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Abstract 

Metformin and weight loss relationships with epigenetic age measures—biological aging biomarkers—remain 
understudied. We performed a post-hoc analysis of a randomized controlled trial among overweight/obese breast 
cancer survivors (N = 192) assigned to metformin, placebo, weight loss with metformin, or weight loss with placebo 
interventions for 6 months. Epigenetic age was correlated with chronological age (r = 0.20–0.86; P < 0.005). However, 
no significant epigenetic aging associations were observed by intervention arms. Consistent with published reports 
in non-cancer patients, 6 months of metformin therapy may be inadequate to observe expected epigenetic age 
deceleration. Longer duration studies are needed to better characterize these relationships.
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Introduction
Existing evidence suggests that metformin and weight 
loss interventions may be useful strategies for promot-
ing anti-aging processes including improvements in 
overall health and lifespan [1]. Still, the relationships of 
these therapeutic interventions with epigenetic aging 
(EA) measures—DNA methylation-based biomarkers of 
biological aging—remain understudied. Along with pre-
dicting chronological age, long-term health status, and 
mortality, EA biomarkers may be helpful in tracking the 
effectiveness of health interventions such as metformin 
and weight loss therapy [2, 3]. Nevertheless, randomized 
trials including EA outcomes in this therapeutic con-
text—and others—remain sparse.

We performed a post-hoc analysis of a rand-
omized controlled trial with a 2 × 2 factorial design 
(NCT01302379) among overweight/obese postmenopau-
sal breast cancer survivors to examine relationships of 
metformin and weight loss therapy with nine EA meas-
ures [4]. These markers were selected based on their 
strong associations with health/lifespan and/or their 
novelty. They also reflect different domains of human 
biological aging including estimates of mortality, mitosis, 
and telomere length [5–7]. Hannum, Horvath, and Skin-
BloodClock epigenetic age are primarily viewed as DNA 
methylation predictors of chronological age; nonetheless, 
studies have linked these biomarkers to health status. 
PhenoAge is a leading biomarker of healthspan, while 
GrimAge is a biomarker of lifespan. DNAm TL is a DNA 
methylation-based estimator of telomere length, while 
mitotic age (MiAge) and epigenetic time to cancer 1/2 
(EpiTOC/EpiTOC2) are DNA methylation-based bio-
markers of mitotic cell divisions. We hypothesized that 
metformin and weight loss, in combination or indepen-
dently, would decelerate epigenetic aging thus reflecting 
decreased aging-associated disease risk. By performing 
a comprehensive analysis of EA measures that provide 
different information on biological aging, we hoped to 
achieve a more nuanced understanding of metformin and 
weight loss EA relationships.

Methods
Study participants (N = 333) were randomly assigned to 
daily metformin, placebo, a weight loss intervention with 
metformin, or weight loss with placebo for 6  months. 
Fasting blood samples were collected at baseline and the 
final 6-month visit. Additional information about the 
study population, design, and approvals have been previ-
ously published [1, 4].

DNA was isolated from buffy coat samples using the 
Gentra Puregene Blood Kit (Qiagen), and quantified 
using the Quant-iT™ PicoGreen™ dsDNA Assay Kit 
(Invitrogen) as per the manufacturers’ protocols. DNA 

from samples that  passed all preliminary quality con-
trol steps were processed for bisulfite conversion using 
500 ng of each sample with the EZ DNA Methylation Kit 
(Zymo Research) in accordance with the manufacturer’s 
instructions.

Given resource constraints, we were only able to per-
form methylation analyses on 192 of the trial partici-
pants. DNA methylation analyses were performed on 
randomly sampled blood from 192 participants using 
the Illumina Infinium MethylationEPIC BeadChip. Con-
strained randomization was conducted to assign one 
matched pair from each of the four treatment arms to 
each BeadChip, for a total of 8 samples per chip. The 
relative positions of the samples were randomized within 
each BeadChip while keeping matched pairs adjacent to 
each other. Raw data files were pre-processed, and nor-
malized by functional normalization as implemented in 
the “minfi” Bioconductor package. Cross-reactive probes 
[8], probes for which the detection p-value exceeded the 
threshold of 0.01, and probes for which data was missing 
in > 5% of the samples were excluded, leaving a final data 
set of 818,493 probes for the samples. Quality control 
assessments were conducted using the “minfi” Biocon-
ductor package. Raw signal intensities in both green and 
red channels were consistent across all samples (Addi-
tional file 1: Figure S1A and B), and all samples clustered 
with high signal intensity on both green and red channels 
(Additional file 1: Figure S1C). Multidimensional scaling 
(MDS) was applied to evaluate the effect of sample plate, 
sentrix position, and sentrix ID (Additional file 1: Figure 
S1D–F) on sample variation, where no clear batch effects 
were observed. Processed and normalized beta values 
were then used to calculate measures of EA. EpiTOC/
EpiTOC2 and MiAge were calculated using R code from 
https://​doi.​org/​10.​5281/​zenodo.​26329​38 and http://​www.​
colum​bia.​edu/​~sw2206/​softw​ares.​htm, respectively. The 
remaining EA measures were calculated using a publicly 
available calculator (http://​dnama​ge.​genet​ics.​ucla.​edu).

We first used unadjusted linear mixed effects regression 
models to examine baseline to end of study differences in 
each of the nine age-adjusted EA acceleration biomarkers 
when comparing the intervention arms (weight loss, met-
formin only, and weight loss plus metformin) to placebo. 
Models included a random intercept for participants to 
account for repeated measures. We repeated this analy-
sis using models adjusted for days from randomization 
to end of study and DNA methylation estimates of leuko-
cyte composition. Finally, we performed unadjusted and 
adjusted sensitivity analyses comparing high adherence 
weight loss (≥ 5% weight loss), high adherence metformin 
(≥ 80% pill adherence), and high adherence weight loss 
plus high adherence metformin to placebo. All statistical 

https://doi.org/10.5281/zenodo.2632938
http://www.columbia.edu/~sw2206/softwares.htm
http://www.columbia.edu/~sw2206/softwares.htm
http://dnamage.genetics.ucla.edu
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analyses were performed using R Version 3.6.3 (R Core 
Team, Vienna, Austria).

Results
Participant characteristics have been described in pre-
viously published work [4]. On average, participants 
were approximately 63  years of age. In the present 

analysis, all EA measurements had statistically signifi-
cant Pearson correlations with chronological age, but 
the strength of the correlations varied (Fig.  1). The 
epigenetic mitotic clocks shared the weakest positive 
correlations with chronological age. Specifically, the 
MiAge correlation was the weakest (r = 0.20, P = 0.005). 
The DNAm SkinBloodClock (r = 0.86, P < 0.001) 

Fig. 1  Epigenetic Age and Chronological Age Pearson Correlations. Figure presents the baseline chronological age and epigenetic age correlation 
coefficients for the study sample (N = 192) for DNAmAge Hannum (A), DNAmAge Horvath (B), DNAmAge SkinBloodClock (C), DNAm PhenoAge (D), 
DNAm GrimAge (E), DNAm TL (F), EpiTOC (G), EpiTOC2 (H), and MiAge (I)
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Table 1  Estimated difference in epigenetic age biomarkers after 6 months of metformin and weight loss program interventions 
compared to placebo (N = 192)

Aging biomarker models Weight loss only (N = 48) Metformin only (N = 48) Weight loss plus metformin 
(N = 48)

difference in DNA 
methylation biomarker 
(95% CI)

P Difference in DNA 
methylation biomarker 
(95% CI)

P difference in DNA 
methylation biomarker 
(95% CI)

P

EAA Hannum units: years

Unadjusted Intent to Treat 1.13 (− 0.46, 2.73) 0.16 0.25 (− 1.35, 1.84) 0.76 1.05 (− 0.55, 2.64) 0.20

Adjusted Intent to Treat 0.98 (− 0.48, 2.44) 0.19 0.47 (− 0.98, 1.91) 0.53 0.45 (− 1.04, 1.95) 0.55

Unadjusted High Adherence* 1.03 (− 0.95, 3.02) 0.30 0.43 (− 1.29, 2.16) 0.62 1.35 (− 0.58, 3.28) 0.17

Adjusted High Adherence* − 0.04 (− 1.89, 1.81) 0.97 0.60 (− 0.98, 2.19) 0.45 0.61 (− 1.20, 2.43) 0.51

EAA Horvath units: years

Unadjusted Intent to Treat 0.96 (− 0.76, 2.68) 0.27 − 0.20 (− 1.93, 1.52) 0.81 − 0.25 (− 1.97, 1.48) 0.78

Adjusted Intent to Treat 0.74 (− 1.06, 2.53) 0.42 − 0.34 (− 2.11, 1.43) 0.70 − 0.59 (− 2.43, 1.25) 0.53

Unadjusted High Adherence* − 0.26 (− 2.48, 1.97) 0.82 − 0.21 (− 2.15, 1.72) 0.83 0.38 (− 1.78, 2.55) 0.73

Adjusted High Adherence* − 0.11 (− 2.49, 2.26) 0.93 − 0.26 (− 2.28, 1.77) 0.80 0.04 (− 2.29, 2.37) 0.97

EAA SkinBloodClock units: years

Unadjusted Intent to Treat 0.81 (− 0.54, 2.15) 0.24 − 0.68 (− 2.03, 0.66) 0.32 0.26 (− 1.08, 1.61) 0.70

Adjusted Intent to Treat 0.86 (− 0.48, 2.19) 0.21 − 0.69 (− 2.01, 0.63) 0.30 0.40 (− 0.96, 1.77) 0.56

Unadjusted High Adherence* 1.01 (− 0.67, 2.68) 0.24 − 0.99 (− 2.45, 0.46) 0.18 0.52 (− 1.10, 2.15) 0.53

Adjusted High Adherence* 0.77 (− 0.90, 2.43) 0.37 − 1.09 (− 2.52, 0.34) 0.13 0.52 (− 1.12, 2.16) 0.53

Intrinsic EAA (IEAA) units: years

Unadjusted Intent to Treat 0.74 (− 0.96, 2.44) 0.39 − 0.22 (− 1.91, 1.48) 0.80 − 0.36 (− 2.06, 1.34) 0.68

Adjusted Intent to Treat 0.74 (− 1.05, 2.53) 0.42 − 0.40 (− 2.17, 1.37) 0.66 − 0.63 (− 2.47, 1.20) 0.50

Unadjusted High Adherence* − 0.38 (− 2.58, 1.82) 0.73 − 0.16 (− 2.08, 1.75) 0.87 0.12 (− 2.02, 2.26) 0.91

Adjusted High Adherence* − 0.06 (− 2.45, 2.32) 0.96 − 0.33 (− 2.36, 1.70) 0.75 0.02 (− 2.32, 2.35) 0.99

Extrinsic EAA (EEAA) units: years

Unadjusted Intent to Treat 1.39 (− 0.66, 3.44) 0.18 0.13 (− 1.92, 2.19) 0.90 1.56 (− 0.49, 3.62) 0.13

Adjusted Intent to Treat 1.05 (− 0.55, 2.66) 0.20 0.60 (− 0.99, 2.18) 0.46 0.56 (− 1.08, 2.20) 0.50

Unadjusted High Adherence* 1.57 (− 0.94, 4.08) 0.22 0.42 (− 1.77, 2.60) 0.71 1.79 (− 0.66, 4.23) 0.15

Adjusted High Adherence* − 0.12 (− 2.15, 1.90) 0.90 0.78 (− 0.95, 2.51) 0.38 0.70 (− 1.29, 2.68) 0.49

EAA PhenoAge units: years

Unadjusted Intent to Treat 1.92 (− 0.30, 4.14) 0.09 0.79 (− 1.43, 3.01) 0.48 0.40 (− 1.82, 2.63) 0.72

Adjusted Intent to Treat 2.02 (0.02, 4.03) 0.05 0.82 (− 1.16, 2.80) 0.41 − 0.12 (− 2.17, 1.93) 0.91

Unadjusted High Adherence* 3.32 (0.56, 6.08) 0.02 1.03 (− 1.37, 3.43) 0.40 0.58 (− 2.11, 3.27) 0.67

Adjusted High Adherence* 2.75 (0.18, 5.32) 0.04 0.98 (− 1.22, 3.17) 0.38 0.48 (− 2.04, 3.00) 0.70

EAA GrimAge units: years

Unadjusted Intent to Treat 0.76 (− 0.61, 2.12) 0.28 − 0.89 (− 2.26, 0.48) 0.20 0.26 (− 1.10, 1.63) 0.70

Adjusted Intent to Treat 0.76 (− 0.58, 2.10) 0.27 − 0.91 (− 2.24, 0.41) 0.18 − 0.39 (− 1.76, 0.98) 0.58

Unadjusted High Adherence* 1.61 (− 0.10, 3.33) 0.07 − 0.65 (− 2.14, 0.85) 0.39 0.45 (− 1.22, 2.12) 0.59

Adjusted High Adherence* 1.38 (− 0.33, 3.10) 0.11 − 0.74 (− 2.21, 0.73) 0.32 − 0.05 (− 1.73, 1.63) 0.95

DNAm TL Age Adjusted units: kb

Unadjusted Intent to Treat − 0.07 (− 0.14, 0.01) 0.09 − 0.03 (− 0.10, 0.05) 0.52 − 0.02 (− 0.09, 0.06) 0.67

Adjusted Intent to Treat − 0.04 (− 0.11, 0.02) 0.20 − 0.03 (− 0.10, 0.04) 0.41 0.01 (− 0.06, 0.08) 0.68

Unadjusted High Adherence* − 0.10 (− 0.20, − 9.5e−4) 0.05 − 2.2e−4 (− 0.09, 0.08) 0.99 − 0.03 (− 0.13, 0.07) 0.53

Adjusted High Adherence* − 0.06 (− 0.14, 0.03) 0.21 − 0.01 (− 0.08, 0.07) 0.80 0.01 (− 0.08, 0.09) 0.86

EpiTOC IR units: DNAm

Unadjusted Intent to Treat 5.7e−5 (− 5.9e−5, 1.7e−4) 0.34 5.7e−5 (− 5.9e−5, 1.7e−4) 0.34 1.1e−4 (− 5.0e−6, 2.3e−4) 0.06

Adjusted Intent to Treat 1.8e−5 (− 8.1e−5, 1.2e−4) 0.72 4.1e−5 (− 5.6e−5, 1.4e−4) 0.40 5.5e−5 (− 4.5e−5, 1.6e−4) 0.28

Unadjusted High Adherence* 3.0e−5 (− 1.2e−4, 1.8e−4) 0.69 8.9e−5 (− 3.8e−5, 2.2e−4) 0.17 9.0e−5 (− 5.2e−5, 2.3e−4) 0.21

Adjusted High Adherence* 6.6e−6 (− 1.17e−4, 1.3e−4) 0.92 8.5e−5 (− 2.1e−5, 1.9e−4) 0.12 5.1e−7 (− 1.2e−4, 1.2e−4) 0.99
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followed by DNAm GrimAge (r = 0.83, P < 0.001) dem-
onstrated the strongest positive chronological age 
correlations. DNAmTL, as anticipated, was the only 
measure that was negatively correlated with chronolog-
ical age (r = − 0.58, P < 0.001).

In unadjusted intent-to-treat models, when compared 
to placebo, no treatment arm demonstrated any statisti-
cally significant differences or notable trends for any EA 
marker (Table  1). The results remained null even when 
intent-to-treat models included adjustments for leuko-
cyte composition and number of days from randomiza-
tion to the end of the study. Unadjusted and adjusted 
sensitivity analyses that focused on examining differences 
between high intervention adherence women and those 
in the placebo group also did not demonstrate any nota-
ble trends for any EA marker. Although weight loss—
compared to placebo—was associated with EA in high 
adherence models, the association was in the opposite 
direction as expected and would not persist after multi-
ple testing adjustment.

Discussion
Correlations of chronological age with EA demonstrate 
good to excellent performance of these markers in post-
menopausal breast cancer survivors; however, we observe 
no compelling evidence that leukocyte EA is impacted by 
6 months of metformin and/or a weight loss intervention. 
Still, the reasons for this lack of a statistically significant 
relationship may be multi-faceted and highly informative 
for future randomized trials including EA.

It is possible that 6 months is not an adequate amount 
of time to observe metformin and/or weight loss related 
leukocyte EA changes. Although the initial trial reported 
significant changes in blood levels of molecules like insu-
lin and estradiol [4], it is possible that these molecules 
do not mediate EA changes or that it simply takes longer 
for these changes to be detectable. This latter assertion 
is supported by the one existing trial of similarly dosed 
metformin therapy in combination with growth hormone 
and dehydroepiandrosterone where significant EA decel-
eration is only observed after 6 months [9]. Additionally, 
some EA markers have demonstrated tissue specificity 
for certain processes. For instance, previous observa-
tional studies of obesity were able to identify significant 
EA acceleration in hepatocytes but not leukocytes from 
the same subjects [10]. Lastly, the median error of these 
clocks are larger than one year—a challenge for testing 
short-term interventions—and our analysis may have 
been underpowered for this specific EA analysis.

Contrary to our hypothesis, we observed that weight 
loss—compared to placebo—was associated with acceler-
ated EA in high adherence models. Even if these findings 
would not persist after multiple testing adjustment, it is 
worth speculating on the converse nature of this relation-
ship. Although, weight loss is primarily thought to have 
a beneficial effect on aging and health by improving car-
diometabolic and other physiological profiles, there have 
been reports of the contrary [11, 12]. One important con-
sideration is the coexistence of sarcopenia in older over-
weight/obese cancer patients [13]. Having diminished 
lean mass compared to fat mass already places these 

Adjusted models include adjustments for number of days from randomization to end of study and leukocyte abundance/proportions

*Sample sizes for high adherence models are: placebo (N = 48), weight loss only (N = 23), metformin only (N = 36), and weight loss plus metformin (N = 25)

EAA = epigenetic age acceleration (residuals of regressing epigenetic age on chronological age)

IR = intrinsic rate of cell divisions (calculated by dividing mitotic clock measurements by chronological age)

Table 1  (continued)

Aging biomarker models Weight loss only (N = 48) Metformin only (N = 48) Weight loss plus metformin 
(N = 48)

difference in DNA 
methylation biomarker 
(95% CI)

P Difference in DNA 
methylation biomarker 
(95% CI)

P difference in DNA 
methylation biomarker 
(95% CI)

P

EpiTOC2 IR units: cell divisions

Unadjusted Intent to Treat 3.78 (− 2.29, 9.85) 0.22 2.66 (− 3.41, 8.73) 0.39 5.91 (− 0.16, 11.98) 0.06

Adjusted Intent to Treat 1.43 (− 3.57, 6.44) 0.57 1.85 (− 3.10, 6.81) 0.46 2.73 (− 2.37, 7.84) 0.29

Unadjusted High Adherence* 2.79 (− 4.84, 10.42) 0.47 4.17 (− 2.47, 10.80) 0.22 4.82 (− 2.60, 12.24) 0.20

Adjusted High Adherence* 0.90 (− 5.46, 7.26) 0.78 4.07 (− 1.39, 9.53) 0.14 − 0.18 (− 6.41, 6.05) 0.95

MiAge IR units: cell divisions

Unadjusted Intent to Treat 0.28 (− 0.92, 1.45) 0.66 0.28 (− 0.90, 1.47) 0.64 0.69 (− 0.49, 1.88) 0.25

Adjusted Intent to Treat − 0.14 (− 1.05, 0.77) 0.77 0.13 (− 0.77, 1.03) 0.78 0.37 (− 0.56, 1.30) 0.44

Unadjusted High Adherence* 0.24 (− 1.22, 1.70) 0.75 0.46 (− 0.81, 1.73) 0.47 0.67 (− 0.75, 2.09) 0.35

Adjusted High Adherence* − 0.11 (− 1.26, 1.04) 0.85 0.49 (− 0.50, 1.48) 0.33 − 0.11 (− 1.24, 1.02) 0.85
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individuals at risk for frailty/disability [14]. Interventions 
that focus on weight loss irrespective of the type could 
potentially lead to further decreases in muscle mass. The 
exacerbation of this muscle-fat imbalance could be a 
source of increased morbidity as evidenced by increased 
biological aging. Still, the phone-based program in this 
trial had a calorie goal component as well as a moderate-
intensity physical activity goal of 300 min/week [1]. Thus, 
the etiology of this converse relationship in this trial mer-
its further investigation.

In conclusion, randomized trials including EA remain 
critical for defining the clinical utility of these biomark-
ers. Intervention duration, characterizing muscle versus 
fat specific impacts of diet/weight loss interventions, and 
best matching tissues of EA measurement to biological 
processes of interest—when possible—remain important 
considerations in designing future EA randomized trials.
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