and 0.8476 (sensitivity = 87.50% and 72.73%, specificity = 83.87% and 80.60%) in two distinct 
validation sets. Furthermore, fragment profiles of cfDNA 5hmC datasets were first explored to develop a 48-feature 
fragmentation model with good performance (AUC = 0.9257 and 0.822, sensitivity = 87.50% and 78.79%, specific-
ity = 80.65% and 76.12%) in the two validation sets. Another diagnostic model integrating 5hmC signals and fragment 
profiles improved AUC to 0.9432 and 0.8639 (sensitivity = 87.50% and 83.33%, specificity = 90.30% and 77.61%) in the 
two validation sets, better than models based on either of them alone and performing well in different stages and 
lung cancer subtypes. Several 5hmC markers were found to be associated with overall survival (OS) and disease-free 
survival (DFS) based on gene expression data from The Cancer Genome Atlas (TCGA).

Conclusions:  Both the 5hmC signal and fragmentation profiles in 5hmC cfDNA data are sensitive and effective in 
lung cancer detection and could be incorporated into the diagnostic model to achieve good performance, promot-
ing research focused on clinical diagnostic models based on cfDNA 5hmC data.
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Background
Lung cancer is the most common cause of cancer death 
worldwide [1], causing approximately 1.6 million deaths 
annually, with a low five-year survival rate of approxi-
mately 15.9% due to difficult diagnosis at an early stage 
[2]. Small cell lung cancer (SCLC), a high-grade neu-
roendocrine carcinoma that accounts for 15% of all 
lung cancers, and non-small cell lung cancer (NSCLC), 
accounting for approximately 85% of lung cancers, are 
the two main subtypes [3]. Although low-dose computed 
tomography (LDCT) has been demonstrated to decrease 
mortality in high-risk groups in some trial research [4, 5], 
low specificity and radiation exposure have become the 
main reasons for underutilization [6, 7]. Several stud-
ies have investigated proteins, gene expression levels 
or microRNAs [8–12] as promising biomarkers in early 
detection, but few have been approved for routine clini-
cal screening due to the high false-positive rate [2, 13]. 
Therefore, there is an urgent need for the development of 
noninvasive and sensitive approaches.

5-hydroxymethylation of cytosine (5hmC), which 
results from 5-methylcytosine (5mC) oxidation by the 
ten-eleven translocation proteins, is a novel epigenetic 
DNA modification [14]. Previous studies have revealed 
that 5hmC modification was enriched in gene bodies, 
promoters and enhancers, and was associated with gene 
expression levels [15, 16]. Aberrant methylation and 
hydroxymethylcytosine at the 5-position of cytosine are 
two main forms of epigenetic alterations contributing 
to tumor initiation and progression [17–20]. Abnormal 
5hmC modification frequently appears in many solid 
tumors compared to corresponding normal tissues and 
could be identified as features of carcinogenesis [21]. The 
diagnostic and prognostic value of 5-hydroxymethylation 

of cytosine (5hmC) in cfDNA have been reported in sev-
eral human cancers [16, 22–26], which highlighted the 
potential value of 5hmC in cancer diagnostics. Zhang 
et  al. reported the characteristics of the genome-wide 
5hmC signature and its diagnostic potential in NSCLC 
patients [23]. However the small sample size might 
limit the scope of related research. Also the genome-
wide 5hmC profile of SCLC has not yet been reported. 
SCLC tends to grow and spread faster than NSCLC. 
Approximately, 70% of patients with SCLC [27] will 
have cancer that has already spread at the time they are 
diagnosed, with macrometastases commonly found in 
the lymph nodes, brain, liver, and bones. Thus, there is 
an urgent clinical need for the development of noninva-
sive approaches to improve SCLC early detection and 
ultimately the general population. And the potency and 
reliability of cell-free 5hmC as a diagnostic biomarker for 
SCLC remain elusive.

Plasma cfDNA is known to be highly fragmented 
[28]. Generally, cfDNA circulates in fragments ranging 
between 120 and 220  bp, commonly showing a promi-
nent mode at 167  bp [29]. CfDNA fragments carrying 
tumor-mutated alleles were observed shorter than size 
of nucleosomal DNA (multiples of 167  bp) and size of 
cfDNA fragment with no tumor-mutated alleles [29, 30]. 
The pattern of different cfDNA fragment sizes could be 
defined as fragmentation, a feature with potential diag-
nostic power. Recent studies [29–31] depicted a large 
number of abnormalities in the cfDNA of cancer patients 
through genome-wide analysis of fragmentation pat-
terns. Methods based on fragmentation, such as DELFI 
(DNA evaluation of fragments for early interception) 
[31], were developed to increase sensitivity of nonin-
vasive detection of cancer, which to some extent could 
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remedy shortcomings of methods based on mutations 
in circulating tumor DNA [32], i.e., individuals with can-
cer may be missed by targeted high coverage sequenc-
ing. However, in these researches, fragmentation profiles 
were produced from low coverage WGS. Investigation of 
the size distribution in 5hmC cfDNA datasets remains to 
be explored. We wondered whether fragmentation pro-
files were also available in 5hmC-enriched data and could 
serve as a diagnostic method to improve detection power 
of 5hmC cfDNA datasets.

In this study, we profiled 5hmC signatures and frag-
mentation patterns in cfDNA from a cohort of 157 lung 
cancer patients and 189 healthy individuals by using 
the 5hmC-Seal approach to investigate their diagnostic 
potential. Our results revealed that 5hmC features and 
size information obtained from 5hmC cfDNA data of 
lung cancer patients exhibited distinct patterns compared 
to those obtained from the cfDNA of the healthy con-
trols. Using the elastic-net regression model, three sensi-
tive and reliable models (5hmC-model, fragment-model 

and integrated-model) were trained for cancer detection, 
and all models performed well in an external validation 
set from Zhang et  al. [23]. In particular, the integrated 
model remains stable in different stages and lung cancer 
subtypes. Corresponding genes of several 5hmC mark-
ers were found to be associated with overall survival (OS) 
and disease-free survival (DFS) in gene expression data 
from TCGA.

Results
Characteristics of samples and cfDNA 5hmC sequencing 
data
To gain a comprehensive understanding of genome-wide 
5hmC modifications and fragmentation related to lung 
cancer, we recruited 189 healthy individuals and 157 Chi-
nese-descent lung cancer patients in our study (Fig.  1a, 
Table 1), which mainly included 62 lung adenocarcinoma 
(LUAD), 48 lung squamous cell carcinoma (LUSC), and 
25 small cell lung cancer (SCLC) patients. Lung can-
cer cohorts were revealed by hematoxylin and eosin 

A B

SCLC

LUSC

LUAD

Fig. 1  Overview of analysis pipeline and sample information. A The workflow chart of the study design. A total of 346 subjects, including 189 
healthy volunteers and 157 lung cancer patients, were enrolled in analysis. 5hmC signals and fragmentation profiles were investigated in cfDNA 
5hmC dataset. An integration model was finally constructed by combining cfDNA 5hmC features and fragmentation profiles for lung cancer 
diagnosis. B Representative images of hematoxylin and eosin (HE) staining in different histological types of lung cancers. Scale bar, 200 μm
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staining (Fig.  1b). A total of 83.44% were at advanced 
stages (TNM stages III 49 patients and IV 82 patients). 
Detailed information regarding subject characteristics is 
provided in Table 1.

5hmC-Seal data of circulating cell-free DNA from par-
ticipants were obtained and qualified for analysis. We 
demonstrated the highly specific enrichment of 5hmC 
fragments in our data by showing an average capture effi-
ciency of 97.43% over reads mapping to 5hmC spike-in 
DNA (Additional file  1: Figure S1A). The median final 
unique non-duplicate mapping rate of the libraries was 
0.81, and the median total mapped read pairs was ~ 19 M 
(Additional file 2: Table S1).

To delineate the genome-wide distribution patterns 
of cfDNA 5hmC, we defined 201 bp peaks as previously 
described for each sample [33]. Significant differences 
were observed between peak numbers of lung cancer 
samples and healthy controls (P value = 1.50E−2, mean 
peak number: 295,284 peaks for lung cancer samples, 
312,799 peaks for healthy samples, Additional file 1: Fig-
ure S1B). Metagene analysis of gene bodies (± 3 kb) and 

enhancers showed that normalized read density was 
higher in lung cancer samples than in healthy controls 
(Additional file 1: Figure S1C, D). The genome-wide anal-
ysis of 5hmC peaks showed that 5hmC exhibited a pref-
erence for enrichment on CDS, 5′UTRs, 3′ UTRs, exons, 
and promoters while depletion in intergenic regions, 
which is consistent with previous studies [16, 23] (Addi-
tional file 1: Figure S1E). The above results indicated the 
robustness of our methods and the nature of the 5hmC 
distribution in cfDNA.

Prediction of lung cancer by 5hmC biomarkers in cfDNA
Distinct cell-free 5hmC profiles were reported between 
NSCLC patients and healthy controls [23]. Most lung 
cancer samples could not be distinguished from healthy 
samples based on all 5hmC signal data (Additional file 1: 
Figure S2A). And subtypes of lung cancer samples could 
not be separated from each other (Additional file 1: Fig-
ure S2C). We further confirmed that batch effects were 
negligible, even after removing batch effects with limma 
[34] (Additional file  1: Figure S2B,D). To gain a global 
perspective of cell-free 5hmC differences between lung 
cancer patients at advanced tumor stages and healthy 
controls, we first compared 5hmC profiles from cfDNA of 
the two cohorts to identify differentially modified 5hmC 
loci. In total, 3718 differentially modified 5hmC loci were 
detected (P value < 0.001, adjusted P value < 0.05, absolute 
value of log2 fold change >  = 0.5), accounting for 0.3% of 
total loci (3718/974198), and these loci could separate 
most lung cancer patients from healthy controls (Fig. 2a, 
b). In order to associate biological functions to differ-
entially modified 5hmC regions, we performed biologi-
cal process enrichment analysis with GREAT (Genomic 
Regions Enrichment of Annotations Tool) [35]. GREAT 
enrichment analysis of these 3718 loci revealed 29 sig-
nificantly enriched BP terms, among which endothelial 
cell fate commitment and negative regulation of DNA-
dependent DNA replication were two representatives 
(Additional file 3: Table S2). Endothelial cells play a major 
role in the creation of supplemental blood vessels. This 
process is usually "hijacked" by cancer, which depends 
on neo-angiogenesis and vasculogenesis for growth and 
invasion [36]. Abnormal regulation of DNA replication 
also contribute to initiate uncontrolled growth of can-
cer cells [37]. The 5hmC changes of regions related to 

Table 1  Clinicopathological characteristics of all the participants

Clinicopathological characteristics of all the participants

Lung cancer 
group (N = 157)

Healthy 
group 
(N = 189)

P value

Age, average (min, max) 62.3(37,80) 54.8(22,80)  < 0.0001

Gender, n (%)  < 0.0001

Male 106(67.5%) 55(29.1%)

Female 51(32.5%) 118(62.4%)

NA 0 16(8.5%)

TNM, n (%) /

I 3(1.91%)

II 9(5.73%)

III 49(31.21%)

IV 82(52.23%)

NA 14(8.92%)

Histology

LUAD 62(39.49%)

LUSC 48(30.57%)

SCLC 25(15.92%)

Others 22(14.01%)

Fig. 2  Cell-free 5hmC for detection of lung cancer. T-SNE plot (A) and heatmap (B) of 189 lung cancer patients and 157 healthy volunteers based 
on 3718 differentially hydroxymethylated peaks (DhMPs). Hierarchical clustering was performed across peaks and samples. C Performance of 5hmC 
model in the training set, validation set and public cfDNA 5hmC data retrieved from Zhang et al. containing 66 NSCLC patients and 67 healthy 
controls. D Boxplot of the wd-scores calculating with 5hmC model for stage I-IV lung cancer samples. E Genome Browser view of the 5hmC peaks 
in HAUS3 gene in chromosome 4 shows a marker locating within the gene (boxed region: chr4: 2239149–2239350). AUC, area under the curve; 
wd-score, weighted diagnosis score

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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endothelial cell fate commitment and DNA replication 
might provide insights into lung cancer development. We 
then trained binomial regression models with elastic-net 
regularization through a fivefold cross-validation model 
selection scheme to develop a diagnostic model for dis-
tinguishing lung cancer patients from healthy controls 
using a randomly sampled training set consisting of 109 
lung cancer patients and 127 healthy controls (Additional 
file 1: Figure S2C). With alpha = 0.2, our method selected 
37 5hmC biomarkers with nonzero weight, which 
appeared in at least 4 crosses, to construct a diagnostic 
mode. It showed a good performance in the validation set 
(AUC = 0.8938, sensitivity = 87.5%, specificity = 83.87%), 
consisting of 48 lung cancer patients and 62 healthy con-
trols. To further validate the robustness of our model, we 
utilized 5hmC data from NSCLC released by Zhang et al. 
[23] as an external validation set. The diagnostic perfor-
mance was in agreement with our initial discovery cohort 
findings, and the AUC was 84.76% (sensitivity = 72.73%, 
specificity = 80.60%) (Fig. 2c). These results demonstrated 
and highlighted the reliability of our diagnostic model 
based on cfDNA 5hmC profiles. In addition, the 5hmC 
weighted diagnosis score (wd-score) computed based on 
the 5hmC diagnostic model showed no significant differ-
ences among lung cancer patients with variable tumor 
stages (Fig. 2d, Additional file 6: Table S5). The diagnos-
tic model consisted of 37 5hmC loci that were distrib-
uted mostly in gene bodies except one in the promoter 
region (Additional file 4: Table S3). For example, a 5hmC 
marker with elevated signals in lung cancer patients was 
distributed in the gene body region of HAUS3 (Fig. 2e), 
a protein-coding gene that plays a key role in cytokinesis 
and mitosis.

Fragmentation profiles from cfDNA 5hmC data 
for the detection of lung cancer
Usually, fragmentation profiles are based on low-cover-
age WGS of isolated cfDNA [30]. We speculated that the 
abnormal distribution of short-long cfDNA fragments 
could also occur in 5hmC-enriched cfDNA sequencing 
data, so the same method [30] was employed to explore 
the potential application of fragmentation profiles from 
cfDNA 5hmC data.

We first investigated fragment size distribution for 
both lung cancer patients and healthy controls. As 
expected [38, 39], there were more short fragments in 
lung cancer patients than in healthy samples (Fig.  3a), 
and the average lengths of  fragments of 5hmC-enriched 
cfDNA from cancer patients were smaller than those 
from healthy individuals (168.4968  bp and 168.5556  bp, 
respectively). As previously described [31], quality-
controlled mapped reads were analyzed in non-overlap-
ping 5-megabase (Mb) windows to create genome-wide 

patterns. Within each window, we examined the short, 
long and total 5hmC-enriched cfDNA fragments and cal-
culated the ratio of short to long fragments (RoSL). Then, 
Pearson correlation analyses were performed between 
each sample RoSL and the pseudo-healthy RoSL (median 
healthy RoSL). The results revealed that 5hmC-enriched 
cfDNA fragment profiles were consistent in healthy con-
trols, while they were less stable in lung cancer patients 
(healthy samples mean correlation: 0.7699 lung cancer 
mean correlation: 0.6082, P value = 6.34e−19, Fig.  3b). 
Additionally, compared to healthy cfDNA profiles, lung 
cancer profiles had numbers of regions with increases 
and decreases in fragment sizes (Fig. 3c).

Based on the above results, GC-adjusted short and 
total 5hmC-enriched cfDNA fragment coverage of each 
5  Mb window was utilized to construct an elastic net 
regression model to examine whether fragmentation 
profiles from 5hmC-enriched cfDNA have the ability 
to distinguish patients with cancer from healthy indi-
viduals (Additional file  1: Figure S3A). To exclude pos-
sible information from the validation set during model 
parameter training, the same training and validation 
groups from the 5hmC model were used. This approach 
suggested a set of 48 windows of fragmentation features 
with a weight of nonzero (alpha = 0.1), in which 17 win-
dows utilized information of short fragments (Additional 
file  5: Table  S4). The prediction model demonstrated 
acceptable accuracy in both the training set (sensitiv-
ity = 91.74%, specificity 93.70%, AUC = 0.9837) and the 
validation set (sensitivity = 87.50%, specificity = 80.65%, 
and AUC = 0.9257) (Fig. 3d). The public 5hmC data from 
Zhang et al. [23] were also included as an external valida-
tion set to validate the performance of the fragmentation 
model, which achieved results with AUC = 0.822 (sensi-
tivity = 78.79%, specificity 76.12%, Fig. 3d).

Using the coefficients generated by the elastic net 
model, we obtained the wd-score (Additional file  6: 
Table  S5), which could distinguish lung cancer patients 
from healthy controls (training set P value = 1.52E−37, 
validation set P value = 2.27E−14, Fig. 3e). Relationships 
between wd-score and cancer stages were also exam-
ined. However, no significant difference in wd-score was 
observed between different stages, despite stage IV pos-
sessing a higher median wd-score (Fig.  3f ). There was 
no difference between lung cancer subtypes (Additional 
file 1: Figure S3B).

Integration of 5hmC features and fragmentation profiles 
for improvement of lung cancer diagnosis
5hmC modifications and fragmentation profiles from 
5hmC cfDNA sequencing data characterized two natures 
of cfDNA. We utilized these two types of features to con-
struct an integrated model containing 37 5hmC markers 
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and 48 fragmentation markers. t-SNE analysis revealed 
that the combination can discriminate lung cancers from 
healthy controls (Fig.  4a). Then, elastic-net regression 
with tenfold cross-validation was performed to build 
the integrated model, which achieved AUCs of 1, 0.9432, 

and 0.8639 in the training set, validation set and external 
validation set, respectively (Fig.  4b). A better diagnos-
tic efficiency was achieved by this co-modeling method. 
We also checked prediction power in different stages. 
In our validation set, stage I–II disease (n = 5), stage 
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III disease (n = 12) and stage IV disease (n = 27) all had 
good performances (AUC​I–II = 0.9677, AUC​III = 0.9126, 
AUC​IV = 0.9564, respectively, Additional file  1: Figure 
S4A-C). Analyses of different histologic subtypes of lung 
cancer in the validation set showed that small cell lung 
cancer (SCLC, n = 8) and lung adenocarcinoma (LUAD, 
n = 18) were more easily detected than lung squamous 
cell cancer (LUSC, n = 13) (AUC​LUAD = 0.9615, AUC​
LUSC = 0.9057, AUC​SCLC = 0.9899, Additional file 1: Figure 
S4D-F).

The Wd-score derived from the new model indicated 
a significant difference between healthy controls and 
lung cancer patients (training set P value = 5.41E−40, 

validation set P value = 1.91E−15, Fig.  4c). However, 
there was no significant difference between stages 
(Fig. 4d) or histologic subtypes (Additional file 1: Figure 
S4G).

5hmC markers signify genes associated with OS and DFS
In addition to distinguishing lung cancer patients from 
healthy controls, we next determined the performance of 
our 5hmC markers for their ability to stratify lung can-
cer patients by the survival time of overall survival (OS) 
and disease-free survival (DFS). The final 37 5hmC loci 
in the diagnostic model were first assigned to genes to 
obtain 18 5hmC-associated genes. Then, gene expression 

Fig. 4  Performance of the 5hmC-fragmentation integrated model for lung cancer detection. A T-SNE plot of paired 5hmC features and 
fragmentation profiles data, based on the 85 features including the 37 5hmC biomarkers and 48 fragmentation areas. B Performance of the 
5hmC-fragmentation integrated model in the training set, validation set and external validation set. C Boxplot of wd-score deriving from the 
integrated model for the lung cancer samples and the healthy controls (training set P value = 5.41E−40, validation set P value = 1.91E−15). D 
Boxplot of the wd-scores from the integrated model for stage I–IV lung cancer samples.*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 1e−5, Wilcoxon test
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data of those 18 genes in the TCGA cohort were utilized 
to estimate the prognostic value of each gene in LUAD 
group, LUSC group and LUAD-LUSC group, respec-
tively. Interestingly, the mRNA expression of both PLE-
KHA6 and PMEPA1 showed a significant correlation 
with both OS and DFS in LUAD-LUSC group. Patients 
with low PMEPA1 expression values exhibited longer OS 
and DFS in LUAD-LUSC group (OS: HR = 1.6, adjusted P 
value = 0.0059; DFS: HR = 1.9, adjusted P value = 0.0011; 
Fig.  5a). But in the two main subtypes of lung cancer, 
LUAD and LUSC, this group only showed longer OS 
in LUAD group (HR = 1.6, adjusted P value = 0.019) 
and longer DFS in LUSC group (HR = 1.6, adjusted P 

value = 0.0384, Additional file  1: Figure S5A). PMEPA1 
is a transmembrane protein that was originally identified 
as a prostatic RNA, alternatively termed TMEPAI. It is 
identified as a direct target gene of transforming growth 
factor-β (TGF-β)/Smad signaling that participates in 
negative feedback control of the duration and intensity of 
TGF-β/Smad signaling [40]. Studies showed that highly 
expressed PMEPA1 suppressed levels of Smad phos-
phorylation in lung cancer cells and reduced the growth 
inhibitory effects of TGF-β/Smad signaling to enhance 
tumorigenic activities in lung cancer cells [41], which 
indicated possible poor prognosis in PMEPA1 highly 
expressed group.

Fig. 5  Genes marked by 37 diagnostic 5hmC biomarkers associated with lung cancer survival. Kaplan–Meier curves of overall survival and disease 
free survival in LUAD-LUAC cohorts from TCGA based on gene expression of PMEPA1 (A) and PLEKHA6 (B). Stacked genome browser plot of the 
5hmC peaks located in promoter or gene body region of PLEKHA6 (C) and PMEPA1 (D)
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Compared with patients with low PLEKHA6 expres-
sion, patients with high PLEKHA6 expression showed 
shorter OS and DFS in LUAD-LUSC group (OS: HR = 1.4, 
adjusted P value = 0.00495; DFS: HR = 2, adjusted P 
value = 0.00011; Fig.  5b). In LUAD group, patients with 
high PLEKHA6 expression had shorter OS (HR = 1.7, 
adjusted P value = 0.0054) In LUSC group, patients with 
high PLEKHA6 expression exhibited shorter OS and DFS 
(OS: HR = 1.8, adjusted P value = 0.0342; DFS: HR = 2.1, 
adjusted P value = 0.0384; Additional file 1: Figure S5B). 
The biological mechanism between PLEKHA6 and lung 
cancer still remained unclear. But it has been reported 
that PLEKHA6 was another novel survival predictor, 
which was associated with breast cancer mortality [42]. 
We also assigned 3718 differentially hydroxymethylated 
peaks (DhMPs) to 1378 genes. We used GEPIA2 to gen-
erate OS survival plots in LUAD group, LUSC group and 
LUAD-LUSC group, respectively. All the plots showed 
no correlation between OS/DFS and the 1378 signatures 
group (Additional file  1: Figure S5C,D). Using Integra-
tive Genomics Viewer [43], genome browser plots of the 
5hmC locus located in PLEKHA6 and PMEPA1 were 
illustrated in both lung cancer patients and healthy con-
trols (Fig. 5c, d).

Discussion
Liquid biopsy has been proved to be an effective and sen-
sitive method for cancer detection [16, 44]. Recent stud-
ies have reported that 5hmC, an important component 
of the mammalian genome [45], plays an important role 
in gene expression regulation and carcinogenesis [21]. 
These features indicate the potential value of 5hmC in 
cancer diagnostics [46]. Nano-hmC-Seal and hMe-Seal 
were invented to utilize this sensitive characteristic to 
distinguish different patient conditions [16, 22].

Our research recruited 157 lung cancer samples and 
189 healthy controls, which constituted the largest lung 
cancer cfDNA 5hmC dataset to date, especially with 25 
SCLC samples. The median survival for SCLC patients 
is only 7–12  months after diagnosis, which reveals 
the urgency of diagnostic methods for early detection 
of SCLC [47]. We utilized a cost-effective and sensi-
tive 5hmC-Seal method [16] to study profiles of 5hmC 
and fragmentation embedded in 5hmC cfDNA data-
sets. Then, we constructed diagnostic models based 
on 5hmC signals, fragmentation profiles, and features 
integrating 5hmC signals and fragmentation profiles 
with acceptable accuracy, not only discriminating lung 
cancer patients from healthy controls but also perform-
ing well in different stages and cancer subtypes. Corre-
sponding genes of some 5hmC markers were found to 
be associated with DFS and OS, which might provide 
insights into disease management and prognosis. Also 

DhMP related gene PLEKHA6 might provide an inter-
esting insight into biological mechanism of lung can-
cer. Overall, our findings determined that epigenetic 
signatures and fragmentation profiles in cfDNA 5hmC 
datasets had the potential to serve as biomarkers for 
NSCLC and SCLC.

Our results consisting of higher 5hmC levels in the 
gene body (± 3 kb) in lung cancer patients compared to 
healthy controls (Additional file 1: Figure S1C) are con-
sistent with a previous study reported by Zhang et  al. 
but inconsistent with results from Song et  al., implying 
that ethnic differences might result in diverse cancer pro-
files in different populations [48]. Thus, different ethnic 
groups and even geographical groups could be included 
to inquire about common features to make liquid biop-
sies extensively available.

In 5hmC model construction, a 201  bp fixed-width 
peak method was utilized, as it focused more on 5hmC-
enriched regions and reduced the risks of finding bio-
markers without biological meanings, as methods such 
as gene bodies and sliding windows might lead to statis-
tically significant differences. Further, short peaks could 
bring this noninvasive method into clinical practice more 
easily.

Along with rapid technological and analytical advance-
ments in recent years, fragment patterns of cfDNA in 
peripheral blood have provided new insights into non-
invasive detection. Analyses of fragmentation profiles in 
cfDNA permit evaluation of natural size distribution and 
genomic or chromatin characteristics across the whole 
genome except for epigenetic modifications. All stud-
ies of fragmentation were based on low-coverage WGS 
till now. The fragmentation profiles from 5hmC cfDNA 
datasets remain poorly characterized. Therefore, we 
adopted the same methods as DELFI in 5hmC cfDNA 
sequencing data to examine whether fragment size infor-
mation is available in 5hmC-enriched data. The results 
indicated that RoSL was still present after enrichment, 
and the fragmentation model achieved an AUC of 0.822. 
We then explored the combination of epigenetic modifi-
cations and fragmentation profiles, and the results sug-
gested that conjoint analysis improved detection power. 
Taken together, these findings indicated that cfDNA 
5hmC sequencing may provide a promising noninvasive 
approach for cancer diagnosis and prognosis.

In clinical applications, digital criteria such as CA199 
might be more acceptable and preferred for doctors and 
patients. In this way, the wd-score was calculated using 
5hmC or fragmentation profiles with coefficients of the 
elastic-net regression model. The results revealed that 
there were different score distributions, which made it 
possible to achieve clinical transformation. However, we 
did not obtain associations between wd-score and stages 
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or cancer subtypes, which might be due to insufficient 
samples.

The shortcomings of our research are obvious. First, 
more samples with different stages and large-scale sub-
types are needed, especially early stages I and II, to make 
the robustness and potential value of our methods more 
convincing. Second, the lack of clinical information in our 
dataset, such as smoking history, alcohol history, chronic 
disease, and survival data, restricted us from associat-
ing cfDNA markers with clinicopathological character-
istics, i.e., correlation of wd-score and tumor size, which 
might encourage us to explore the mechanisms of early 
tumor progression through 5hmC modifications. We are 
dedicated to collecting large-scale samples for further 
research and transforming them for clinical applications. 
In the future, we will adopt this approach for the diagno-
sis of malignant and benign nodules.

Conclusions
The clinical significance of cfDNA 5hmC profiles from 
advanced lung cancer patients was demonstrated in 
our large cohorts consisting of both NSCLC and SCLC 
patients. Thirty-seven 5hmC markers were identified for 
detecting lung cancer, and for the first time, fragmen-
tation profiles of cfDNA 5hmC were introduced into 
the diagnostic model, with 48 fragmentation features 
confirmed to have diagnostic efficiency. Moreover, the 
integrated model with the 5hmC signal and fragmenta-
tion profiles demonstrated increased detection power 
compared with models based on either of them. Taken 
together, this study provides a new perspective for clini-
cal prediction models based on cfDNA 5hmC data, which 
are valuable in the clinical application of liquid biopsies 
for lung cancer diagnosis. More samples from different 
stages and subtypes are worthy of further investigation.

Methods
Study design
In total, 157 lung cancer patients and 189 healthy con-
trols were retrospectively recruited to investigate the 
diagnostic potential value of cfDNA 5hmC and fragmen-
tation biomarkers for lung cancer, which including 62 
LUAD, 48 LUSC,25 SCLC and 22 other lung cancers. All 
subjects were recruited in a West China Hospital Insti-
tutional Review Board-approved protocol with informed 
consent. Lung cancer samples were confirmed histo-
pathologically with no chemotherapy or radiotherapy for 
malignant tumors and healthy participants were enrolled 
from the community, which had no previous history 
for cancer. Cancer stages were classified according to 
the Eighth Edition Lung Cancer Stage Classification in 
AJCC/UICC cancer staging manuals [49].

Blood sample processing, 5hmC library construction 
and sequencing
5hmC library construction was performed as previously 
described [16]. Firstly, 2-mL plasma samples were used 
to extract cfDNA using QIAamp Circulating Nucleic 
Acid Kit. Then, cfDNA (5–10  ng) ligated with sequenc-
ing adaptors was incubated in a 25 μL reaction solu-
tion containing HEPES buffer (50 mM, pH 8.0), 25 mM 
MgCl2, 60 μM N3-UDP-Glc (ActiveMotif, Carlsbad, CA, 
USA), and 12.5 U β-glucosyltransferase (NEB,  Beverly, 
MA,  USA) for 2  h at 37  °C. Next, 2.5ul DBCO-PEG4-
biotin (Sigma, Carlsbad, CA, USA) was directly added 
and incubated for 2  h at 37  °C. 10  μg sheared salmon 
sperm DNA (Life Technologies, USA) was added before 
the Micro Bio-Spin 30 Column (Bio-Rad, Hercules, CA, 
USA) was used to purify the DNA following the instruc-
tion and then adjust the final volume to 25μL. After that, 
the purified DNA was incubated with 5-μL C1 strepta-
vidin beads (Life Technologies, USA) in buffer 1 (5 mM 
Tris pH 7.5, 0.5 mM EDTA, 1 M NaCl and 0.2% Tween 
20) for 30 min. The beads were subsequently undergone 
three 5-min washes each with buffer 1, buffer 2 (buffer 
1 without NaCl), buffer 3 (buffer 1 with pH 9) and buffer 
4 (buffer 3 without NaCl). Then, the beads were resus-
pended in water and amplified with 11 cycles of PCR 
amplification (initial denaturing at 98  °C for 45  s, fol-
lowed by 11 cycles of denaturing at 98 °C for 15 s, anneal-
ing at 60  °C for 30  s, extension at 72  °C for 30  s, and a 
final extension at 17  °C for 5 min). The amplified prod-
ucts were purified using 0.8 × AMPure XP beads (Beck-
man Coulter, Fullerton, CA, USA). Pair-end 150  bp 
sequencing was performed on the Illumina Novaseq 
6000 platform.

cfDNA sequencing data processing
As the 5hmC-captured library was proceeded using 150-
bp paired-end runs, the following methods were applied 
for 5hmC data alignment and 5hmC-based model. 
FastQC (version 0.11.8) was used to check data quality 
of 150 bp FASTQ files. Adapters of 150 bp FASTQ files 
were removed by Trimmomatic (version 0.38) [50]. Bow-
tie2 (version 2.3.4.3) [51] was used to process sequenc-
ing reads, which were aligned to hg19 and spike-in DNA 
with default parameters. Samtools (version 1.9) [52] was 
used to filter the generated SAM files with parameter set-
tings of ‘-f 2 -F 1548 -q 30’ to include high quality, prop-
erly paired reads, followed by converting to BAM format. 
Picard (version 2.18.23) was employed to sort and index 
filtered SAM files and to ensure the removal of duplicate 
reads before subsequent analysis. Three types of spike-
in DNA sequences were included into reference; then, 
capture efficiency, as a quality control measurement for 
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the 5hmC and 5mC, was calculated as counts of reads 
aligned to a type-specific spike-in DNA divided by counts 
of reads aligned to total spike-in DNA.

Based on previous results of shorter cfDNA from can-
cer patients, we also gained raw FASTQ data (which 
include reads shorter than 150  bp paired-end reads). 
Adapters of raw FASTQ files were removed by cutadapt 
(version 1.9.1) and mapping was proceeded with bwa 
mem (version 0.7.5a-r405) [53] with default parameters. 
Samtools was utilized to obtain high-quality reads with 
‘-f 2 -q 20’ and to remove PCR duplicate reads.

Peak detection
Peak detection of 5hmC sequencing data followed steps 
as previously described [33]. Firstly, MACS2 (version 
2.1.2) [54] was utilized to call peaks for each sequencing 
dataset. Secondly, in each sample, raw peak list gener-
ated by MACS2 was extended 100 bp on either side of the 
peak summits and peak scores were normalized to “score 
per million,” following by removing overlapping peaks. 
Thirdly, reproducible peaks in at least 10% of lung cancer 
samples or healthy controls with score per million >  = 5 
were merged into group-specific (cancer-specific or 
healthy-specific) peak lists by removing overlapping 
peaks to generate the final consensus peak list.

All the peaks involved in the ENCODE hg19 blacklist, 
peaks that extend beyond any ends of chromosomes and 
peaks on chromosomes X, Y or on the mitochondrial 
genome, were filtered.

5hmC biomarkers selection and model construction
We firstly divided all cfDNA samples into two groups with 
a proportion of 4:1, the training set and the validation set 
(training set: 109 lung cancer samples and 127 healthy 
controls, validation set: 48 lung cancer samples and 62 
healthy controls). Then, we determined differentially 
5hmC loci for model construction by the following strat-
egy: (a) randomly separating the training set into fivefolds 
and performed fivefold cross-validation, (b) At each cross, 
fourfolds were selected as cross-training set, and then 100 
times repeats were performed to further select markers 
appeared in at least 95% iterations using elastic net model 
[55]. The final markers observed in at least one cross were 
used to build final prediction model in the training set and 
make predictions in the validation set. The α and λ was 
selected to maximize ROC in the training set over a grid 
of values (α range: 0.05–1 with 0.05 increment; λ range: 
10–5–1 with logarithmically equal increment).

The final diagnostic model was identified as the one 
with best performance in the validation set. To verify 
the reliability of the final diagnostic model, we down-
loaded cfDNA 5hmC data of non-small cell lung cancer 
(NSCLC) from the Genome Sequence Archive in BIG 

Data Center with accession number PRJCA000816 (66 
lung cancer samples and 67 healthy controls) as external 
validation set. The wd-score was calculated with coeffi-
cients of corresponding markers as follows:

Fragmentation profile‑based model construction
Raw fastq files with 189 healthy samples and 157 lung 
cancer samples were included in fragmentation analysis. 
As previously described [30], the hg19 autosomes were 
divided into 26,236 non-overlapping 100-kb bins, which 
excluding low mappability regions [56] and Duke black-
listed regions (http://​hgdow​nload.​cse.​ucsc.​edu/​golde​
npath/​hg19/​encod​eDCC/​wgEnc​odeMa​pabil​ity/). Short 
fragments were defined as having lengths between 80 and 
150 bp and long fragments between 151 and 250 bp. Nor-
malization was conducted as previously described [30]. 
In short, locally weighted scatterplot smoothing regres-
sion analysis (LOWESS) was employed to account for GC 
biases separately for short and long fragments in every 
single sample. Then total GC-adjusted coverage of 5-Mb 
windows were calculated to reduce possible noise.

In order to perform marker selection and establish lung 
cancer prediction models, the elastic net regularization 
on a logistic linear regression model was chosen, which 
implemented in the glmnet R package (version 2.0-18) 
[55]. The following procedure was applied:

We used the same training set and validation set as 
5hmC model construction (training set: 109 lung cancer 
samples and 127 healthy controls, validation set: 48 lung 
cancer samples and 62 healthy controls, external valida-
tion set: 66 lung cancer samples and 67 healthy controls). 
GC-corrected total and short fragment coverage for all 
504 bins were centered and scaled for each sample. To 
avoid overfitting, the training set was randomly divided 
into fivefolds and performed fivefold cross-validation. At 
each cross, fourfolds were selected as cross-training set 
then 100 times repeats were performed to further select 
markers appeared in at least 95% iterations using elas-
tic net model. The final markers observed in at least five 
cross were used to build final prediction model in the 
training set and make predictions in the validation set. 
The α and λ were selected to maximize ROC in the train-
ing set over a grid of values (α range: 0.05–1 with 0.05 
increment; λ range: 10−5–1 with logarithmically equal 
increment).

Genome-wide fragmentation profiles were generated 
using the ratio of short to long 5hmC-enriched cfDNA 
fragments using 5-Mb windows for each sample. The 
median healthy profile was calculated as the median 

Wd−score = sum
(

coef (k) ∗ FPKM (k)
)

,

where k represents the marker

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/
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ratio of short to long 5hmC-enriched cfDNA fragments 
in 5-Mb windows. Pearson correlation was calculated 
between individual profiles and median healthy profile.

Integration of 5hmC and fragmentation model
In order to integrate 5hmC profiles and fragmentation 
profiles, the 37 5hmC markers and 48 fragmentation 
features were combined for elastic net model training, 
with 109 lung cancer samples and 127 healthy controls in 
the training set as well as 48 lung cancer and 62 healthy 
controls in the validation set. A grid of α from 0 to 1 and 
lambda from 10–5 to 1 with tenfold cross-validation 
were attempted to maximize ROC in the training set to 
confirm best parameters.

Survival analysis
The final 37 diagnostic 5hmC loci were firstly mapped to 
gene regulatory regions (defined as 2500 bp upstream of 
the TSS and gene body regions) to get their associated 
genes. Actually, we get 21 associated genes that 37 5hmC 
loci marks. We further explored the prognostic value of 
those genes by seeking the relationship between gene 
expression level and survival data in GEPIA2 [57]. Gene 
expression thresholds for classifying patients into two 
groups (low and high) were defined as median or 75th 
quantile of the corresponding gene.

Peak annotation and metagene analysis
BEDtools (version 2.25.0) [58] was used to get occupancy 
of peaks with each genomic element (> 1  bp), following 
by enrichment analysis assessed by odds ratio. Ngs.plot 
[59] was used to depict metagene profiles on gene body 
(± 3 kb) and enhancer. Gene Ontology (GO) analysis was 
performed by GREAT (version 4.0.4) [35].

Statistical analysis
Statistical analyses were performed in R 3.6.3 environ-
ment. The Wilcoxon test was used to compare wd-score 
of different groups, with two-sided and P values < 0.05. 
The R packages RtSNE (version 0.15) [60] and pheatmap 
(version 1.0.12) were used for dimension reduction and 
clustering analysis. The glmnet (version 2.0-18) and caret 
(version 6.0-86) [61] package were utilized to construct 
models and select parameters. The pROC (version 1.15.3) 
[62] was used to generate receiver operating characteris-
tic (ROC) curves and calculate the AUC.
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