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Abstract 

Background:  The prevalence of cardiometabolic disease (CMD) is rising globally, with environmentally induced epi-
genetic changes suggested to play a role. Few studies have investigated epigenetic associations with CMD risk factors 
in children from low- and middle-income countries. We sought to identify associations between DNA methylation 
(DNAm) and CMD risk factors in children from India and The Gambia.

Results:  Using the Illumina Infinium HumanMethylation 850 K Beadchip array, we interrogated DNAm in 293 Gam-
bian (7–9 years) and 698 Indian (5–7 years) children. We identified differentially methylated CpGs (dmCpGs) associated 
with systolic blood pressure, fasting insulin, triglycerides and LDL-Cholesterol in the Gambian children; and with insu-
lin sensitivity, insulinogenic index and HDL-Cholesterol in the Indian children. There was no overlap of the dmCpGs 
between the cohorts. Meta-analysis identified dmCpGs associated with insulin secretion and pulse pressure that were 
different from cohort-specific dmCpGs. Several differentially methylated regions were associated with diastolic blood 
pressure, insulin sensitivity and fasting glucose, but these did not overlap with the dmCpGs. We identified significant 
cis-methQTLs at three LDL-Cholesterol-associated dmCpGs in Gambians; however, methylation did not mediate 
genotype effects on the CMD outcomes.

Conclusion:  This study identified cardiometabolic biomarkers associated with differential DNAm in Indian and Gam-
bian children. Most associations were cohort specific, potentially reflecting environmental and ethnic differences.

Keywords:  EMPHASIS, DNA methylation, Epigenetics, Cardiovascular disease risk, Cardiometabolic risk factors, Early 
childhood risk factors
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Background
Cardiometabolic disease (CMD) describes a range of 
conditions characterised by insulin resistance (IR), 
impaired glucose tolerance, dyslipidaemia and hyper-
tension, risk factors for type 2 diabetes and cardiovascu-
lar disease (CVD). The increasing prevalence of CMDs 
poses a serious health burden. Although CMD is tradi-
tionally associated with high-income countries (HICs), 
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prevalence has rapidly increased in low- and middle-
income countries (LMICs) [1, 2]. Globally, the prevalence 
of type 2 diabetes has increased between 1980 and 2014 
[3], but at higher rates in LMICs [1]. The prevalence of 
childhood hypertension in Central India is reported to 
be 6.8–7.0% [4] rising to 9.5% in Chennai [5], compared 
to 4% globally. Furthermore, mortality occurs earlier in 
LMICs, with the number of years spent living with these 
conditions increasing [2, 3], escalating the societal and 
individual health burden. The rapid rise in CMD cannot 
be explained solely by fixed genetic factors, but suggests 
that environmental factors may contribute, including 
a change from traditional to western diets, increased 
intake of processed foods, urbanisation and reduced 
physical activity [6, 7]. Moreover, there is substantial 
evidence that early life environmental exposures during 
critical developmental windows modulate CMD risk [8, 
9]. Exposure to persistent undernutrition, poor quality 
diets and a high burden of infectious diseases in utero 
and in early childhood are suggested to induce metabolic 
adaptations to aid survival. However, these adaptations 
may be detrimental in later life, limiting metabolic capac-
ity in response to an obesogenic environment [10]. The 
early onset of cardiovascular and metabolic conditions in 
adults from LMICs compared to HICs may reflect such 
adverse early life adaptations.

The environment can influence phenotype through 
epigenetic processes. The most widely studied epigenetic 
mechanism is DNA methylation (DNAm), with evidence 
from both human and animal studies linking environ-
mental exposures to DNAm and metabolic changes and 
altered CMD risk susceptibility [11–13]. In humans, 
candidate gene and epigenome-wide association stud-
ies (EWAS) have identified robust associations between 
DNAm and CMD traits in adulthood, which have been 
replicated across cohorts [14–16]. However, EWAS have 
primarily been carried out in HIC cohorts, with limited 
analysis of individuals from LMICs. As DNAm is influ-
enced by both the environment and genotype [17], the 
extent to which methylation markers of CMD traits from 
HIC can be extrapolated to LMICs is unknown. Moreo-
ver, previous EWAS have focussed on CMD-associated 
DNAm changes in adults. Limited studies have exam-
ined DNAm in children, where the influence of early life 
environmental exposures may be stronger, with the pos-
sibility to detect methylation signatures associated with 
sub-clinical changes in metabolic function before disease 
onset.

In this study, we analysed DNAm in children from the 
EMPHASIS study [18] (Epigenetic Mechanisms linking 
Pre-conceptional nutrition and Health ASsessed in India 
and sub-Saharan Africa; ISRCTN14266771) which includes 
two LMIC cohorts, one each from India and The Gambia. 

Previously, we investigated the effect of maternal micronu-
trient supplementation on DNAm in their children [19]. 
Here, we sought to investigate associations of DNAm with 
cardiometabolic risk markers in children from each cohort, 
and in both cohorts combined through a meta-analysis. We 
also examined the potential influence of genetic variants 
and maternal micronutrient intervention at associated loci.

Results
Cohort characteristics
The characteristics of the children in the two cohorts are 
summarised in Table 1 and stratified by sex in Additional 
file 1: Table S1. There were 289 Gambian children (53.6% 
male), with a median age of 9.0 years and 686 Indian chil-
dren (55.1% male), with a median age of 5.8 years. Mean 
blood pressure (systolic, diastolic and pulse pressure) 
was generally lower in the Indian children compared to 
the Gambian children. The Indian children also showed 
lower fasting, 30-min and 120-min glucose levels during 
an OGTT, whereas the Gambian children showed lower 
fasting insulin levels. Triglyceride and LDL levels were 
higher in the Indian children, whereas HDL levels were 
higher in the Gambian children.

Gambian EWAS
DNA methylation was examined using the Illumina 
Infinium HumanMethylation 850  K Beadchip array in 
peripheral blood samples from the Gambian children, 
and robust linear regression used to identify associa-
tions between DNA methylation and concurrent cardio-
metabolic risk factors. A full list of significant dmCpGs 
(FDR < 0.05) can be found in Table 2, alongside equivalent 
statistics from the Indian cohort. There were no signifi-
cant sex interactions with the dmCpGs identified in the 
Gambian children. Further details are described below.

Blood pressure
There were three significant DNAm associations with 
systolic blood pressure (SBP) (Fig.  1a). The two most 
significant dmCpGs were cg13455829 in the body 
of the Mediator Complex Subunit 22 (MED22) gene 
(FDR = 0.015, Fig.  1b); and cg22671726 within the 
Egl-9 Family Hypoxia Inducible Factor 2 (EGLN2) gene 
(FDR = 0.015, Fig. 1c). A 1 mmHg SBP increase was asso-
ciated with a 0.054% increase in DNAm at cg13455829 
(95% CI = 0.03, 0.07) and a 0.017% decrease in meth-
ylation of cg22671726 (95% CI = −0.02, −0.01). These 
dmCpGs were not associated with SBP in the Indian chil-
dren. There were no significant associations with dias-
tolic blood pressure (DBP) or pulse pressure (PP).
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Glucose levels
There were no significant associations of DNAm with 
children’s fasting, 30-min or 120-min glucose levels.

Insulin levels
There were two dmCpGs associated with fasting insu-
lin levels: cg22388948 in the body of the Family with 
Sequence Similarity 46 Member A (FAM46A) gene 
(FDR = 0.014); and cg13934266 in the body of the LysM 
Domain Containing 2 (LYSMD2) gene (FDR = 0.022). A 
1 pmol/l increase in fasting insulin was associated with 
a 1.37% increase in methylation of cg22388948 (95% 
CI = 0.81, 1.94) and with a 0.13% decrease in meth-
ylation of cg13934266 (95% CI = -0.18, -0.09). These 
dmCpGs were not associated with fasting insulin lev-
els in the Indian children. There were no significant 

associations with insulin sensitivity, or insulinogenic 
index, unadjusted or adjusted for HOMA2-S, in the 
Gambian children.

Lipid levels
DNAm at CpG cg15237100 located in an intergenic 
region on chromosome 15 was associated with triglycer-
ide levels (FDR = 0.031). A 0.1 mmol/l increase in triglyc-
erides was associated with a 4.4% decrease in methylation 
of cg15237100 (95% CI = −0.63, −0.25). There were 
six dmCpGs associated with LDL-Cholesterol levels. 
The two most significant dmCpGs were cg01469688 in 
the promoter of the Suppressor Of Cancer Cell Inva-
sion (SCAI) gene (FDR = 0.004), and cg06952751 in the 
promoter of the C18orf8 gene (FDR = 0.004), with a 
0.1 mmol/l increase in LDL-Cholesterol associated with a 
1.3% and 3.8% increase in methylation of cg01469688 and 

Table 1  Cohort characteristics

Figures are either median (IQR) or mean ± sd unless otherwise specified. P values are from Mann–Whitney U test for continuous outcomes and Chi-squared test 
of independence for categorical outcomes. Stunted defined as height < -2 SD below WHO height-for-age reference mean. Wasted defined as < -2 SD below WHO 
reference BMI-for-age mean. WHO = World Health Organisation; BMI = Body Mass Index; OGTT = Oral Glucose Tolerance Test; HOMA2-S = Insulin Sensitivity; 
HDL-C = High-Density Lipoprotein Cholesterol; LDL-C = Low-Density Lipoprotein Cholesterol

The Gambia India P value
N N

% Male (N) 289 53.6% (155) 686 55.1% (378) p = 0.879

% Maternal intervention (N) 289 46.3% (140) 686 46.8% (321) p  = 0.839

Age (years) 289 9.0 (8.6–9.2) 686 5.8 (5.6–6.0) ****p  < 2.2 × 10–16

WHO weight-for-age Z-score 289 −1.37 ± 0.91 686 −1.70 ± 1.07 ***p = 6.36 × 10–4

% Underweight (N) 289 20.8% (60) 686 40.2% (276) ***p = 2.78 × 10–8

WHO height-for-age Z-score 289 −0.72 ± 0.85 686 −1.01 ± 0.96 ***p = 2.13 × 10–9

BMI (Kg/m2) 289 14.4 ± 1.3 686 13.4 ± 1.4 ****p < 2.2 × 10–16

% Stunted (N) 289 7.6% (22) 686 15.3% (105) **p = 0.002

% Wasted (N) 289 22.5% (65) 686 37.2% (255) ***p = 2.19 × 10–5

Blood pressure
Systolic blood pressure (mmHg) 287 110.0 ± 8.2 682 92.1 ± 8.5 p = 0.464

Diastolic blood pressure (mmHg) 289 64.4 ± 8.1 682 56.0 ± 7.5 p = 0.978

Pulse pressure (mmHg) 287 45.6 ± 7.5 682 36.1 ± 6.0 p = 0.598

OGTT​
Fasting glucose (mmol/l) 280 4.81 ± 0.56 669 4.71 ± 0.50 p = 0.857

30-min glucose (mmol/l) 276 7.09 ± 1.40 663 6.84 ± 1.58 p = 0.769

120-min glucose (mmol/l) 281 5.27 ± 0.95 651 4.69 ± 0.90 p = 0.823

Fasting insulin (pmol/l) 287 19.2 ± 11.6 674 30.2 ± 39.9 p = 0.908

30-min insulin (pmol/l) 271 187.0 ± 116 656 170.1 ± 132.1 p = 0.146

HOMA2-S 278 0.44 ± 0.15 665 0.64 ± 0.66 p = 0.332

Insulinogenic index 257 8.64 ± 37.0 643 9.99 ± 51.6 p = 0.360

Insulinogenic index adjusted for HOMA2-S 257 21.5 ± 98.3 643 23.5 ± 130.0 p = 0.489

Blood lipids
Triglycerides (mmol/l) 270 0.62 ± 0.22 674 0.89 ± 0.34 p = 0.896

HDL-C (mmol/l) 270 1.18 ± 0.29 674 1.03 ± 0.22 p = 0.256

LDL-C (mmol/l) 261 2.18 ± 0.59 673 2.31 ± 0.63 p = 0.668
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cg06952751, respectively (cg01469688: 95% CI = 0.09, 
0.18; cg06952751: 95% CI = 0.25, 0.52). There were no 
associations between DNAm and HDL-Cholesterol levels 
in the Gambian children.

Indian EWAS
Table 2 lists all the significant dmCpGs from the Indian 
EWAS alongside equivalent statistics in the Gambian 
cohort. Some evidence of significant sex interactions 
was identified in the Indian children. Further details are 
described below.

Blood pressure
There were no significant associations between DNAm 
and SBP, DBP or PP in the Indian cohort.

Glucose levels
No significant associations were detected between 
DNAm and child’s fasting, 30-min or 120-min glucose 
levels.

Insulin levels
There were no associations between DNAm and child’s 
fasting insulin and insulin 30-min after an OGTT. The 

CpG cg10304969, in the body of the Transmembrane 
protein 57 (TMEM57) gene, was associated with insu-
lin sensitivity (FDR = 0.018), where a 1 unit decrease 
in HOMA2-S was associated with a 0.73% decrease in 
methylation (95% CI = −0.98, −0.049). cg22982428, 
in an intergenic region on chromosome 2, was associ-
ated with insulinogenic index adjusted for HOMA2-S 
(FDR = 0.022), where a 1 unit increase was associated 
with a 0.3% increase in methylation (95% CI = 0.19, 0.41). 
These CpGs were not significant in the Gambian cohort. 
There were no dmCpGs associated with the insulinogenic 
index in the Indian cohort.

Lipid levels
There were no significant associations with triglycer-
ide or LDL-Cholesterol levels. One CpG was associated 
with HDL-Cholesterol levels (Fig.  2a); cg04988216 in 
the body of the Receptor Tyrosine Kinase Like Orphan 
Receptor 1 (ROR1) gene (FDR = 0.019, Fig. 2b), where 
a 1  mmol/l increase in HDL-C was associated with 
a 0.96% decrease in methylation (95% CI = −1.27, 
−0.64). Figure  2b suggests this association may be 
influenced by two outlier samples with a lower methyl-
ation beta value relative to the rest of the samples. The 

Table 2  List of significant differentially methylated CpGs associated with various CMD markers

The gene name corresponds to the nearest gene as annotated in the Illumina EPIC array manifest. CMD = cardiometabolic disease; Coef = regression beta coefficient; 
FDR = Benjamini–Hochberg false discovery rate; LDL-C = Low-Density Lipoprotein Cholesterol; HOMA2-S = Insulin Sensitivity; HDL-C = High-Density Lipoprotein 
cholesterol; dmCpG = differentially methylated CpG. Regression coefficients were calculated using beta values in the regression models for the dmCpGs to obtain 
interpretable coefficients

*Denotes the association between the CpG and outcome was confounded by genotype

Traits CpG ID Genomic location (hg19) Gambian Indian Gene

Coef P value FDR Coef P value FDR

Gambian dmCpGs
Systolic blood pressure cg13455829 chr9:136213445 0.054 3.04 × 10–08 0.015 −0.002 0.747 0.997 MED22

cg22671726 chr19:41305423 −0.017 3.74 × 10–08 0.015 0.002 0.515 0.991 EGLN2

cg00368636 chr7:64734674 0.040 1.64 × 10–07 0.044 0.005 0.39 0.989 Intergenic

Fasting insulin cg22388948 chr6:82460558 1.373 1.78 × 10–08 0.014 0.077 0.598 0.993 FAM46A

cg13934266 chr15:52029533 −0.132 5.48 × 10–08 0.022 0.014 0.279 0.979 LYSMD2

Triglycerides cg15237100 chr15:69755217 −0.439 5.32 × 10–08 0.031 −0.024 0.318 0.955 RP11-279F6.1/ 
RP11-253M7.4

LDL-C cg01469688 chr9:127905934 0.132 8.74 × 10–09 0.004 0.041 0.019 0.916 SCAI

cg06952751 chr18:21083211 0.384 9.33 × 10–09 0.004 0.009 0.999 0.999 C18orf8

cg27229251 chr7:2680532 0.494 2.29 × 10–08 0.006 0.015 0.732 0.996 TTYH3

cg13135286* chr1:218302163 −4.858 5.07 × 10–08 0.010 0.033 0.98 0.999 Intergenic

cg13819288 chr2:119898838 −2.259 2.20 × 10–07 0.035 0.163 0.392 0.987 Intergenic

cg07988415 chr4:153291285 2.748 3.12 × 10–07 0.042 0.303 0.328 0.983 FBXW7

Indian dmCpGs
HOMA2-S cg10304969 chr1:25795613 0.154 0.387 0.986 −0.734 2.27 × 10–08 0.018 TMEM57

Insulinogenic index 
adjusted for HOMA2-S

cg22982428 chr2:216402618 −0.010 0.948 0.999 0.302 2.68 × 10–08 0.022 Intergenic

HDL-C cg04988216 chr1:64471626 −0.223 0.190 0.974 −0.956 2.36 × 10–08 0.019 ROR1
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association was more significant (FDR = 0.003, Fig. 2c) 
after removal of these two samples. Furthermore, 
methylation at cg04988216 in ROR1 gene showed 
a significant interaction with sex (p = 2.37 × 10–3, 
Fig. 2d), with methylation significantly associated with 
HDL-Cholesterol levels in the females (p = 2.67 × 10–6) 

but not the males (p = 0.24). The CpG cg04988216 was 
not significant in the Gambian children.

Differentially methylated regions
To identify regional differences in DNA methylation, 
DMRcate was used to identify DMRs associated with the 

Fig. 1  Epigenome-wide association analysis of systolic blood pressure in the Gambian cohort. A Manhattan plot of EWAS results with respect 
to systolic blood pressure (SBP) in the Gambian data. Red line indicates the Benjamini–Hochberg FDR threshold of 0.05. Significant dmCpGs 
(FDR < 0.05) are highlighted in red and labelled with the gene associated with them or the CpG name if intergenic. B–C Relationship between 
methylation beta value at B cg13455829 (MED22) and C cg22671726 (EGLN2) and SBP residual (mmHg) in 289 Gambian children. Shaded area 
around the regression line denotes the 95% confidence interval. EWAS, Epigenome-wide association study

(See figure on next page.)
Fig. 2  Epigenome-wide association analysis of high-density lipoprotein cholesterol in the Indian cohort. A Manhattan plot of EWAS results with 
respect to high-density lipoprotein cholesterol (HDL-C) levels in the Indian data. Red line indicates the FDR threshold of 0.05. Significant dmCpGs 
(FDR < 0.05) are highlighted in red and labelled with the gene associated with it. B Relationship between methylation beta value at cg04988216 
(ROR1) and HDL-C residual (mmol/l) in 674 Indian children. Two outlier samples are highlighted in red. C Relationship between methylation beta 
value at cg04988216 (ROR1) and HDL-C residual (mmol/l) in 672 Indian children after removal of the two outlier samples highlighted in C. D 
Relationship between methylation at cg04988216 and HDL-C residuals (mmol/l) in the male and female children separately. Shaded area around 
the regression lines denotes the 95% confidence interval band. EWAS, Epigenome-wide association study
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Fig. 2  (See legend on previous page.)
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CMD markers in the children (Table 3). In the Gambian 
children, there was one 69  bp DMR comprising three 
CpGs associated with DBP (Stouffer < 0.05), located 1 kb 
upstream from the transcriptional start site of the Ephrin 
A1 (EFNA1) gene. One 576  bp DMR comprising nine 
CpGs was associated with fasting insulin levels, located 
in the promoter of the C8orf31 gene. In the Indian chil-
dren, one 119  bp DMR consisting of two CpGs in an 
intergenic region on chromosome 20 was associated with 
fasting glucose. Eight DMRs were significantly associ-
ated with HOMA2-S, with the top DMR comprising two 
CpGs located in a 13  bp intergenic region on chromo-
some 22. Of the DMRs identified, there were no overlaps 
between the cohorts. Furthermore, no DMRs were in 
close proximity to identified dmCpGs.

Meta‑analysis
A meta-analysis was carried out to identify associations 
between DNA methylation and cardiometabolic out-
comes common across both cohorts (Table  4). There 
were two dmCpGs significantly associated with the 
insulinogenic index (Fig. 3a, b). These were: cg04859490 
(FDR = 0.029, HetI2 = 0, Fig.  3c) in intron 8 of the 
Carboxypeptidase A4 (CPA4) gene; and cg00363845 
(FDR = 0.029, Het I2 = 51.7, Fig.  3d) in intron 1 of the 
GTP binding protein 3 (GTPBP3) gene. Figure  3c sug-
gests that cg04859490 may be influenced by genotype in 
the Indian cohort, and we did find evidence of methQTL 

effects in trans at this locus, although these were not 
genome-wide significant (Additional file 1: Table S2). In a 
sensitivity analysis, inclusion of genotype at these nomi-
nally associated SNPs into the regression models did 
not influence the effect size of the association between 
cg04859590 and the insulinogenic index in the Indian 
children (Additional file  1: Table  S3). One dmCpG was 
found to be significantly associated with pulse pressure in 
the meta-analysis: cg14997376 (Het I2 = 0) in exon 39 of 
the Citron Rho-interacting kinase (CIT) gene.

Links to early environment and preconception nutritional 
supplementation
Various environmental exposures in early life have been 
linked to DNAm changes in children [13, 20, 21]. The 
mothers in both cohorts received a nutritional interven-
tion pre- and during pregnancy [19]. Therefore, we exam-
ined whether the identified dmCpGs were associated 
with this intervention. None of the dmCpGs were associ-
ated with the intervention. Season of conception (SoC) is 
associated with DNA methylation signatures in Gambian 
children [22]. In the Gambian cohort, inclusion of SoC as 
a covariate did not influence the significance of the pri-
mary associations between CMD markers and DNAm at 
the dmCpGs, and no significant interaction between SoC 
and DNAm was observed.

Table 3  List of significant differentially methylated regions associated with various CMD markers

Genomic coordinates are all from the hg19 build of the genome. CMD = cardiometabolic disease; bp = base pairs; HOMA2-S = Insulin Sensitivity

Chromosome Start position End position Width (bp) No. of CpGs Stouffer
p value

Associated gene

Gambian
Systolic blood pressure
chr1 155,099,264 155,099,332 69 3 0.039 EFNA1

Fasting insulin
chr8 144,120,106 144,120,681 576 9 0.010 C8orf31

Indian
Fasting glucose
chr20 49,072,540 49,072,658 119 2 0.026 Intergenic

HOMA2-S
chr22 33,964,297 33,964,309 13 2 0.011 Intergenic

chr20 62,133,588 62,133,626 39 3 0.023 RP4-697K14.3

chr3 194,866,144 194,866,280 137 2 0.024 RN7SL36P

chr1 79,088,559 79,088,769 211 2 0.030 Intergenic

chr6 150,071,069 150,071,503 435 3 0.037 PCMT1

chr1 6,059,070 6,059,204 135 2 0.047 Intergenic

chr1 240,861,557 240,861,571 15 2 0.049 Y_RNA.12

chr10 1,205,222 1,205,942 721 10 0.050 LINC00200
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methQTL analysis
As DNA methylation at specific loci can be influenced by 
genotype, we used GEM to identify methylation quan-
titative trait loci (meQTLs) associated with the cardio-
metabolic dmCpGs identified in the two cohorts. For the 
Indian cohort, we analysed associations between the 15 
CMD identified dmCpGs and 4,312,147 SNPs. No sig-
nificant methQTLs were identified in cis- or trans- with 
a Bonferroni threshold of 2.4 × 10–8 and 2.8 × 10–9, 

respectively (see Methods for further details). For the 
Gambian cohort, we analysed associations between the 
15 dmCpGs and 4,555,414 SNPs. We identified a total 
of 79 cis-methQTLs using a Bonferroni threshold of 
p = 2.4 × 10–8 (Additional file 1: Table S4): 44 methQTLs 
associated with cg00368636, 14 with cg13135286 and 21 
with cg13819288. No trans-methQTLs were identified 
using a Bonferroni threshold p = 2.8 × 10–9. A sensitiv-
ity analysis demonstrated that effect sizes reported in the 

Fig. 3  Meta-EWAS of Indian and the Gambian cohorts with respect to the Insulinogenic Index. A Manhattan plot of meta-analysis results with 
respect to the insulinogenic index. Red line indicates the adjusted p value threshold of 0.05. Significant dmCpGs (adjusted p value < 0.05) are 
highlighted in red and labelled with the gene associated with them. B Volcano plot of the meta-analysis results with respect to the insulinogenic 
index. Significant CpGs are highlighted in red. C, D Relationship between methylation beta value at C cg04859490 (CPA4) and D cg00363845 
(GTPBP3/ANO8) and the insulinogenic index residual in combined dataset (left) and then separated by cohort (right). Shaded area around the 
regression lines denotes the 95% confidence interval. EWAS, Epigenome-wide association study
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main analysis for cg00368636 and cg13819288 were not 
significantly affected by cis-methQTL effects, while the 
effect size for the LDL-cholesterol associated cg13135286 
was significantly reduced after adjustment for the mul-
tiple cis-methQTLs (Additional file  1: Table  S5). Addi-
tional investigation revealed that seven of the fourteen 
identified cg13135286-associated methQTLs were 
directly associated with LDL-cholesterol (Additional 
file 1: Table S6). We conducted further analyses to inves-
tigate the effect of these methQTLs on the reported 
dmCpG association (Additional file  4: Figure S3A) and 
observed that the methQTLs clustered into three linkage 
disequilibrium (LD) blocks (Additional file  1: Table  S7, 
Additional file  4: Figure S3B, C). A mediation analy-
sis was carried out to determine if the genotype asso-
ciations with LDL-Cholesterol levels were mediated by 
methylation at cg13135286. We found no evidence that 
cg13135286 mediated the effect of the three tag SNPs 
(rs75332983, rs614038 and rs6659203) on LDL-Choles-
terol levels (Additional file 1: Table S8).

Discussion
In this study, we report findings from the EMPHA-
SIS study, investigating associations between DNAm in 
children from two LMICs with concurrent measures of 
cardiometabolic risk factors. We identified novel meth-
ylation changes associated with CMD risk factors includ-
ing blood pressure, insulin sensitivity and lipids at both 
single CpG and regional levels in the individual cohorts, 
and common methylation changes associated with insu-
lin secretion and pulse pressure in a meta-analysis. 
These findings may provide insights into molecular path-
ways associated with CMD in two understudied LMIC 
populations.

EWAS analysis identified associations between 
DNAm and blood pressure. The meta-analysis iden-
tified a dmCpG within the CIT gene associated with 
pulse pressure, a measure of arterial stiffness. Further-
more, in the Gambian cohort, we found significant asso-
ciations between CpGs associated with the MED22 and 
EGLN2 genes with SBP; and a DMR, comprising three 
CpGs, within the EFNA1 gene associated with DBP. 
While MED22 has not previously been linked to vascu-
lar function, EGLN2 is involved in regulating hypoxia 
tolerance and apoptosis in cardiac and skeletal muscle 
[23]. EFNA1, an EPH receptor protein-tyrosine kinase, 
is highly expressed in vascular smooth muscle, trigger-
ing EPHA4 signalling and stress fibre assembly [24]. 
However, no studies have linked the genetic/epigenetic 
regulation of EFNA1 with blood pressure. In adults, asso-
ciations between DNAm and blood pressure have been 
reported in several cohorts [25, 26], in which trans-ethnic 
differences were identified [25]. However, the dmCpGs 

identified here did not overlap with those reported by 
Kazmi et al. [25] in Europeans and South Asian men or 
those reported in a meta-analysis of multiple African 
American cohorts [26].

The insulinogenic index is a measure of first-phase 
insulin secretion. In the meta-analysis, there were asso-
ciations between CpGs within the CPA4 and GTPBP3 
genes and insulinogenic index. Carboxypeptidase A4 
(CPA4) is an exopeptidase, negatively regulating adipo-
genesis and downregulated during adipocyte differentia-
tion by FGF1 [27]. CPA4 expression in adipose tissue is 
inversely correlated with insulin sensitivity, implicating 
CPA4 in maintaining local and systemic insulin sensitivity 
[27]. Canonically, DNA methylation across the promoter 
represses gene expression, while gene body methylation 
is generally positively associated with expression [28]. 
This suggests that higher methylation at this CpG may 
increase CPA4 expression, resulting in reduced insulin 
sensitivity driving increased insulin secretion in children 
with good pancreatic reserve, consistent with the find-
ings reported by He et al. [27]. This is supported by the 
absence of association with insulin secretion adjusted for 
insulin sensitivity. GTPBP3 is involved in mitochondrial 
tRNA modification, with decreased expression associated 
with reduced oxygen consumption and ATP production 
[29]. As increased ATP is necessary for the membrane‐
dependent increases in cytosolic Ca2+, the main trigger 
of insulin exocytosis [30], altered epigenetic regulation 
of GTPBP3 may have downstream effects on insulin 
secretion. Furthermore, we found associations between 
DNAm and insulin measures in the individual cohorts. In 
the Gambian cohort, two dmCpGs were associated with 
fasting insulin levels, while in the Indian cohort there 
were associations with HOMA2-S, insulinogenic index 
adjusted for HOMA2-S and fasting glucose, with no 
overlap between the cohorts. Many of the dmCpGs and 
DMRs were located within intergenic regions, so their 
potential influence on gene expression and on insulin/
glucose homeostasis is currently unclear.

Although there were no associations between DNAm 
and lipid levels in the meta-analysis, there were associa-
tions in the individual cohorts. Six dmCpGs were sig-
nificantly associated with LDL-Cholesterol levels in the 
Gambian children, of which cg01469688, located in the 
promoter of the SCAI gene, was the most significant. 
SCAI is a transcriptional modulator regulating myocar-
din, implicated in cardiac hypertrophy [31] and hyper-
tension [32]. There are many possible interpretations of 
this observation, including that LDL-Cholesterol may 
influence the epigenetic regulation of this cardiac tran-
scriptional regulator, contributing to the development of 
CVD. Alternatively, SCAI transcription could influence 
methylation, with the dmCpG serving as a biomarker of 
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cardiovascular stress associated with LDL-Cholesterol 
levels. In the Indian cohort, there were no associations 
of DNAm with triglycerides or LDL-Cholesterol levels. 
However, cg04988216 within the body of the ROR1 gene 
was negatively correlated with HDL-Cholesterol levels. 
ROR1 plays an essential role in skeletal and cardiac devel-
opment [33]. Moreover, Sánchez-Solana et  al. [34] have 
shown that inhibition of ROR1 modulates ERK1/2 activ-
ity in mice, regulating the expression of glucose trans-
porters 1 and 4. Decreased gene body methylation within 
ROR1 may indicate decreased expression of ROR1, sub-
sequently promoting increased adipogenesis in those 
with low HDL-Cholesterol levels, affecting susceptibility 
to later life metabolic disease.

In adults, previous EWAS have identified robust asso-
ciations between CMD risk markers and DNAm at key 
genes in lipid metabolism [35]. Moreover, several of these 
are associated with increased CMD incidence. For exam-
ple, CpGs within CPT1A were associated with the meta-
bolic syndrome [36] and plasma adiponectin, a biomarker 
for CMD/CVD risk [37]. A recent Mendelian randomi-
sation study has suggested a causal effect of methylation 
at ABCG1 on BMI and lipid levels [14]. We did not find 
associations at these previously reported CpGs in our 
study, possibly because we measured DNAm in chil-
dren without overt indications of CMD. Furthermore, 
the range of physiological and biochemical measures 
in children is smaller and presumably subject to tighter 
metabolic homeostasis than in adults, due to the absence 
of comorbidities. Moreover, the children here are from 
LMICs where there have been limited epigenetic studies, 
and differences in genotype and environment may con-
tribute to DNAm differences associated with CMD traits.

The marked differences observed between the results 
in the two cohorts could reflect potential population-
specific phenotypic differences. Studies have shown that 
Indians have greater body fat and central obesity com-
pared to black African-Caribbean populations [38, 39]. 
This is reflected in higher plasma non-esterified fatty 
acids and triglycerides, hyperinsulinemia and IR during 
fasting and post-glucose challenge in the Indian popula-
tion [38]. DNAm differences between the cohorts could 
influence, or be influenced by, the different distributions 
of these cardiometabolic markers, and may mark corre-
sponding differences in IR progression.

Differences in DNAm between the populations may 
also result from differences in diet, environment and/or 
genotype. The Indian children were living in overcrowded 
urban slums with high levels of air pollution, which may 
affect the methylome [40]. In contrast, the Gambian chil-
dren are from a remote rural area where the food supply 
is heavily season dependent [22]. However, the dmCpGs 
identified here were not associated with SoC or maternal 

pre-conceptional and pregnancy micronutrient interven-
tion [19]. Additionally, we found limited evidence that 
the dmCpGs were influenced by measured genetic vari-
ation, with only three dmCpGs in the Gambian analysis 
having significantly associated methQTLs. We also found 
no evidence that methylation mediates an effect of geno-
type at a single CpG in Gambians where both the CpG 
and methQTLs were associated with LDL-Cholesterol. 
We note that differences in power due to the varied sam-
ple sizes of the two cohorts are unlikely to underlie the 
contrasting findings since effect sizes and p values are 
markedly different for dmCpGs identified in one cohort 
or the other (Table 2).

There are several strengths to this study. Firstly, we were 
able to analyse an extensive set of blood-derived mark-
ers and phenotype measures on the children, allowing 
detailed assessment of the relationship between DNAm 
and CMD markers in childhood. Secondly, investigating 
associations in children from two LMICs gives an oppor-
tunity to assess methylation changes in two understudied 
populations and for inter-cohort comparison. Although 
replication in HIC cohorts is possible, environmental and 
lifestyle differences between LMICs and HICs would be 
likely to confound the results. Limitations of the study 
include the lack of suitable cohorts from LMICs with 
both methylation data and CMD measures in childhood. 
Furthermore, DNAm was measured in peripheral blood, 
which has limited relevance to the aetiology of CMD 
traits. We also have no earlier measures of phenotypes 
or DNAm in the children, so cannot investigate tempo-
ral relationships. However, while we found no evidence of 
causal relationships, methylation changes presented here, 
if replicated, might serve as useful biomarkers for identi-
fying individuals at increased risk of CMD.

Conclusions
We carried out a comprehensive analysis of the relation-
ship between concurrent DNA methylation in peripheral 
blood and measures of cardiometabolic health in chil-
dren from two LMICs. We identify both cohort-specific 
and common associations. With further replication, iden-
tified methylation changes during early childhood may 
serve as biomarkers of future CMD risk and may provide 
insights into molecular pathways leading to CMD in later 
life.

Methods
Study cohorts
The EMPHASIS study [18, 19] comprises two cohorts of 
children born to mothers who took part in separate ran-
domised controlled trials of nutritional supplementation 
before and during pregnancy. The original trials were: 
the Mumbai Maternal Nutrition Project (MMNP) (also 
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known as project SARAS—ISRCTN62811278) among 
women living in slums in the city of Mumbai, India; and 
the Peri-conceptional Multiple Micronutrient Supple-
mentation Trial (PMMST—ISRCTN13687662) among 
women living in rural West Kiang, The Gambia. The 
Mumbai children have been followed up at 5–7 years of 
age (“SARAS KIDS” study) and data and samples for the 
first 700 children studied from the per protocol group 
(children whose mothers started supplementation at least 
3 months prior to conception) [41] have been used in the 
EMPHASIS study. The Gambian children were followed 
up aged 7–9  years in 2016; all 299 Gambian children 
retraced from the PMMST group were included in the 
study. The current investigation is a part of the Stage 2 
analysis of the EMPHASIS study [18].

Physiological and biochemical measurements
Full details of the physiological and biochemical pro-
cedures carried out are described in Additional file  5: 
Methods. Briefly, blood pressure was measured using an 
Omron HEM 7080 and Omron 705IT in the Gambian 
and Indian children, respectively. In both cohorts, fast-
ing blood samples were collected. For the oral glucose 
tolerance test (OGTT), an oral anhydrous glucose load 
of 1.75  g/kg body weight was administered, after which 
blood samples were collected at 30 and 120 min. In the 
Gambian cohort, glucose and lipid concentrations were 
measured using the COBAS INTEGRA® 400 plus ana-
lyser (Roche Diagnostics, USA). Insulin was measured 
using the VITROS 350 Analyzer (Ortho Clinical Diag-
nostics, USA). In the Indian cohort, plasma glucose con-
centrations were measured using standard enzymatic 
methods; insulin using ELISA kits (Mercodia, Sweden); 
and lipids (HDL-/LDL-Cholesterol and triglycerides) 
using ready-to-use kits (Dialab, Austria).

Derived variables
Insulin sensitivity (HOMA2-S) was derived from fast-
ing glucose and insulin using the Oxford calculator 
(https://​www.​phc.​ox.​ac.​uk/​resea​rch/​techn​ology-​outpu​
ts/​ihoma2). Two measures of first-phase insulin secre-
tion were derived: the Insulinogenic index [42] and the 
Insulinogenic index adjusted for insulin sensitivity, cal-
culated as the residual of insulinogenic index regressed 
on HOMA2-S. See Additional file 5: Methods for further 
details.

Processing of outcome variables
Distributions of physiological variables were checked and 
log-transformed if necessary. Residuals were generated 
for all physiological variables by adjusting for the child’s 
age, sex and current height and body mass index (BMI) 
where such associations were statistically significant and 

used in the final regression models. Further details are in 
Additional file 5: Methods.

Epigenome‑wide DNA methylation quality control (QC) 
and pre‑processing
DNA was extracted from peripheral blood samples as 
previously described [19]. Epigenome-wide DNA meth-
ylation profiling was performed for a total of 698 Indian 
and 293 Gambian samples using the Human Meth-
ylationEPIC BeadChip platform (Illumina, USA). Full 
details of QC and pre-processing are described in Saffari 
et al. [19]. Briefly, the raw.idat files were processed in R 
(v3.5.2) using the Bioconductor package meffil [43]. Sex 
mismatches (5 Indian, 0 Gambian samples) and outly-
ing arrays (7 Indian, 4 Gambian samples) were excluded. 
Probes with a low detection p value or bead numbers 
(1494 and 2635 probes in Indian and Gambian data, 
respectively), mapping to sex chromosomes and/or 
cross-reactive (61,523 and 61,225 probes in Indian and 
Gambian data, respectively) were excluded. After pre-
processing and QC, this left 686 samples and 803,120 
probes in the Indian cohort, and 289 samples and 802,283 
probes in the Gambian cohort.

Epigenome‑wide association studies (EWAS)
Site‑level differential methylation analysis
For EWAS analysis, robust regression models were run 
using limma (v3.38.3) [44] with methylation M values as 
the outcome variable due to their superior distributional 
properties for linear regression modelling in differen-
tial methylation analysis [45]. Models were adjusted for 
child’s sex, age at measurement and the first ten princi-
ple components from a methylation principle component 
analysis (PCA) derived from the 200,000 most variable 
probes to account for technical covariates and white 
blood cell composition [19]. The analysis was controlled 
for multiple testing with the Benjamini–Hochberg adjust-
ment for false discovery rate, with a significance thresh-
old of an FDR < 0.05. Inflation of p values was assessed 
(lambda), Quantile–Quantile (Q–Q) plots generated and 
bacon (v1.10.1) [46] used to control for genomic inflation 
of test statistics where lambda > 1.2.

Effect sizes for site-level analysis used methylation beta 
values to aid interpretation [45]. An additional investi-
gation of interactions between methylation and sex was 
carried out for significant differentially methylated CpGs 
(dmCpGs) only.

Regional‑level differential methylation analysis
The methylation status of adjacent CpG sites can be 
highly correlated, often with functional relevance and 
analysis of regional changes in methylation can provide 
increased statistical power. DMRcate (v1.18.0) [47] was 

https://www.phc.ox.ac.uk/research/technology-outputs/ihoma2
https://www.phc.ox.ac.uk/research/technology-outputs/ihoma2
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used for the identification of differentially methylated 
regions (DMRs) with respect to the different measures of 
cardiometabolic health. DMRcate uses Stouffer’s method 
for combining p values for CpGs, with a Stouffer < 0.05 
threshold being used as statistically significant [19].

Sensitivity analyses
To identify sex dependent methylation effects, we inves-
tigated potential sex-interaction effects (outcome x child 
sex) on the significant dmCpGs identified in the main 
analysis using the following regression model:

Furthermore, it has previously been reported that 
season of conception in The Gambia influences infant’s 
DNA methylation and early growth. Therefore, the effect 
of season of conception (SoC) on the outcome-associated 
loci was tested by inclusion as a covariate in the main 
regression model and secondly, by inclusion of an inter-
action between DNA methylation and SoC as below:

A Bonferroni-adjusted significant threshold: 
p < 2.8 × 10–3 (0.05/18) was used to adjust for mul-
tiple testing of the 18 dmCpGs investigated for sex 
interactions.

Meta‑analysis
To examine common associations across cohorts, effect 
size estimates from individual EWAS were meta-analysed 
using METAL [48] with an inverse variance weighting. 
Correction for inflation of both input and meta-analysis 
output statistics was performed using double genomic 
control (GC). We explored heterogeneity between the 
two cohorts using the I2 statistic [49, 50].

Genotyping
SNP genotypes for 293 Gambian and 698 Indian sam-
ples were generated using the Infinium Global Screen-
ing Array-24 v1.0 BeadChip array (Illumina, USA) and 
imputed against a 1000 Genomes Phase 3 reference panel 
using IMPUTE2 (v2.3.2). Full details of QC and pre-pro-
cessing can be found in Saffari et al. [19] and in Additional 
file 5: Methods. The final imputed data sets comprised 284 
samples with 4,555,414 SNPs in the Gambian cohort, and 
686 samples with 4,312,147 SNPs in the Indian cohort.

CpG_beta ∼ Physiological Outcome+ child sex

+ outcome ∗ child sex+ child age

+ 10 principle components

Outcome ∼ CpG_beta+ SoC+ CpG_beta ∗ SoC

+ child sex+ child age+ 10 principle components

Methylation quantitative trait loci (methQTL) analysis
methQTL analysis was carried out by the GEM pack-
age (v1.10.0), using an additive model [17]. The analysis 
was restricted to the significant dmCpGs identified in 
single cohort and/or meta-analyses. Separate analyses 
in cis (SNP ± 2  Mb from the CpG) and trans (all other 
SNPs) were conducted to maximise power. Significant 
cis-methQTLs were those with a Bonferroni-adjusted 
p value < 2.4 × 10–8, while trans-methQTLs were those 
with a Bonferroni-adjusted p < 2.8 × 10–9. Full details are 
described in Additional file 5: Methods.

In order to minimise non-genetic variation in the DNA 
methylation data, we regressed out the effect of child 
sex, plus the first 10 principal components (PCs) from 
an unsupervised PCA of the methylation data, prior to 
performing the methQTL analysis. The resulting meth-
ylation residuals were then rank transformed and cen-
tred to have mean 0 and variance 1 [51]. The methQTL 
analysis was carried out using the GEM package (v1.10.0) 
from Bioconductor which uses an additive (allelic dose) 
model to test for SNP-methylation associations [17]. This 
analysis was restricted to all 18 CpGs identified in single 
cohort and/or meta-analyses.

Separate analyses in cis (SNP ± 2  Mb from the CpG) 
and trans (all other SNPs) were conducted to maxim-
ise power. Significant cis-methQTLs were those with a 
Bonferroni-adjusted p value < 2.4 × 10–8, while trans-
methQTLs were those with a Bonferroni-adjusted 
p < 2.8 × 10–9.

i. Identification of cis-methQTL
Only SNPs within + / − 2 MB of a CpG of interest were 

considered for this analysis. Significant cis-methQTL 
are those with an association p value passing a Bon-
ferroni-adjusted significance threshold of p = 0.05/n_
SNPs/n_CpGs, where n_SNPs is the number of cis-SNPs 
and n_CpGs is the total number of CpGs tested (n = 18 
CpGs).

ii. Identification of trans-methQTL
trans-methQTL are methQTL with an association 

p value passing a genome-wide Bonferroni-adjusted 
threshold of p = 5 × 10–8/n_CpGs that do not fall within 
the set of cis-methQTL identified in i) above.

For CpGs with significant methQTLs, we conducted 
a sensitivity analysis to see if methQTL effects signifi-
cantly changed effect sizes for the CpG-outcome asso-
ciations reported in the main EWAS analysis. We did 
this by repeating the main analysis with the methQTL-
SNP as an additional covariate and comparing original 
effect size estimates with 95% confidence intervals for 
the effect size in the adjusted model.

We also investigated associations between identified 
methQTLs and the traits associated with the methQTL-
associated CpG identified in the main EWAS, using 
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an additive (allelic dose) model with methylation val-
ues transformed as above. For CpGs with significant 
methQTL-trait associations, we tested the potential 
for this association to be mediated by methylation 
changes at the associated CpG using the mediate() 
function from the mediation package [52]. Confidence 
intervals for direct and indirect (mediated) effects were 
calculated using a nonparametric bootstrap with 1000 
simulations.
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