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Abstract 

Background:  DNA methylation, an epigenetic mechanism modulated by lifestyle and environmental factors, may be 
an important biomarker of complex diseases including cardiovascular diseases (CVD) and subclinical atherosclerosis.

Methods:  DNA methylation in peripheral blood samples from 391 African-Americans from the Genetic Epidemiol-
ogy Network of Arteriopathy (GENOA) was assessed at baseline, and atherosclerosis was assessed 5 and 12 years later. 
Using linear mixed models, we examined the association between previously identified CpGs for coronary artery 
calcification (CAC) and carotid plaque, both individually and aggregated into methylation risk scores (MRSCAC​ and 
MRScarotid), and four measures of atherosclerosis (CAC, abdominal aorta calcification (AAC), ankle–brachial index (ABI), 
and multi-site atherosclerosis based on gender-specific quartiles of the single-site measures). We also examined the 
association between four epigenetic age acceleration measures (IEAA, EEAA, PhenoAge acceleration, and GrimAge 
acceleration) and the four atherosclerosis measures. Finally, we characterized the temporal stability of the epigenetic 
measures using repeated DNA methylation measured 5 years after baseline (N = 193).

Results:  After adjusting for CVD risk factors, four CpGs (cg05575921(AHRR), cg09935388 (GFI1), cg21161138 (AHRR), 
and cg18168448 (LRRC52)) were associated with multi-site atherosclerosis (FDR < 0.1). cg05575921 was also associ-
ated with AAC and cg09935388 with ABI. MRSCAC​ was associated with ABI (Beta = 0.016, P = 0.006), and MRScarotid was 
associated with both AAC (Beta = 0.605, equivalent to approximately 1.8-fold increase in the Agatston score of AAC, 
P = 0.004) and multi-site atherosclerosis (Beta = 0.691, P = 0.002). A 5-year increase in GrimAge acceleration (~ 1 SD) 
was associated with a 1.6-fold (P = 0.012) increase in the Agatston score of AAC and 0.7 units (P = 0.0003) increase in 
multi-site atherosclerosis, all after adjusting for CVD risk factors. All epigenetic measures were relatively stable over 5 
years, with the highest intraclass correlation coefficients observed for MRScarotid and GrimAge acceleration (0.87 and 
0.89, respectively).

Conclusions:  We found evidence of an association between DNA methylation and atherosclerosis at multiple vascu-
lar sites in a sample of African-Americans. Further evaluation of these potential biomarkers is warranted to deepen our 
understanding of the relationship between epigenetics and atherosclerosis.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  smjenn@umich.edu
1 Department of Epidemiology, School of Public Health, University 
of Michigan, Ann Arbor, MI, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3575-5468
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-022-01229-3&domain=pdf


Page 2 of 14Ammous et al. Clinical Epigenetics           (2022) 14:10 

Background
Cardiovascular diseases (CVD), including coronary heart 
disease, myocardial infarction, and peripheral artery dis-
ease, are the leading cause of death in the USA [1]. The 
CVD mortality burden is 21% higher in African-Amer-
icans compared to Whites despite modest decreases 
in racial disparities at the national level since 2005 [2]. 
Genetic factors, along with non-genetic risk factors, 
such as age, smoking, and hypertension, contribute to 
CVD. However, much of the variability in CVD, as well 
as the persistent causes of CVD disparities, remain 
unexplained.

Atherosclerosis, a chronic inflammatory age-related 
condition that develops over several decades, is a pre-
cursor for CVD and can occur in either the intimal or 
medial layers of the arterial wall [3–6]. The intima is the 
innermost layer consisting of a smooth endothelium layer 
covered by elastic tissue. The accumulation of lipids and 
fibrous material in the intima can occur at the coronary 
arteries and large arteries including the aorta [6]. Coro-
nary artery calcification (CAC) is a strong predictor of 
incident CVD and coronary heart disease beyond tra-
ditional CVD risk factors [7–10]. Medial calcification 
occurs in the tunica media which consists of smooth 
muscles cells and elastic fibers. It affects lower limb 
arteries, in addition to the aorta, and is typically associ-
ated with peripheral artery disease [6]. Medial lesions are 
thought to calcify earlier than intimal ones and result in 
vascular stiffness and reduced vessel compliance [11, 12], 
and they may be also associated with CVD [8, 13]. Medial 
calcification increases with aging and is prevalent in indi-
viduals with chronic kidney disease and diabetes melli-
tus. The ankle–brachial pressure index ratio (ABI) can be 
used to assess medial calcification in the peripheral arter-
ies [11].

Epigenetic mechanisms, including DNA methyla-
tion (DNAm), capture both genetic influences as well as 
the imprints of lifestyle and environmental exposures 
throughout the life course, and may have potential as bio-
markers of CVD risk. Epigenetic age acceleration meas-
ures are DNA methylation-based markers of biological 
aging that are associated with late-life onset diseases and 
mortality [14–18]. Epigenetic age acceleration measures 
include first generation measures (HorvathAge [14] and 
HannumAge [15]), trained on chronological age, and 
more recent measures trained on biological and physio-
logical markers and chronological age, such as PhenoAge 
[19] and GrimAge [17]. Previous studies of genome-wide 
DNA methylation profiles or epigenetic age acceleration 

measures have reported statistically significant asso-
ciations between epigenetic markers and CVD [20–26]; 
however, a majority of these studies were in cohorts of 
European ancestry and/or were cross-sectional rather 
than longitudinal.

Only a few epidemiological studies have examined 
the association between DNAm and subclinical CVD or 
atherosclerosis [27, 28]. A recent cross-sectional tran-
scriptome and epigenome analysis of atherosclerosis in 
1208 participants from the Multi-Ethnic Study of Ath-
erosclerosis (MESA) identified 82 differentially methyl-
ated CpGs associated with either CAC or carotid plaque 
score at false discovery rate (FDR) ≤ 0.1 [27]. The sam-
ple was comprised of 45.9% Caucasians, 21.5% African-
Americans, and 32.6% Hispanics. Race-specific analyses 
showed that the directions of the methylation changes 
were generally consistent across these groups, although 
some sites were not significant for African-Americans 
and Hispanics [27]. The most significant CpG associated 
with carotid plaque, cg05575921, is located in the AHRR 
gene body and is a well-documented smoking marker 
[29–32].

In the current study, we evaluated the association 
between potential epigenetic markers of atherosclero-
sis and single- or multi-site atherosclerosis, assessed 
5 and 12  years later, in 391 African-Americans from 
the Genetic Epidemiology Network of Arteriopathy 
(GENOA). Our atherosclerosis measures included CAC, 
abdominal aorta calcification (AAC), and ABI. Epigenetic 
markers included the previously identified CpGs for ath-
erosclerosis [27], methylation risk scores (MRSs) derived 
from these CpGs, and four epigenetic age acceleration 
measures (Horvath (IEAA) [14], Hannum (EEAA) [15], 
PhenoAge (PhenoAA) [19], and GrimAge (GrimAA) 
[17]). Finally, we characterized the temporal stability of 
the epigenetic age acceleration measures and the MRSs 
using longitudinal measures of DNA methylation for a 
subset of the sample (N = 129).

Methods
Study sample
GENOA is a community-based study in Rochester, MN 
and Jackson, MS that was established to identify genes 
influencing blood pressure [33]. In the first phase of 
GENOA (Phase I: 1996–2001), sibships with at least 
two adults with clinically diagnosed essential hyperten-
sion before age 60 were recruited, and all siblings in the 
sibship were invited to participate regardless of hyper-
tension status. Exclusion criteria included secondary 
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hypertension, alcoholism or drug abuse, pregnancy, insu-
lin-dependent diabetes mellitus, or active malignancy.

At baseline (Phase I), a total of 1583 non-Hispanic 
Whites (Rochester, MN) and 1854 African-Americans 
(Jackson, MS) were enrolled. In the second phase (Phase 
II: 2001–2005), all participants were invited for a sec-
ond examination. Eighty percent of African-Americans 
(N = 1482) and 75% of non-Hispanic Whites (N = 1213) 
from Phase I returned. At Phase III (2009–2011), 752 
African-Americans returned for a third examination. 
Demographic information, medical history, clinical 
characteristics, lifestyle factors, and blood samples were 
collected in each phase. This study includes 391 African-
American participants from 277 sibships who had their 
DNA methylation measured in whole blood samples col-
lected at Phase I and were seen in Phase III. For a sub-
set of 129 participants that were seen in Phase III, DNA 
methylation was measured at both Phase I and Phase II. 
Written informed consent was obtained from all partici-
pants and approval was granted by participating institu-
tional review boards (University of Michigan, University 
of Mississippi Medical Center, and Mayo Clinic).

Study measurements
Height was measured by stadiometer and weight by elec-
tronic balance. Body mass index (BMI) was calculated 
as weight in kilograms divided by the square of height in 
meters. Smoking was categorized as current, former, or 
never. Resting systolic (SBP) and diastolic blood pressure 
(DBP) were measured by a random zero sphygmoma-
nometer and a cuff appropriate for arm size. The second 
and third of three readings, after the participant sat for at 
least five minutes, were averaged for analysis [34]. Hyper-
tension was defined having an average SBP ≥ 140 mmHg 
or DBP ≥ 90 mmHg, or current anti-hypertensive medi-
cation use. Type 2 diabetes status (T2D) was defined 
as having fasting blood glucose levels ≥ 126  mg/dL or 
self-reported physician-diagnosed diabetes and current 
diabetes medications use. Serum total cholesterol (TC), 
high-density lipoprotein cholesterol (HDL-C), and tri-
glycerides (TGs) were measured by standard enzymatic 
methods on a Hitachi 911 Chemistry Analyzer (Roche 
Diagnostics, Indianapolis, IN). TC was adjusted for statin 
use as TC/0.8. Low-density lipoprotein cholesterol (LDL-
C) was calculated using the Friedewald formula for indi-
viduals with TGs below 400 mg/dl [35].

DNA methylation, epigenetic age acceleration, 
and methylation risk scores
Genomic DNA from 1106 African-American partici-
pants from Phase I and 304 from Phase II was extracted 
from stored peripheral blood leukocytes using Auto-
Gen FlexStar (AutoGen, Holliston, MA) and DNA 

methylation was measured using the Infinium Meth-
ylationEPIC BeadChip. DNA methylation processing 
procedures have been previously described [36]. Briefly, 
sex mismatches and outliers were excluded using the 
shinyMethyl R package [37]. Probes with detection P 
value < 10–16 were considered to be successfully detected 
[38]. Samples and probes that failed a detection rate of 
at least 10% were removed. The Noob method was used 
for individual background and dye-bias normalization 
[39]. Regression on Correlated Probes method was used 
to adjust for the probe-type bias in the data [40]. White 
blood cell type proportions within the blood sample were 
estimated using Houseman’s method [41]. A total of 1100 
samples from Phase I and 294 from Phase II were avail-
able after quality control.

We derived two MRSs based on the regression coef-
ficients of CpG sites associated with CAC and/or 
carotid plaque at FDR ≤ 0.1 in MESA [27]. For CAC, 1 
of the 16 CpGs reported in MESA (cg00889709) was 
not available in GENOA. For carotid plaque, 6 of the 
68 CpGs reported in MESA (cg06126421, cg05951221, 
cg09768249, cg08170227, cg00913954, and cg08882503) 
were not available in GENOA. Methylation M values 
were first adjusted for batch effects (modeled as random 
effects of plate, row, and column) and white blood cell 
counts (modeled as fixed effects) by adding the residuals 
from the linear mixed model to the mean DNA meth-
ylation of each CpG. These values were then weighted 
by the previously reported effect sizes [27] and summed 
over the CpGs to calculate two MRSs, MRSCAC​ based on 
15 CpGs and MRScarotid based on 62 CpGs. Two CpGs 
(cg07033253 and cg23661483) were associated with both 
CAC and carotid plaque in MESA and are included in 
both MRSs. Higher values of MRS correspond to greater 
risk of atherosclerosis.

Of the 75 total CpGs used to construct the two MRSs, 
approximately 13% are in CpG island regions, 33% in 
shore/shelf regions, 11% in promoter regions, 21% in 
enhancer regions, 50% in transcription factor binding 
sites, and 52% in DNase hypersensitivity sites. Detailed 
annotation of the individual CpGs has been previously 
described [27]. To investigate whether single-nucleotide 
polymorphisms (SNPs) proximal to the CpG sites may 
have substantially influenced methylation levels, we 
examined whether any of the CpGs overlapped with SNPs 
using the DMRcate package [42]. Out of the 75 CpGs, 
only 4 CpGs (cg02475408, cg13913475, cg15501219, and 
cg23848152) had SNPs with a minor allele frequency of at 
least 1% within 10 base pairs of the CpG site itself.

For the epigenetic age acceleration estimation, methyl-
ation beta values for Phase I and Phase II DNA methyla-
tion were uploaded to the online Horvath epigenetic age 
calculator to calculate DNAm age [43]. Four measures of 
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epigenetic age—HorvathAge, HannumAge, PhenoAge, 
and GrimAge—were estimated. Intrinsic epigenetic age 
acceleration (IEAA) is based on the regression residuals 
from a model of chronological age and blood cell counts 
and HorvathAge as the outcome [14, 44]. Extrinsic epige-
netic age acceleration (EEAA) is derived similarly based 
on the HannumAge but incorporates weighted averages 
of three white blood cell types (naïve cytotoxic T cells, 
exhausted cytotoxic T cells, and plasmablasts) [15, 44]. 
PhenoAA is a residual measure from a model of phe-
notypic age, calculated based on clinical measures such 
as albumin, creatinine, and white blood cell counts, as 
well as chronological age [19]. GrimAA is based on the 
residuals from a model of GrimAge and chronologi-
cal age. GrimAge is a composite biomarker of smoking 
pack-years and seven surrogate measures of plasma pro-
teins selected for their significant association with time-
to-death. The components are adrenomedullin (ADM), 
beta-2-microglobulin, cystatin C, GDF-15, leptin, plas-
minogen activator inhibitor antigen type 1 (PAI-1), and 
tissue inhibitor metalloproteinases 1 (TIMP-1) [17].

Gene expression measures
Gene expression levels in GENOA African-American 
participants (N = 1233) were measured in Epstein–Barr 
virus (EBV) transformed B-lymphoblastoid cell lines 
using the Affymetrix Human Transcriptome Array 2.0. 
Quality control was done using the Affymetrix Expres-
sion Console provided by Affymetrix. All array images 
passed visual inspection and the Affymetrix CEL files 
were normalized using the Robust Multichip Average 
algorithm in the Affymetrix Power Tool software [45]. 
Adjustment for batch effects and other technical covari-
ates was done using Combat [46] and mapping of probes 
to genes was done using the Brainarray custom CDF ver-
sion 19 [47]. After quality control, a total of 17,616 auto-
somal protein coding genes for 1205 participants were 
available for analysis.

Atherosclerosis measurements
Computed tomography (CT) imaging  conducted at 
Phase III was used to quantify calcification in the coro-
nary arteries and the abdominal aorta. CT images were 
read by trained technologists and the amount of calci-
fied plaque was calculated by multiplying each lesion area 
weighted by attenuation based on the maximum Houns-
field units in the lesion on a TeraRecon Aquarius Work-
station (TeraRecon, San Mateo, CA). The amount of 
calcification was quantified using the Agatston score [48]. 
Both CAC and abdominal aorta calcification (AAC) were 
natural log-transformed as ln (score + 1) when examined 
individually as outcomes.

ABI was used to quantify atherosclerosis in the periph-
eral arteries. Details about the ABI measurement  con-
ducted  at Phase II have been previously described [49]. 
Briefly, a Doppler ultrasonic instrument (Medisonics, 
Minneapolis, MN) was used to detect the pulse at each 
arm and ankle using appropriately sized blood pressure 
cuffs. ABI was calculated as the systolic blood pressure at 
each ankle site divided by the higher of the two brachial 
pressures. The lower of the average ABIs from both legs 
was used. Individuals with ABI > 1.50 were excluded as 
they may have non-compressible arteries.

Multi-site atherosclerosis score was defined similarly to 
that described by Zhao et  al. [50]. Both CAC and AAC 
were scored separately as follows: 0 if not detectable, or 
for those with detectable calcification as a score between 
1 and 4 according to gender-specific quartiles of each 
measure. ABI was scored between 0 and 4 for the high-
est to lowest gender-specific quartiles for ABI < 1.0, 0 for 
1 ≤ ABI < 1.4, and 1 if ABI ≥ 1.4 and ≤ 1.50. The multi-site 
atherosclerosis score was then calculated as the sum of 
the three measures (range 0–12) and was modeled as a 
continuous outcome.

Statistical analysis
Outliers beyond 5 standard deviations from the mean of 
the outcome and epigenetic measures were removed. We 
calculated the Pearson correlation coefficients between 
the single-site atherosclerosis measures, and among the 
epigenetic age acceleration measures and MRSs. We also 
calculated the correlations between the individual Grim-
Age components and the MRSs.

We used linear mixed models that account for familial 
relatedness to assess the association between the pre-
viously identified atherosclerosis-associated CpGs in 
MESA and MRSs derived from these CpGs (predictors) 
and the single- or multi-site atherosclerosis measures 
(outcomes). The minimally adjusted model (Model 1) 
was adjusted for age at baseline, sex, first 4 genetic prin-
cipal components (PCs), and time between the measures. 
The time covariate was calculated based on the age dif-
ference of the participants at the time of atherosclerosis 
assessment (Phase II or Phase III) and DNA methylation 
assessment (Phase I). For models of multi-site athero-
sclerosis, we included two time covariates—the age dif-
ference between Phase III and Phase I, and an additional 
covariate for the age difference between Phase III and 
Phase II—to account for the differences in the assessment 
times of ABI (at Phase II) and CAC and AAC (at Phase 
III). Model 2 was additionally adjusted for smoking status 
at baseline, and Model 3 was further adjusted for baseline 
CVD risk factors (T2D status, hypertension status, BMI, 
and statin-adjusted total cholesterol levels).
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For CpGs associated with at least one of the atheroscle-
rosis measures in Model 1 at FDR < 0.1, we investigated 
for association with cis-gene expression (± 1 Mb for each 
CpG). For that, we fit a linear mixed model adjusted for 
age, sex, time between measures, and the first 4 genetic 
PCs. For genes significantly associated with DNA meth-
ylation at FDR < 0.1, we investigated their association 
with the atherosclerosis measures using a linear mixed 
model approach with the same covariates.

We used a similar procedure as described above 
to assess the association between the four epigenetic 
age acceleration measures and atherosclerosis, except 
that genetic PCs were not included as covariates. This 
approach of not adjusting for genetic PCs is consist-
ent with other studies and allows for comparability of 
findings. As sensitivity analysis, we also performed this 
analysis after adjusting for the first four genetic PCs. We 
additionally carried out sensitivity analyses adjusting for 
white blood cell counts for significant associations with 
PhenoAA and GrimAA to assess confounding by changes 
in blood cell composition [17, 19, 51]. For GrimAA, 
we investigated the association between the individual 
GrimAge components and atherosclerosis to identify 
components that may be driving the association between 
GrimAA and atherosclerosis or that outperform the 
overall GrimAA measure itself. For this analysis, Grim-
Age components were scaled and centered. Models were 
adjusted for age, sex, time between measures, and white 
blood cell counts.

For the subset of individuals with repeated DNA meth-
ylation measurements, we used chi-square and t tests 
as appropriate to compare the demographic and clinical 
characteristics of the subset to individuals without the 
repeated measurements. We used linear mixed-effect 
models adjusted for age and sex to calculate the intraclass 
correlation coefficients (ICC) between Phases I and II for 
the methylation risk scores and the epigenetic age accel-
eration measures. Parametric bootstrapping (1000 itera-
tions) was used to calculate the 95% confidence intervals 
of the ICC coefficients [52, 53]. Additionally, for these 
participants, we assessed the associations between all of 
the epigenetic biomarkers at Phase II and atherosclero-
sis after adjusting for age, sex, time between measures 
(when applicable), first 4 genetic principal components, 
smoking status, hypertension status, diabetes status, 
body mass index, and total cholesterol levels adjusted for 
statin use.

Statistical tests were two-sided. False discovery rate 
(FDR) [54] of 0.1 was considered significant for the 
associations between the individual CpGs and the ath-
erosclerosis measures. A Bonferroni adjusted P value 
of < 0.025 (for MRS association analyses) and P < 0.0125 
(for epigenetic age acceleration association analyses) 

were considered significant. Analyses were conducted in 
R (Version 3.4.1) [55], using the lme4 [56], and rptR [53] 
packages.

Results
Sample characteristics
Baseline characteristics of the participants are shown in 
Table  1. The mean age of the participants was 56  years 
(SD = 9.0) at Phase I. Women comprised about 76% of the 
sample. Phase III was on average 12 years (SD = 1.2) after 
Phase I. About 64% of the participants had hypertension 
and 16% had T2D at Phase I. Distributions of the ather-
osclerosis measures and MRSs are shown in Additional 

Table 1  Descriptive characteristics of GENOA African-Americans

IQR interquartile range, DNAm DNA methylation
a Means ± standard deviation
b Adjusted for statin use as total cholesterol/0.8
c Calculated using the Friedewald formula for participants with 
triglycerides < 400 mg/dl (N = 386)
d Measured at Phase II (mean: 5.2 ± 1.3 years from Phase I)
e N = 390, after removing one outlier beyond 5 standard deviation units from 
the mean

Characteristicsa Overall (N = 391)

Females (%) 297 (76.0%)

Age at Phase I (years) 56.0 ± 9.0

Age at Phase III (years) 68.0 ± 8.4

Cardiovascular risk factors at Phase I

Smoking status

 Never (%) 241 (61.6%)

 Former (%) 93 (23.8%)

 Current (%) 57 (14.6%)

Body mass index (kg/m2) 31.4 ± 6.2

Hypertension 249 (63.7%)

Type 2 diabetes 63 (16.1%)

Total cholesterolb (mg/dl) 208.56 ± 50.4

Low-density lipoprotein cholesterolc (mg/dl) 121.8 (42.8)

Statin use (%) 18 (4.6%)

Atherosclerosis measures at Phase III

Coronary artery calcification score, median (IQR) 18.7 (0–195.7)

Abdominal aorta calcification score, median (IQR) 500.8 (18.9–1800.5)

Ankle–brachial index, median (range)d 0.985 (0.474–1.274)

Multi-site atherosclerosis score, median (IQR) (range 
0–12)

5 (2–7)

Methylation risk scores at Phase I

MRSCAC​
e 0.92 ± 0.85

MRScarotid − 3.52 ± 0.81

DNAm age measures at Phase I

HorvathAge (years) 52.8 ± 8.9

HannumAge (years) 46.2 ± 9.5

PhenoAge (years) 42.7 ± 11.5

GrimAge (years) 52.8 ± 7.9
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file 1: Figs. S1 and S2, respectively. For MRSCAC​, one out-
lier beyond 5 SD from the mean was removed from the 
analysis.

Correlations among the atherosclerosis measures, 
epigenetic age acceleration measures, and methylation 
risk scores
CAC and AAC were correlated at r = 0.57 
(P < 2.2 × 10–16). ABI was negatively correlated with AAC 
(r = − 0.14, P = 0.004), but only weakly correlated with 
CAC (r = − 0.08, P = 0.09). Additional file  1: Table  S1 
shows the correlation between the epigenetic predic-
tors. The correlation between the acceleration measures 
was weak to moderate (r range 0.21–0.46). The two MRSs 
were correlated at r = 0.32 (P = 1.55 × 10–10). Most of the 
epigenetic age acceleration measures and MRSs were 
weakly correlated (r range 0.09–0.29), except for Gri-
mAA and MRScarotid which were correlated at r = 0.68 
(P = 2.2 × 10–16). Scatterplots of the MRSs against the 
epigenetic age acceleration measures are shown in 
Additional file  1: Fig. S3. Of the GrimAge components, 
smoking pack-years was  slightly more correlated with 
MRScarotid than the overall GrimAA measure (r = 0.75, 
P = 2.2 × 10–16), with the second highest correlation 
between MRScarotid and PAI-1 (r = 0.26, P = 2.9 × 10–7).

Associations between previously identified 
atherosclerosis‑associated CpGs, cis‑gene expression, 
and atherosclerosis
CAC, AAC, ABI, and multi-site atherosclerosis were 
associated with 21, 15, 14, and 42 CpGs in Model 1, 
respectively (FDR < 0.1). The significant regression 
results are shown in Additional file  1: Table  S2. The 
majority of these sites were carotid plaque-associated 
CpGs in MESA. Additional file  1: Table  S3 shows the 
regression results for the CpGs that remained sig-
nificantly associated with atherosclerosis after adjust-
ment for CVD risk factors (Model 3) in GENOA. After 
adjusting for CVD risk factors, 4 CpGs (cg05575921 
(AHRR), cg09935388 (GFI1), cg21161138 (AHRR), and 
cg18168448 (LRRC52)) remained significantly associ-
ated with multi-site atherosclerosis.  CpG cg05575921 
was also associated with AAC and cg09935388 with 
ABI (FDR < 0.1). All of these CpGs were carotid plaque-
associated CpGs in MESA. Hypermethylation at all of 
the significant CpGs (FDR < 0.1 in Model 3) was asso-
ciated with decreased multi-site atherosclerosis. Sig-
nificant CpGs in Model 3 explained between 5.5% and 
11.2% of the variability of multi-site atherosclerosis, 
cg05575921 explained 6.9% of the variability of AAC, 
and cg09935388 explained 11.1% of the variability in 
ABI.

To investigate any regulatory effects on gene expres-
sion by the significant CpGs, we examined the asso-
ciation between CpGs shown in Additional file  1: 
Table S1 and cis-gene expression (± 1 Mb). DNA meth-
ylation at cg18168448 was associated with decreased 
expression of ALDH9A1 and increased expression 
of ENSG00000236364 at FDR < 0.1 (Additional file  1: 
Table  S4). Increased ALDH9A1 expression was associ-
ated with higher CAC (P = 0.005) and marginally higher 
multi-site atherosclerosis (P = 0.054). DNA methyla-
tion at cg03636183 was associated with decreased gene 
expression of F2RL which was associated with CAC 
(P = 0.017).

Associations between methylation risk scores 
and atherosclerosis
Table  2 shows the associations between MRSCAC​ and 
MRScarotid and single- or multi-site atherosclerosis meas-
ures. The beta coefficients shown correspond to the 
change in the atherosclerosis measures associated with a 
1-unit increase in MRS. In Model 1, MRSCAC​ was asso-
ciated with log-transformed AAC (Beta = 0.364, 95%CI 
0.050–0.778, P = 0.023) but the association was not sig-
nificant after adjusting for CVD risk factors (Models 2 
and 3). MRSCAC​ was associated with higher ABI, indica-
tive of less peripheral artery disease, and the associa-
tions were significant after adjusting for CVD risk factors 
(Beta = 0.016, 95%CI 0.004–0.028, P = 0.006 in Model 3). 
The MRSCAC​ explained 1.2%, 1.9%, 14.8%, and 0.8% of the 
variability of CAC, AAC, ABI, and multi-site atheroscle-
rosis after adjusting for CVD risk factors.

MRScarotid was associated with all of the atherosclero-
sis measures in Model 1 (Table 2). Associations remained 
significant for AAC after adjusting for smoking (Model 2) 
and other traditional CVD risk factors (Model 3), where a 
one unit increase in MRScarotid was associated 0.605 units 
increase in log-transformed AAC (95%CI 0.197–1.013). 
This is equivalent to an approximately 1.8-fold increase 
in the Agatston score of AAC. Similarly, the associa-
tions between MRScarotid and multi-site atherosclerosis 
remained significant after adjusting for CVD risk fac-
tors. A one unit increase in MRScarotid was associated 
with approximately 0.7 units (95%CI 0.25–1.13) increase 
in the multi-site atherosclerosis score after adjusting for 
CVD risk factors (Model 3). The MRScarotid explained 
7.8%, 5.3%, 2.1%, and 9.4% of the variability of CAC, 
AAC, ABI, and multi-site atherosclerosis after adjusting 
for CVD risk factors.
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Associations between epigenetic age acceleration 
and atherosclerosis
Associations between the epigenetic age acceleration 
measures and atherosclerosis are shown in Table 3. Phe-
noAA was associated with multi-site atherosclerosis in 
Model 1, but the association attenuated after adjusting for 
CVD risk factors. GrimAA was positively associated with 
all measures of atherosclerosis in the minimally adjusted 
model (Model 1) and remained significant after adjusting 
for CVD risk factors for AAC and multi-site atheroscle-
rosis. A 5-year increase in GrimAA (~ 1 SD) was asso-
ciated with a 1.6-fold (95%CI 1.11–2.25) increase in the 
Agatston score of AAC and 0.7 units (95%CI 0.33–1.07) 
increase in multi-site atherosclerosis score in Model 3. 
Increased GrimAA was nominally associated with lower 
ABI (higher atherosclerosis), but the association was 
not significant after accounting for multiple testing. The 
effect estimates were unchanged after adjusting for the 
first 4 PCs. Additional file 1: Table S5 shows the associa-
tions for PhenoAA and GrimAA after adjusting for white 
blood cell counts. The associations between GrimAA and 
AAC and multi-site atherosclerosis in Model 3 slightly 
attenuated after adjusting for white blood cells counts 
but remained significant at P < 0.05.

The associations between the DNA methylation-based 
surrogate measures comprising GrimAge and atheroscle-
rosis are shown in Additional file  1: Table  S6. Associa-
tions were adjusted for age, sex, time between measures, 
and white blood cell counts. All components were asso-
ciated with at least one single- or multi-site atheroscle-
rosis measure, with the exception of leptin and TIMP-1 
(P < 0.05). DNAm smoking pack-years was associated 
with each of the atherosclerosis measures and was the 

most significant predictor of CAC, AAC, and multi-site 
atherosclerosis, with consistent direction of effects across 
all of the measures. Compared to the corresponding 
model of GrimAA (Additional file 1: Table S3; Model 1), 
DNAm smoking pack-years was more significantly asso-
ciated with single- and multi-site atherosclerosis, with 
greater magnitude of effects, than the overall GrimAA 
measure.

Longitudinal correlation of methylation risk scores 
and epigenetic age acceleration measures between Phases 
I and II
Compared to the remaining sample, the 129 individuals 
with longitudinal measures of DNA methylation were 
younger (mean age of 53.4 vs. 57.3 years, P < 0.001), had 
a lower multi-site atherosclerosis score (mean of 4.51 vs. 
5.26, P = 0.026) and a lower PhenoAA (mean of − 1.11 
vs. 0.41, P = 0.043). All the remaining epigenetic and 
atherosclerosis measures were similar across both sam-
ples (P > 0.05). The mean time difference between the 
DNA methylation measurements was 5.5  years (stand-
ard deviation = 1.1  years, range 2.5–7.4). All of the epi-
genetic measures were relatively stable between Phases 
I and II, with both MRScarotid and GrimAA showing the 
highest stability (ICC > 0.8) (Table  4). MRScarotid derived 
at Phase II was associated with consistent effect direc-
tion and larger effect magnitude for log-transformed 
AAC (Beta = 1.08, 95% CI 0.380–1.78, P = 0.003) and 
was marginally associated with multi-site atherosclerosis 
(Beta = 0.811, 95% CI 0.090–1.53, P = 0.030) compared 
to the full sample analysis using Phase I MRSs (Table 2, 
Model 3). Neither MRS was associated with CAC or ABI 
at Phase II (Additional file  1: Table  S7). Additionally, 

Table 2  Association between methylation risk scores and atherosclerosis measures in GENOA African-Americans

Model 1 is adjusted for age, sex, time between measures, and the first 4 genetic principal components

Model 2 is adjusted for Model 1 covariates and smoking status

Model 3 is adjusted for Model 2 covariates, hypertension status, diabetes status, body mass index, and total cholesterol levels adjusted for statin use

Beta is the change in the atherosclerosis measure associated with a 1 unit increase in the MRS

P values significant after Bonferroni correction (P < 0.025) are shown in bold font
a Coronary artery and abdominal aorta calcification scores were transformed as ln[(CAC + 1)] and ln[(AAC + 1)]

Outcome Methylation 
risk score

Model 1 Model 2 Model 3

Beta SE P Beta SE P Beta SE P

Coronary artery calcification score (CAC)a MRSCAC​ 0.262 0.146 0.074 0.153 0.173 0.295 0.138 0.139 0.318

MRScarotid 0.700 0.155 8.66 × 10–6 0.425 0.199 0.033 0.411 0.191 0.032

Abdominal aorta calcification score (AAC)a MRSCAC​ 0.364 0.160 0.023 0.175 0.154 0.258 0.173 0.151 0.252

MRScarotid 1.046 0.167 1.10 × 10–9 0.580 0.211 0.006 0.605 0.208 0.004
Ankle–brachial index (ABI) MRSCAC​ 0.013 0.006 0.025 0.015 0.006 0.008 0.016 0.006 0.006

MRScarotid − 0.014 0.006 0.021 − 0.009 0.008 0.275 − 0.007 0.008 0.400

Multi-site atherosclerosis score MRSCAC​ 0.317 0.170 0.064 0.145 0.165 0.382 0.127 0.162 0.433

MRScarotid 1.165 0.177 1.65 × 10–10 0.718 0.225 0.002 0.691 0.223 0.002
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none of the epigenetic age acceleration measures at Phase 
II were associated with atherosclerosis.

Discussion
In this study of African-Americans with a high preva-
lence of hypertension, we examined the association 
between peripheral blood DNA methylation patterns, 
measured at baseline, and multi-site atherosclerosis 
assessed five and 12 years later. After adjusting for CVD 
risk factors, a total of 4 CpGs were associated with multi-
site atherosclerosis, with one of them additionally associ-
ated with ABI (cg09935388) and another associated with 
AAC (cg05575921). DNA methylation at cg18168448 was 
associated with cis-gene expression changes that were 
also associated with CAC in GENOA. An aggregate risk 
score of CpGs, MRSCAC​, was associated with ABI and 
MRScarotid was associated with AAC and multi-site ath-
erosclerosis  after adjusting for CVD risk factors. Gri-
mAA was the only epigenetic age acceleration measure 
associated with atherosclerosis. GrimAA and MRScarotid 
were moderately correlated with each other, and both 
measures were relatively stable over 5 years in a small 
subset of participants with repeated DNA methylation 
measurement. Our findings show evidence of association 
between DNA methylation sites, previously identified in 
a cross-sectional analysis, and atherosclerosis assessed 
5 and 12 years later. Additionally, our findings show evi-
dence of overlap in the association between these CpGs 
and atherosclerosis at different vascular sites. We also 
report an association between age-related methylation 
changes, as measured by the epigenetic clocks, and vas-
cular calcification.

After adjusting for CVD risk factors, four CpG was 
associated multi-site atherosclerosis at FDR < 0.1. The 
direction of effects between the individual CpG sites 
and atherosclerosis in our study were consistent with 
MESA, where hypomethylation was associated with 
increased carotid plaque [27]. All 4 CpGs are in gene 

body regions. Both cg05575921 and cg21161138 are 
at transcription factor binding sites. CpG  cg05575921 
maps to an enhancer chromatin state and cg21161138 
to a weak repressed chromatin state in primary mon-
onuclear cells from peripheral blood (E062) using 
chromHMM tracks from Roadmap Epigenomics [57, 
58].  CpG cg09935388 maps to a CpG island, a DNase 
hypersensitive hotspot, and a weak transcribed chro-
matin state while cg18168448 maps to a repressed 
chromatin state [57, 58].

Three of the significant CpGs (cg05575921, 
cg09935388, and cg21161138) were previously found to 
be associated with smoking [29–32]. When we examined 
the methylation levels of these three CpGs by smoking 
status in GENOA, we observed a dose response associa-
tion where current smokers had the lowest methylation 
levels and never smokers had the highest methylation 
levels (Additional file  1: Fig. S4). Both cg05575921 and 
cg21161138 are located in the AHRR gene body. AHRR 
is an aryl hydrocarbon receptor repressor, which among 
other roles, inhibits the metabolism of polycyclic aro-
matic hydrocarbons and dioxins by competing with 
AHR [59, 60]. The significant association between these 
CpGs and atherosclerosis after adjusting for smoking sta-
tus in our study could potentially be related to residual 
confounding, errors in self-reporting of smoking, and/
or inter-individual sensitivities to smoking with lasting 
biological effects. In a previous analysis in MESA that 
used a candidate gene approach to assess the association 
between CpGs in AHRR and atherosclerosis, hypometh-
ylation at cg05575921 (P = 3.08 × 10−10) and cg21161138 
(P = 7.73 × 10−8) was significantly associated with carotid 
plaque score [61]. Similar to our findings, the associa-
tion with cg05575921 in MESA remained significant after 
adjusting for self-reported smoking exposure, urinary 
cotinine, and other CVD risk factors, and remained sig-
nificant in stratified analysis of former smokers and cur-
rent smokers but not never smokers. Other studies have 
also reported evidence of cg05575921 differential methyl-
ation by air pollution in adults [62], by maternal smoking 
in neonates [63, 64], and by smoking in atherosclerotic 
plaque specimens [65]. Similarly, cg09935388, located in 
the growth factor independent 1 transcriptional repres-
sor gene (GFI1) gene body region, has been found to 
be associated with smoking [32, 66, 67] and exposure 
to maternal smoking in fetuses [68, 69]. GFI1 encodes 
a nuclear zinc finger protein that plays a role in hemat-
opoiesis, oncogenesis, and in controlling histone modifi-
cation as part of a complex with other cofactors [70, 71].

DNA methylation at cg18168448 was also associ-
ated with significantly higher multi-site atherosclerosis 
(FDR = 0.063). The direction of association was consist-
ent for the single-site atherosclerosis measures although 

Table 4  Inter-individual correlations for the epigenetic measures 
(Phases I and II) in GENOA African-Americans (N = 129)

IEAA intrinsic epigenetic age acceleration, EEAA extrinsic epigenetic age 
acceleration, PhenoAA PhenoAge acceleration, GrimAA GrimAge acceleration

Measures Intraclass correlation 
coefficient (95%CI)

MRSCAC​ 0.771 (0.689–0.833)

MRScarotid 0.867 (0.821–0.905)

IEAA 0.726 (0.635–0.802)

EEAA 0.799 (0.726–0.854)

PhenoAA 0.676 (0.569–0.758)

GrimAA 0.888 (0.848–0.921)
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it did not reach statistical significance. CpG cg18168448 is 
located in the first exon region of the leucine-rich repeat-
containing protein 52 (LRRC52), which plays a role in 
the regulation of voltage-gated potassium channel activ-
ity. We found evidence of cis-gene expression changes 
at this CpG, cg18168448, in addition to cg03636183. 
Our findings in EBV transformed B-lymphoblastoid cell 
lines are complimentary to those reported previously in 
monocytes [27]. DNA methylation at cg18168448 was 
associated with decreased expression of the aldehyde 
dehydrogenase 9 family member A1 (ALDH9A1) and 
increased expression of ENSG00000236364, which is 
antisense to UCK2. ALDH9A1 encoded enzyme has high 
activity for oxidation of gamma-aminobutyraldehyde and 
other amino aldehydes. UCK2 encodes a pyrimidine rib-
onucleoside kinase, which catalyzes the phosphorylation 
of uridine and cytidine. DNA methylation at cg0363183 
located in the body region of F2R like thrombin or 
trypsin receptor 3 (F2RL3) was associated with signifi-
cant decreased gene expression of that gene. F2RL3 plays 
a role in blood coagulation and inflammation, and meth-
ylation at cg0363183 has been previously found to be 
associated with smoking [72], cardiometabolic traits [73], 
coronary artery disease [74], and morality [75]. The genes 
corresponding to the 4 significant CpGs and those identi-
fied in the cis-gene expression analysis are expressed in 
low to medium levels in multiple tissue types, with the 
exception of LRRC52 which is mainly expressed in the 
testis [76]. AHRR, GF1, ALDH9A1, ENSG00000236364, 
and F2RL3 have at least a low level of expression in the 
arteries, heart, and whole blood.

In our study, MRSCAC​ was associated with AAC and 
ABI and the association fully attenuated after adjusting 
for CVD risk factors for AAC. MRScarotid was associated 
with all of the atherosclerosis measures in Model 1 and 
AAC and the derived multi-site atherosclerosis scores 
remained significant after adjusting for CVD risk fac-
tors. Two of the significant CpGs in MRScarotid explained 
a slightly higher percent of the variability of multi-site 
atherosclerosis compared to that explained by MRScarotid, 
potentially due to added noise generated by including 
CpGs not as strongly associated with atherosclerosis in 
African-Americans. It is not clear why carotid plaque-
associated CpGs were better predictors of atheroscle-
rosis than CAC-associated ones  in our sample. One 
notable finding in MESA was that both the transcriptome 
signature of AT-rich interaction domain 5B (ARID5B) 
and a cg25953130 site in the gene were associated with 
CAC and carotid plaque atherosclerosis measures [27]. 
In GENOA, cg25953130 was only nominally associated 
with multi-site atherosclerosis after adjusting for CVD 
risk factors (Beta = − 0.596, 95%CI − 0.063 to − 1.13, 
P = 0.029), but the effect direction was consistent across 

studies. In MESA, out of seven CpGs associated with 
CAC (FDR < 0.05) in the full sample, only 3 were signifi-
cant in the African-American sub-sample, although the 
magnitude and direction of effect were consistent across 
ancestry groups. Also, despite having similar age distri-
butions, MESA multi-ethnic participants had a higher 
median CAC score than African-Americans in GENOA, 
and MESA had also a lower percentage of females. The 
prevalence of CAC in GENOA was low (median: 18.7 
and IQR 0–195.7) with about 40% of the sample having 
an Agatston score of zero. In MESA, participants had a 
median CAC score of 46 (IQR 0–305), and the propor-
tion with no detectable CAC was not reported. This is 
consistent with evidence from epidemiological studies 
showing that African-Americans tend to have lower cal-
cification in the coronary arteries compared to Whites 
[77–79]. Hence, the CpGs included in the MRSCAC​ could 
be related to a more extreme form of the trait versus the 
lower atherosclerosis burden seen in GENOA. Another 
difference between MESA and GENOA is that the meth-
ylation signature in MESA was measured in monocytes, 
which have a well-established role in atherogenesis [80, 
81], while the DNA methylation in GENOA was meas-
ured in all white blood cells. This could have the effect 
of diluting the associations observed in MESA if some 
cell types have different methylation patterns com-
pared to monocytes. Additionally, the ICC of MRSCAC​ 
was low, which could indicate a lower stability of meth-
ylation at these sites. This could be particularly relevant 
to GENOA, as we assessed the association with CAC 
12  years after DNA methylation measurement, while in 
MESA methylation and atherosclerosis were assessed 
concurrently.

GrimAA was the only epigenetic age acceleration 
measure associated with atherosclerosis in GENOA after 
adjusting for CVD risk factors. Increased GrimAA, 
indicative of increased biological aging, was associated 
with higher atherosclerosis. Very few other studies have 
examined epigenetic age associations with subclinical 
measures of CVD. In a cross-sectional analysis of 2500 
African-Americans from the Atherosclerosis Risk in 
Communities (ARIC) study, a 5-year increase in both 
the Horvath and the Hannum acceleration measures 
was associated with an approximately 0.01 mm increase 
in carotid intima thickness [28]. We did not find asso-
ciations between the Horvath and Hannum measures 
we evaluated (IEAA and EEAA) and atherosclerosis. 
Epigenetic aging measures include different CpG sites, 
differ in how they were trained, and are hypothesized 
to capture different biological processes and aspects of 
aging [16, 51]. Both GrimAA and PhenoAA were trained 
using longitudinal data, making them better predictors 
of aging-related outcomes [82, 83]. Two recent studies of 
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participants of European ancestry have found that Gri-
mAA outperforms the other acceleration measures in 
its association with incident CVD [25, 26] and all-cause 
mortality [25, 84]. Our reported associations attenuated 
slightly after adjusting for white blood cell counts but 
remained significant, suggesting that the effects were 
not mediated by blood cell composition. In our study, 
GrimAA was correlated with MRScarotid, with the smok-
ing pack-years component of GrimAge being slightly 
more correlated with MRScarotid than the overall Gri-
mAA measure. While we do not know the individual 
CpGs comprising GrimAge, we know of one CpG over-
lap, cg05575921, between GrimAge and MRScarotid, and 
potentially other smoking-related CpGs, which may 
explain the observed correlations [17].

Our results show that the epigenetic measures most 
strongly associated with atherosclerosis, GrimAA and 
MRScarotid, had moderate stability (ICC: 0.822 and 0.888, 
respectively) across repeated samples taken approxi-
mately 5 years apart. The characteristic of reliability 
over time is an important consideration for biomarkers 
that may be used for risk prediction. Further studies are 
needed to fully characterize the longitudinal patterns of 
DNA methylation, especially in response to known driv-
ers of DNA methylation changes, such as smoking. In 
GENOA, smoking status was unchanged for the majority 
of the sample between Phases I and III, with only 27 cur-
rent smokers becoming former smokers. One study that 
looked at the longitudinal changes of fetal DNA methyla-
tion in response to maternal smoking using serial samples 
at birth, age 7, and age 17 found evidence of reversible 
methylation changes at cg09935388 (GFI1) and persis-
tent methylation changes at cg05575921 (AHRR) [69]. 
An epigenome-wide study of adult smoking reported 
that out of approximately 2600 CpGs that were differ-
entially methylated between current versus never smok-
ers, 185 CpGs showed patterns of persistent methylation 
changes between former versus never smokers, includ-
ing cg05575921, cg09935388, and cg21161138 CpGs 
[85]. Most recently, Dugue et al. reported a reversibility 
coefficient (ratio of regression coefficients comparing 
former to current smokers and never to current smok-
ers) between 69 and 75% at cg05575921, cg09935388, 
and cg21161138 [86]. Little is known regarding the lon-
gitudinal trends of GrimAA; however, a longitudinal 
trend of increased GrimAA with increasing age has been 
observed in one study [87].

One strength of our study is that we examined ath-
erosclerosis at multiple vascular sites which reflect both 
intimal and medial vascular changes that may manifest 
differentially over time. CAC has been more extensively 
studied because it appears in a more clinically relevant 
vascular site [88] and is more strongly associated with 

coronary disease compared to carotid intima thick-
ness [89]. Abdominal aorta atherosclerosis has been less 
extensively studied, yet evidence suggests that the associ-
ations of CAC and AAC with CVD are independent and 
additive [8, 13]. AAC starts earlier in life, is more preva-
lent than CAC, and may be associated with an increased 
risk of onset and progression of CAC and/or lower ABI 
[90, 91]. Given the low prevalence of CAC and previous 
findings that it may not carry the same pathobiological 
significance in African-Americans [92], incorporating 
extracoronary calcification may be informative and use-
ful for risk assessment.

A limitation of our study is the attrition of participants 
between Phases I and III. In a previous work, we have 
noted that participants who were lost to follow-up had 
higher epigenetic age acceleration and higher CVD risk 
[93]. Additionally, we did not have measures of carotid 
plaque which was included in the multi-site atherosclero-
sis score that we used as a model for our score in GENOA 
[50], and the GENOA atherosclerosis measures were not 
all assessed concurrently. Additionally, seven significant 
CpGs from MESA were not available in GENOA because 
of the different arrays used. Further, we only examined 
cis-gene expression associated with DNA methyla-
tion, and thus did not capture trans-regulatory effects. 
Finally, gene expression was assayed in EBV transformed 
B-lymphoblastoid cell lines, which may not accurately 
reflect gene expression patterns in the white blood cells 
in which DNA methylation was measured. Previous find-
ings show that significant differences exist in the DNA 
methylation profiles of EBV transformed lymphoblastoid 
cell lines and peripheral blood [94–96]. As such, gene 
expression profiles may also differ [95, 97], and our find-
ings should be interpreted with caution.

Conclusions
In conclusion, our study found evidence of associations 
between DNA methylation and atherosclerosis at mul-
tiple vascular sites after accounting for traditional CVD 
risk factors. DNA methylation changes were at CpGs 
with previously reported smoking-related changes. 
Despite being derived from CpGs associated with carotid 
plaque, MRScarotid was associated with atherosclerosis 
in the coronary arteries and abdominal aorta suggesting 
common pathobiological mechanisms of atherosclerosis 
on a systemic level. One epigenetic aging measure, Gri-
mAA, was also associated with multi-site atheroscle-
rosis beyond traditional CVD risk factors. This is one 
of the very few studies to examine the DNA methyla-
tion signature of multiple atherosclerosis measures in a 
population-based cohort comprised solely of African-
Americans. These results further our understanding of 
the relationship between  epigenetics, biological aging, 
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and atherosclerosis. Future work in this area, including 
in other racial groups, may lead to the identification of 
potential biomarkers of atherosclerosis, lead to better 
identification of those at increased risk for atherosclero-
sis, and further help delineate causes of cardiovascular 
disease disparities across populations.
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