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Abstract 

Background: In mucosal barrier interfaces, flexible responses of gene expression to long‑term environmental 
changes allow adaptation and fine‑tuning for the balance of host defense and uncontrolled not‑resolving inflam‑
mation. Epigenetic modifications of the chromatin confer plasticity to the genetic information and give insight into 
how tissues use the genetic information to adapt to environmental factors. The oral mucosa is particularly exposed 
to environmental stressors such as a variable microbiota. Likewise, persistent oral inflammation is the most important 
intrinsic risk factor for the oral inflammatory disease periodontitis and has strong potential to alter DNA‑methylation 
patterns. The aim of the current study was to identify epigenetic changes of the oral masticatory mucosa in response 
to long‑term inflammation that resulted in periodontitis.

Methods and results: Genome‑wide CpG methylation of both inflamed and clinically uninflamed solid gingival 
tissue biopsies of 60 periodontitis cases was analyzed using the Infinium MethylationEPIC BeadChip. We validated 
and performed cell‑type deconvolution for infiltrated immune cells using the EpiDish algorithm. Effect sizes of DMPs 
in gingival epithelial and fibroblast cells were estimated and adjusted for confounding factors using our recently 
developed “intercept‑method”. In the current EWAS, we identified various genes that showed significantly different 
methylation between periodontitis‑inflamed and uninflamed oral mucosa in periodontitis patients. The strongest 
differences were observed for genes with roles in wound healing (ROBO2, PTP4A3), cell adhesion (LPXN) and innate 
immune response (CCL26, DNAJC1, BPI). Enrichment analyses implied a role of epigenetic changes for vesicle traffick‑
ing gene sets.

Conclusions: Our results imply specific adaptations of the oral mucosa to a persistent inflammatory environment 
that involve wound repair, barrier integrity, and innate immune defense.
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Background
Genetic studies of chronic inflammatory diseases focused 
primarily on identifying DNA variants (e.g., single-
nucleotide polymorphisms, SNPs) that confer disease 
risk through genome-wide association studies (GWASs; 
see [1, 2]). More recently, studies have also examined 
differences between patients and controls in patterns of 
DNA methylation (see [3, 4]). Methylation of cytosine 
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is the most common modification of DNA that occurs 
at CpG dinucleotides (cytosine followed by guanine). 
It typically causes chromatin condensation and disrup-
tion of interactions between DNA and transcription 
factors, which are associated with transcriptional regu-
lation [5]. Such epigenetic modifications of the chroma-
tin confer plasticity to the genome and enable flexible 
and reversible responses of the genetic information to 
environmental challenges, allowing long-term adapta-
tion and fine-tuning of gene expression levels [6]. Cor-
respondingly, epigenetic changes give direct insight into 
the genetic information that the tissue uses to adapt to 
environmental factors. A major focus of research into the 
cellular mechanisms that underlie chronic disease is the 
tissue-environment interface. Particularly in the mucosa, 
a balance must be maintained between host defense and 
uncontrolled, not-resolving inflammation [7, 8]. Main-
taining tissue integrity requires continuous adaptations 
of immune responses, barrier function and regenera-
tion to a changing external and internal environment. It 
is considered that the development of adverse immune 
reactions may be associated with these challenges.

The oral masticatory mucosa locates to the alveolus/
tooth complex and the hard palate and comprises all 
parts of the oral mucosa that are involved in chewing. 
Its position at the entrance to the gastrointestinal tract 
and respiratory systems entails its direct exposition to 
a diverse microbiota and various other environmental 
stressors such as tobacco smoke. If the mucosal barrier 
is impaired, pathogens can invade into subjacent tissue 
layers and promote periodontal inflammation. Persist-
ing inflammation causes gingival bleeding and leads to 
the loss of connective tissue and alveolar bone with sub-
sequent tooth loss, which determines the clinical char-
acteristics of the common oral inflammatory disease 
periodontitis. In the etiology of periodontitis, persistent 
gingival inflammation is the most important risk fac-
tor [9], followed by smoking [10, 11]. Inflammation and 
smoking show strong effects in altering DNA-methyla-
tion patterns. This implies that in relation to the masti-
catory mucosa both can be considered as ‘environmental 
variables’ with a causal role for the onset and progression 
of periodontitis.

Recently, an epigenome-wide association study 
(EWAS) to investigate the specific methylation and 
expression patterns of the healthy masticatory mucosa 
in the context of cigarette smoke exposure was per-
formed by our group [12]. In this study, differentially 
methylated positions (DMPs) were re-discovered to be 
associated with smoking status at a genome-wide sig-
nificance level within the genes CYP1B1 (cytochrome 
P450 family 1 subfamily B member 1) and AHRR 

(aryl-hydrocarbon receptor repressor). Several EWAS 
have identified these associations for cells of the 
alveolar [13] and buccal mucosa [14] before, putting 
emphasis on the role of epigenetic adaptations of the 
activity of these genes in barrier tissues that are long-
term exposed to tobacco smoke metabolites. Some of 
these associations were restricted to solid epithelial 
tissues and were not found in blood, indicating the tis-
sue-specificity of CpG methylation patterns relating to 
tissue function.

To date, few studies were published on differential 
DNA methylation in affected solid tissues in the course 
of inflammatory disease, where differences in cell-type 
composition are disease-immanent, as cell-type decon-
volution algorithms still lack specific reference panels 
for many cell types. EpiDish provides an accurate ref-
erence dataset for generic epithelial tissue [15]. In the 
present study, we aim to confirm its suitability for the 
detection of cells specific for gingival tissue and employ 
it for cell-type deconvolution of our data. As differences 
in cell-type composition represent a major confound-
ing factor in EWAS of inflammatory diseases, they also 
hinder the interpretation of effect sizes in affected tis-
sue, which may be crucial for evaluating the relevance 
of significant associations. By applying our recently 
published “intercept-method” for the inference of effect 
sizes adjusted for confounding factors [16] to our data, 
we provide adapted estimations of the effect sizes at 
DMPs, which allows us to shed light on the molecular 
mechanisms altered in the etiology of periodontitis.

The aim of the current study was to investigate epige-
netic changes in the gingiva in the course of long-term 
inflammation that resulted in periodontitis. To this 
end, the methylation patterns of inflamed and clinically 
uninflamed gingival tissue biopsies of 60 periodonti-
tis cases were analyzed. To our knowledge, this is the 
first EWAS that investigated genome-wide epigenetic 
changes in solid biopsies of the gingiva in response 
to oral inflammation with adjustment for cell-type 
heterogeneities.

Results
Pre‑processing pipeline
786,547 probes passed the quality control (QC) crite-
ria and were analyzed in ex  vivo gingival tissue biop-
sies from 60 periodontitis patients obtained from an 
inflamed and an uninflamed site each. Additionally, 
DNA methylation patterns of cultured gingival epithe-
lial cells (GECs) and human gingival fibroblasts (HGFs), 
collected from 5 and 4 additional donors, respectively, 
and of immortalized cell lines of gingival epithelial 
(OKG4) and fibroblast (ihGF) cells, were analyzed.
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Suitability test of the EpiDish algorithm for the detection 
of gingival epithelial cells and gingival fibroblasts for cell 
type deconvolution
The cell type deconvolution algorithm EpiDish represents 
an established method to adjust for cell type heterogene-
ity in EWAS samples. It uses reference methylomes from 
various cell types. To test how the implemented reference 
methylomes of immune cells, epithelial cells, and fibro-
blasts matched the methylome of cells from gingival tis-
sue, we analyzed the DNA from GECs and HGFs from 
cell culture on the EPIC BeadChip and performed cell 
type deconvolution with EpiDish. The primary GECs and 
both immortalized cell lines showed 100% concordance 
with the reference datasets (Fig. 1, Additional file 1). Pri-
mary gingival fibroblasts showed some deviations from 

the expected patterns, with 3 of the 4 samples showing 
an estimated fibroblast fraction of > 94%. One sample 
implied only 88% fibroblasts, with an infiltration of 11% 
immune cells and 2% epithelial cells.

Estimation of the immune cell fraction in inflamed 
and uninflamed gingiva.
Substantial infiltration of immune cells into gingival tis-
sues is disease-immanent in periodontitis. To account 
for differences in cell type composition, we applied 
the EpiDish algorithm to our 120 samples of paired 
inflamed an uninflamed ex vivo biopsies from 60 indi-
viduals. In the inflamed samples, half of the cell frac-
tion of inflamed gingival tissues consisted of immune 
cells (mean 0.52, standard deviation (SD) 0.18). Some 

Fig. 1 EpiDish results for gingival cell cultures. Cell type estimations in the cultured gingival cells inferred by EpiDish as average weight proportions 
of the major cell types epithelial cells (Epi), fibroblasts (Fib,) and immune cells (IC) for immortalized gingival epithelial cells (A) (n = 1), immortalized 
gingival fibroblasts (B) (n = 1), primary gingival epithelial cells (C) (n = 5), and primary gingival fibroblasts (D) (n = 4)
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of the inflamed biopsies showed estimated immune cell 
fractions as high as 0.91 (Additional file 1). Uninflamed 
biopsies showed immune cell infiltration that was sig-
nificantly lower compared to inflamed tissue (mean 
0.28, SD 0.15; p <  10–5, Wilcoxon Test). In both inflamed 
and uninflamed samples, the amount of estimated 
immune cells was inversely correlated to the amount 
of epithelial cells in the samples (Pearson’s correlation 
coefficient = − 0.93). Estimations for epithelial cells 
accordingly were higher in uninflamed samples (mean 
0.52, SD 0.15) than in inflamed samples (mean 0.32, SD 
0.18). The degree of variation of immune cell infiltra-
tion was comparable between uninflamed and inflamed 
tissues, as was the degree of variation of the amount of 
epithelial cells. For 6 individuals, we observed higher 
immune cell fractions in clinically uninflamed sam-
ples compared to inflamed samples. The variation of 
the estimated amount of fibroblast cells in inflamed 
and uninflamed biopsies was lower and comparable 
between inflamed and uninflamed biopsies, with an 
estimated fibroblast fraction of 0.20 (SD 0.07) in unin-
flamed samples and 0.17 (SD 0.08) in inflamed samples.

We furthermore performed a multidimensional scaling 
analysis to identify the effects of potential confounders on 
the methylome of gingival biopsies. This analysis revealed 
a separation according to the amount of immune cells as 
inferred by EpiDish, leading to the location of some biop-
sies that were clinically diagnosed as uninflamed in the 
cluster of inflamed biopsies (Fig.  2A, B). No clustering 
patterns were associated with the site of biopsy extrac-
tion (Additional file 2).

Based on the estimations of the cell type deconvolu-
tion, we excluded biopsies that were clinically diagnosed 
as uninflamed but appeared to be infiltrated by high 
amounts of immune cells, and those that were clini-
cally diagnosed as inflamed but the estimated immune 
cell fraction was very low. Exclusion of these biopsies 
reduced confounding effects from putative misclassifica-
tion or other factors. We set threshold criteria for sample 
inclusion as follows: samples diagnosed as “uninflamed” 
and “inflamed” contained ≤ 35% and ≥ 40% immune cells, 
respectively. In total, 48 samples from clinically unin-
flamed sites and 48 samples from inflamed sites complied 
with this criterion and were selected for subsequent asso-
ciation analyses. These 96 samples originated from 57 
individuals, 39 of whom donated an uninflamed and an 
inflamed biopsy each. Thereafter, the mean estimation of 
immune cells was 0.22 (SD 0.06) for uninflamed and 0.58 
(SD 0.13) for inflamed biopsies in the remaining 96 sam-
ples (Table 1, Fig. 3).

After removing individuals with immune cell frac-
tions that contradicted their clinical classification 
from the analysis, samples clustered according to their 

clinical classification into inflamed and uninflamed tissue 
(Fig. 2C, D).

DNA methylation differences of uninflamed and inflamed 
gingival biopsies
Next, the selected samples were investigated for signifi-
cant changes in methylation patterns between clinically 
uninflamed and inflamed samples in the 786,547 CpG 
sites that passed QC, with adjustment for batch effects 
and differences in immune cell content. Furthermore, as 
smoking is one of the major risk factors for periodonti-
tis, 1501 DMPs associated with smoking in oral epithelial 
cells [14] were removed from the analysis. The quantile–
quantile plot revealed global inflation of the test statistics 
compared to the expected distribution, with an inflation 
factor of λ = 5.97 (Fig. 4A). After correction for multiple 
testing, we found 15,507 DMPs with q < 0.05 (Figs. 4B, 5).

Intra-individual variation in DNA methylation is a 
strong confounder in epigenetic studies, which can 
be precluded by analyzing clinically uninflamed and 
inflamed biopsies of the same patients. Likewise, we 
observed that of the top 10 associated DMPs (best 
q = 4.5 ×  10–16 at cg19478962, locating to the noncoding 
RNA gene LOC643339), only three showed nominally 
significant associations in a sub-analysis of the 39 indi-
viduals for whom an uninflamed and inflamed sample 
each was available for the EWAS. Considering this and 
the genomic inflation factor of 5.97, a filtering strategy 
was applied on the associated DMPs to minimize the 
possibilities of false positive associations due to inter-
individual variation.

DMPs in the full EWAS panel and a subset of paired 
inflamed and clinically uninflamed samples from the same 
individuals
We tested all 15,507 DMPs that were significant in the full 
sample panel of 57 EpiDish-filtered individuals (48 unin-
flamed and 48 inflamed samples, “full analysis”), which 
gave the largest power and thus reduced the potential of 
false negative findings, in the subset of paired samples 
(both inflamed and uninflamed samples from 39 indi-
viduals, “paired analysis”), to further reduce the potential 
of false positive findings. In this sub-analysis, 2347 DMPs 
showed significant associations with periodontal inflam-
mation in the gingiva after Bonferroni-correction for 
15,507 tests (Additional file  3). The 20 most significant 
DMPs showed p values <  10–15 and adjusted ∆β ≥ 0.05 
in the full analysis (Table  2). The most significant DMP 
(cg23278359, Fig.  6) mapped to the gene PTP4A3 (Pro-
tein Tyrosine Phosphatase 4A3) with p = 2.2 ×  10–18, 
q = 1.8 ×  10–12, and ∆β = − 0.18. The second most sig-
nificant DMP mapped to the gene ROBO2 (Rounda-
bout Guidance Receptor 2; cg17282085; q = 4.9 ×  10–12, 
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∆β = − 0.14), which is a suggestive risk gene for perio-
dontitis (age 20–60 years; rs264537-C, p = 3 ×  10–6, odds 
ratio = 1.35 [95% confidence interval 1.19–1.54]) [17]. 
Of the 2347 DMPs significant in the full and the paired 
analysis, 63 showed adjusted effect sizes > 0.3, with the 
20 most pronounced effect sizes ≥ 0.34 (Table  3). The 
DMP with the highest effect size mapped to the gene 
CCL26 (C–C Motif Chemokine Ligand 26; cg11303839, 
q = 4.0 ×  10–6, ∆β = − 0.43). 3 of the top 20 associated 
DMPs and 2 of the 20 DMPs with the highest effect sizes 

Fig. 2 Multidimensional Scaling (MDS) Plots for inflamed and clinically uninflamed samples. A MDS Plot of the 120 samples from the 60 patients 
initially analyzed for cell‑type heterogeneity using EpiDish, colored by diagnosed inflammation status. B MDS Plot of the 120 samples from the 
60 patients initially analyzed for cell‑type heterogeneity using EpiDish, colored according to the amount of infiltrated immune cells. C MDS Plot 
of the EpiDish‑filtered 96 samples used for the EWAS, colored by diagnosed inflammation status. D MDS Plot of the EpiDish‑filtered 96 samples 
used for the EWAS, colored according to the amount of infiltrated immune cells. In the initial sample panel, clinically uninflamed biopsies with 
high estimations of infiltrated immune cells clustered together with tissue diagnosed as inflamed (A, B). When including only samples diagnosed 
as “uninflamed” and “inflamed” that contained ≤ 35% and ≥ 40% immune cells, respectively, inflammation status (“uninflamed” and “inflamed”) 
clustered distinctly, with immune cell fractions as estimated by EpiDish reflecting this classification (C, D)

Table 1 Basic characteristics of the EWAS study population

Uninflamed samples 
(n = 48)

Inflamed 
samples 
(n = 48)

Epithelial cells (mean) 0.57 ± 0.10 0.25 ± 0.12

Fibroblasts (mean) 0.21 ± 0.07 0.17 ± 0.07

Immune cells (mean) 0.22 ± 0.06 0.58 ± 0.13

Males, n (%) 28 (58.3) 30 (62.5)

Age, years (mean) 46.7 ± 9.7 45.7 ± 10.0

Smokers, n (%) 22 (45.8) 19 (39.6)
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located < 2  kb to other DMPs with q < 0.05 in the full 
analysis.

Subsequently, a more stringent filtering process for 
the 15,507 DMPs that were significant in the full analy-
sis was applied to further reduce the number of putative 

Fig. 3 EpiDish results for the 96 samples selected for EWAS analysis. Cell type estimations in the gingiva inferred by EpiDish as average weight 
proportions of the major cell types epithelial cells (Epi), fibroblasts (Fib), and immune cells (IC) for uninflamed (A) and inflamed samples (B) (n = 48 
each)

Fig. 4 Manhattan and quantile–quantile plot for epigenome‑wide associations with inflammation in the gingiva. A The quantile–quantile plot 
showed evidence for inflation of association signals (λ = 5.97). B Manhattan plot showing −log10 transformed p values plotted against the genomic 
location of the probes. The horizontal lines indicate the genome‑wide significance threshold (p <  10–7)



Page 7 of 22Richter et al. Clin Epigenet          (2021) 13:203  

random associations. These filtering criteria were: (1) ≥ 2 
significant DMPs (q < 0.05 in the full analysis) had a 
maximum distance of 2 kb, (2) ≥ 1 DMP of such a cluster 
showed effect sizes > 0.1 in the full analysis, (3) ≥ 1 DMP 
of such a cluster showed padj < 0.05 in the paired analy-
sis. This resulted in 441 DMPs in 193 clusters, with p val-
ues < 6.5 ×  10–8 in the full analysis (Additional file 4). Of 
these, 22 DMPs showed padj <  10–5 in the paired analysis 
(Table 4).

The most significant DMP in the paired analysis 
(cg00320534, adjppaired = 9.1 ×  10–6, ∆β = − 0.2, 1 support-
ing DMP) located to the gene DNAJC1 (DnaJ Heat Shock 

Protein Family Member C1). The second most significant 
DMP located to the gene LPXN (Leupaxin) and was sup-
ported by 5 additional DMPs that showed q-values < 0.05 
in the full analysis (cg12891342, adjppaired = 1.4 ×  10–5, 
∆β = − 0.2). Subsequently, we ranked the 441 DMPs 
according to their effect size delta beta (in the full analy-
sis). 7 DMPs showed effect sizes > 0.3 (Table 5). The DMP 
with the largest effect size from this filtering approach 
(cg14991316, adjppaired = 1.0 ×  10–3, ∆β = − 0.34, 3 sup-
porting DMPs) mapped to the promoter region of BPI 
(Bactericidal Permeability Increasing Protein).

Fig. 5 Volcano plot showing methylation differences of clinically uninflamed compared to inflamed samples against −log10 of p values. Depicted 
in red are the DMPs in periodontal inflammation significant after adjustment for multiple testing. Note that effect sizes were derived from M‑values 
using our intercept‑method [16], taking confounding factors, especially cell type heterogeneity, into account
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Identification of differentially methylated regions
To identify differentially methylated regions (DMR), 
we applied the Bump Hunter algorithm [18] to our full 
dataset of 48 inflamed and 48 uninflamed samples and 
to the subset of paired samples. In the full dataset, 6 
DMR showed a family-wise error rate (FWER) < 0.05, 
whereas in the paired sub-analysis, 11 DMR showed a 
FWER < 0.05 (Table 6). 6 DMR were significantly associ-
ated in both approaches, with a 151 base pair (bp) region 
at the transcription start site of CNIH4 (Cornichon Fam-
ily AMPA Receptor Auxiliary Protein 4) showing the 
strongest associations (Fig. 7).

Gene ontology and gene set enrichment analysis
To determine whether the observed differential meth-
ylation is enriched in specific gene ontology (GO) terms 
or Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways, we performed an enrichment analysis for the 
2347 DMPs that were significantly associated in the full 
and the paired analysis. No GO term or KEGG path-
way showed significant overrepresentation after adjust-
ment for multiple testing (Table  7, Additional file  5). 
The most significant term (“inactivation of X chromo-
some by genetic imprinting”, punadj = 4.3 ×  10–5) includes 
only three genes, PCGF3 (Polycomb Group Ring Finger 
3), PCGF5 (Polycomb Group Ring Finger 5), and PCGF6 
(Polycomb Group Ring Finger 6), which all show signifi-
cant DMPs in the EWAS and expression in healthy kerati-
nized oral mucosa (transcripts per million (TPM) > 100), 
and are involved in chromatin modeling.

Furthermore, when considering all GO pathways 
with nominal p values < 0.001, which might indicate a 
trend, there was an overrepresentation of GO terms 
corresponding to nervous system-related terms. As an 

Fig. 6 Methylation at top associated loci. Raw beta values of uninflamed and inflamed EWAS samples (full set, n = 48 each) at cg17282085 (ROBO2), 
cg11303839 (CCL26), cg23278359 (PTP4A3), cg00320534 (DNAJC1), cg12891342 (LPXN), and cg14991316 (BPI). IC = immune cell fraction in samples
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example, we investigated the associations of the second 
most significant GO term, “synaptic vesicle cycle” (bio-
logical process, p = 9.0 ×  10–5), more in detail, because 
this term included more genes compared to the most 
enriched GO term. 25 genes belonging to this GO term 
showed DMPs in the full and paired analysis, 10 of which 
with a q < 0.0001 in the full set (Table 8). From the top 10 
differentially methylated genes in this GO term, STRING 
[20] indicated an interaction of 4 genes, SNAP23 (Synap-
tosome Associated Protein 23), SYT9 (Synaptotagmin 9), 
STX1B (Syntaxin 1B), and SYT2 (Synaptotagmin 2) with 
the periodontitis-associated genes VAMP3 [21, 22] and 
VAMP8 (Vesicle Associated Membrane Protein 8; Addi-
tional file 6) [23]. All of these genes show relatively little 
to no expression in the healthy keratinized oral mucosa, 
determined by RNA-Sequencing of 39 samples [12], with 
exception of CLCN3 and SNAP23 (TPM = 2771 and 615, 
respectively). Notably, the location of the DMPs within 
these genes are predicted promotor flanking and tran-
scribed regions as indicated by ENCODE [24], whereas 
the other, less expressed genes have significant DMPs 
within regions mapping to sites mainly predicted as 
repressed or low activity regions. Only 4 KEGG path-
ways showed nominal significance (p < 0.05), among 
which was “SNARE interactions in vesicular transport” 
with p = 0.036 (3rd most significant pathway, Additional 
file 5). Notably, the functionally related pathway “Mucin 
type O-glycan biosynthesis” was the  8th most significant 
pathway out of 343 with p = 0.09.

Discussion
In this study, we performed the first cell-type informed 
EWAS of gingival tissue biopsies to identify CpG meth-
ylation differences between the uninflamed and perio-
dontitis-inflamed oral mucosa. EWAS that investigate 
environment-induced epigenetic changes in tissues of 
multiple cell types need to address cell type deconvolu-
tion and intra-individual variation of methylation pat-
terns. Likewise, we observed substantial immune cell 
infiltration within the inflamed gingiva leading to sub-
stantial effects on the methylome of the oral mucosa, 
according to which inflamed gingival tissue contained 
approximately twice as much infiltrated immune cells as 
clinically uninflamed tissue, with 52% in the total of 60 
inflamed samples.

Surprisingly, we furthermore observed considerable 
amounts of immune cells in samples excised from peri-
odontitis patients at sites diagnosed as uninflamed by 
specialized periodontologists, sometimes as high as in 
inflamed samples, with an average of 28% in the total 
of 60 clinically uninflamed biopsies sampled in this 
study. Compared to this, in a previous study, we identi-
fied immune cell proportions of 16% in oral mastica-
tory mucosa samples from healthy individuals with no 
diagnosed oral inflammation, taken from the hard pal-
ate near the gingival margin [12]. It is conceivable that 
periodontitis patients show a general immune response 
in the affected tissue that leads to an increased infiltra-
tion of immune cells also at sites where no periodontal 
tissue inflammation was diagnosed. This underlines the 
importance of incorporating cell-type deconvolution 

Table 6 Summary of significant differentially methylated regions

* mRNA-sequencing in healthy keratinized oral mucosa with 16mio reads/sample [12]. **Based on ChIP-seq data from the ENCODE Consortium. ***depending on cell 
type. DNase hypersensitivity sites (DHS) with cluster score 1000 are listed. TPM = transcripts permillion, FWER = family wise error rate, TSS = Predicted promoter region 
including transcription start site, E = Predicted enhancer, WE = Predicted weak enhancer or open chromatin cis regulatory element, T = Predicted transcribed region, 
R = Predicted repressed or low activity region, N.s. = not significant (p and FWER > 0.05, respectively)

Chr:position (start–end) (hg19) Gene symbol Median TPM* Regulatory features** Paired analysis Full analysis

p FWER p FWER

chr1:224,544,384–224,544,535 CNIH4 723 TSS; DHS  <  10–6  < 0.01  <  10–6  < 0.01

chr16:3,220,475–3,221,355 tRNA pseudogene NA R, E, TSS***  <  10–6  < 0.01 4.7 ×  10–4 0.04

chr1:23,857,884–23,858,301 E2F2 154 TSS; DHS 9.8 ×  10–5 0.01 n.s n.s

chr11:8,986,449–8,986,674 TMEM9B 1020 TSS; DHS 9.8 ×  10–5 0.01 n.s n.s

chr6:31,515,391–31,515,404 NFKBIL1 128 TSS; DHS 9.8 ×  10–5 0.01 1.2 ×  10–4 0.01

chr7:158,342,283–15,8342,600 PTPRN2 39 R, T, WE***; DHS 9.8 ×  10–5 0.01 5.9 ×  10–4 0.04

chr10:135,164,246–135,164,482 PRAP1 0 T 9.8 ×  10–5 0.01 5.9 ×  10–4 0.04

chr19:2,462,441–2,462,961 LMNB2 1103 R, E, TSS*** 2.0 ×  10–4 0.02 5.9 ×  10–4 0.04

chr11:64,360,872–64,360,997 SLC22A12 0 R 2.9 ×  10–4 0.03 n.s n.s

chr11:2,919,808–2,920,209 SLC22A18 (+ ‑AS) 53 (5) TSS, E, WE***; DHS 3.9 ×  10–4 0.04 n.s n.s

chr1:161,087,882–161,087,906 NIT1 238 TSS; DHS 3.9 ×  10–4 0.04 n.s n.s
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algorithms in differential expression and methylation 
studies to avoid type I and type II errors.

Another limitation of EWAS is the complexity of intra-
individual variation of methylation patterns, which has 
a stronger impact if sample size is limited. As a conse-
quence, EWAS have higher genomic inflation factors 
compared to GWAS, where inter-individual genetic 
variation generally plays a much lesser role. Accord-
ingly, the current study had a genomic inflation factor 
of 5.97 despite cell type deconvolution and removal of 
samples with ambiguous inflammatory data. We aimed 
to reduce intra-individual methylation variation by ana-
lyzing paired biopsies from 60 individuals on the EPIC 
BeadChip. However, after removing samples with an 
ambiguous immune state, our study comprised a non-
paired analysis panel of 48 clinically uninflamed and 48 
periodontitis-inflamed samples from 57 patients in total. 
Of these, 39 patients both donated an uninflamed and 
an inflamed biopsy. To increase statistical power and 
thus, to reduce the potential of false negative findings, 
the total sample panel of 2 × 48 non-paired samples was 
analyzed first. Subsequently, a sub-analysis of the signifi-
cant results in the 2 × 39 paired samples was performed 

to remove potential false positive findings. This two-
step approach in conjunction with cell type deconvolu-
tion, an improved intercept method for the estimation of 
confounder-informed effect sizes, recently developed by 
our group [16], and stringent filter criteria allowed us to 
identify several genes that showed robust different meth-
ylation between uninflamed and periodontitis-inflamed 
gingival tissues, independent of immune cell infiltration 
and inter-individual variation. Some of these genes have 
plausible roles in the etiology of periodontitis.

The most significant DMP with adjusted effect sizes 
mapped to the last intron of PTP4A3 (Protein Tyrosine 
Phosphatase 4A3). PTP4A3 has a role in the positive 
regulation of endothelium wound repair and angiogen-
esis [25] and inhibition of the expression of extracellular 
matrix and adhesion genes, like matrix metallopro-
teinases (MMPs) and integrins [26, 27]. Substrates of 
PTP4A3 are e.g. MMP14 [28], integrin β1 [27], and 
Keratin 8 (KRT8) [29]. The identification of PTP4A3 is a 
good example of the suitability of our intercept method 
to provide effect sizes that directly correspond to the 
p value, which is missing in most EWAS. Currently, p 
values are usually based on log-transformed M-values 

Fig. 7 Methylation at significant differentially methylated regions. Raw beta values of uninflamed and inflamed EWAS samples (full set, n = 48 each) 
at the genetic regions of CNIH4, LMNB2, NFKBIL1, PRAP1, PRPTN2, and the tRNA pseudogene on chromosome 16
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because they exhibit better statistical properties, but 
are biologically meaningless. As a consequence, p val-
ues based on M-values are reported together with dif-
ferences in raw β-values, which do not account for 
confounding factors. At the PTP4A3 locus, such an 
approach would result in a highly significant p value 
with a ∆β of − 0.07 (calculated from the raw β = 0.87 
in clinically uninflamed and 0.8 in inflamed tissue). 
The mean raw β at this locus is 0.8 in cultured GECs 
and 0.93 in blood cells. As the inflamed biopsies from 
the EWAS show an average amount of ~ 58% immune 
cells, 58% of the methylation signals in these samples 
are derived from cells that presumably exhibit methyla-
tion values as high as β = 0.93. Given the periodontal 
inflammation itself has no impact on methylation here, 
estimations for these highly admixed samples should be 
higher than for “pure” epithelial cells (i.e., the GECs). 
Instead, based on our intercept method, an adjusted 
∆β of − 0.18 was estimated, indicating a strong hypo-
methylation of the gingival epithelial cells at this locus 
in inflamed samples.

The second most significant DMP mapped to the 
exonic region of ROBO2 (Roundabout Guidance Recep-
tor 2) that encodes a transmembrane receptor of the 
immunoglobulin superfamily and has been reported as 
a suggestive risk gene for periodontitis before [17]. It is 

involved in epithelial wound repair by promoting extru-
sion of dying cells from injured tissue [30].

The highest adjusted effect size with a hypomethyla-
tion of 43% was observed in the gene CCL26 (C–C Motif 
Chemokine Ligand 26). CCL26 is a factor for chemotac-
tic eosinophil and basophil attraction in endothelial cells 
and possesses antimicrobial activity [31, 32]. Notably, 
CCL26 was the most highly induced gene in patients suf-
fering from eosinophilic esophagitis, a chronic allergic 
inflammation of the esophageal mucosa, compared with 
its expression level in healthy individuals [33].

Among the 20 genetic regions with the highest effect 
sizes was PTP4A2 (Protein Tyrosine Phosphatase 4A2). 
This gene forms, together with PTP4A3, which harbored 
the most significant DMP in the full analysis as discussed 
above, and another phosphatase, PTP4A1, the subfamily 
of Phosphatase of Regenerative Liver (PRL). Given that 
two out of three PRL subfamily members showed highly 
significant DMPs in periodontitis-inflamed gingiva, the 
PRL subfamily represents a good candidate for evaluating 
its role in the inflammatory processes of oral epithelial 
cells.

In a more stringent filtering process, only “clusters” 
of DMPs that comprised at least 2 DMPs within 2  kb 
in the full analysis, at least one DMP with an effect 
size > 0.1, and one DMP significant in the paired anal-
ysis were included. In this way, further genes with a 

Table 7 Gene Ontology enrichment analysis

Most significant gene ontology (GO) terms (p < 0.001) for genes corresponding to the 2347 DMPs significant in the full and paired sub-analysis. None of the pathways 
was significant after correction for multiple testing (FDR). *numbers are adjusted for probe-number bias and annotation to multiple genesby using a fractional count 
[19]. BP = biological process; MF = molecular function; CC = cellular component

Sub‑ontology Gene ontology term N genes in GO 
term

N differentially 
methylated genes (%)*

punadj

BP inactivation of X chromosome by genetic imprinting 3 3 (100.0%) 4.3 ×  10–5

BP synaptic vesicle cycle 191 18 (9.4%) 9.0 ×  10–5

CC hippocampal mossy fiber to CA3 synapse 33 7 (21.2%) 9.7 ×  10–5

BP vesicle‑mediated transport in synapse 211 18 (8.5%) 3.0 ×  10–4

MF small conductance calcium‑activated potassium channel activity 4 3 (75.0%) 3.1 ×  10–4

BP synaptic vesicle fusion to presynaptic active zone membrane 22 5 (22.7%) 3.5 ×  10–4

CC neuron projection 1298 64.5 (5.0%) 3.6 ×  10–4

BP vesicle fusion to plasma membrane 23 5 (21.7%) 4.0 ×  10–4

BP chemical synaptic transmission 699 40.5 (5.8%) 5.1 ×  10–4

BP anterograde trans‑synaptic signaling 699 40.5 (5.8%) 5.1 ×  10–4

BP metanephric renal vesicle formation 4 3 (75.0%) 5.2 ×  10–4

BP neurotransmitter secretion 169 15 (8.9%) 5.8 ×  10–4

BP signal release from synapse 169 15 (8.9%) 5.8 ×  10–4

BP trans‑synaptic signaling 707 40.5 (5.7%) 6.5 ×  10–4

CC synaptic vesicle 190 15 (7.9%) 6.7 ×  10–4

MF calcium‑activated potassium channel activity 15 4 (26.7%) 8.1 ×  10–4

MF glutamate receptor activity 27 6 (22.2%) 9.7 ×  10–4

BP synaptic signaling 724 40.5 (5.6%) 9.9 ×  10–4



Page 16 of 22Richter et al. Clin Epigenet          (2021) 13:203 

Table 8 Differentially methylated genes within the gene ontology term “synaptic vesicle cycle” (biological process)

Gene Full name TPM* Probe ID Chr:Pos (hg19) Regulatory 
features**

∆β (full 
analysis)

p (full 
analysis)

q (full 
analysis)

padj paired **

CLCN3 Chloride 
Voltage‑Gated 
Channel 3

2771 cg11022756 chr4:170,540,250 PF − 0.14 6.0 ×  10–16 4.8 ×  10–10 6.9 ×  10–3

RIMS1 Regulating 
Synaptic 
Membrane 
Exocytosis 1

0 cg21984541 chr6:72,795,650 R − 0.27 1.0 ×  10–13 7.9 ×  10–8 3.1 ×  10–4

SNAP23 Synaptosome 
Associated 
Protein 23

615 cg13922935 chr15:42,804,870 T, R*** − 0.20 1.7 ×  10–12 1.3 ×  10–6 1.0 ×  10–5

SYT9 Synaptotag‑
min 9

78 cg21672572 chr11:7,369,177 R − 0.33 4.2 ×  10–12 3.3 ×  10–6 4.7 ×  10–5

STX1B Syntaxin 1B 21 cg05787209 chr16:31,022,521 R, E − 0.19 6.9 ×  10–12 5.4 ×  10–6 0.03

SYN3 Synapsin III 1 cg16894211 chr22:33,403,542 R − 0.24 1.6 ×  10–11 1.3 ×  10–5 1.6 ×  10–3

SYT2 Synaptotag‑
min 2

1 cg03532262 chr1:202,587,916 R, WE − 0.17 2.7 ×  10–11 2.1 ×  10–5 4.5 ×  10–4

SLC17A8 Solute Carrier 
Family 17 
Member 8

0 cg03817774 chr12:100,772,630 R − 0.28 3.4 ×  10–11 2.7 ×  10–5 2.7 ×  10–3

SYNDIG1 Synapse Dif‑
ferentiation 
Inducing 1

5 cg04332507 chr20:24,475,147 R, T − 0.15 5.8 ×  10–11 4.6 ×  10–5 0.05

RIMS2 Regulating 
Synaptic 
Membrane 
Exocytosis 2

4 cg23568361 chr8:104,862,936 R − 0.20 8.7 ×  10–11 6.8 ×  10–5 2.2 ×  10–3

CADPS Calcium 
Dependent 
Secretion 
Activator

12 cg17149019 chr3:62,432,102 R − 0.14 2.7 ×  10–10 2.1 ×  10–4 3.4 ×  10–3

UNC13C Unc‑13 
Homolog C

6 cg15450958 chr15:54,812,261 R, T, E − 0.22 1.2 ×  10–9 9.7 ×  10–4 0.04

CPLX1 Complexin 1 6 cg16649791 chr4:816,968 R − 0.25 1.5 ×  10–9 1.2 ×  10–3 4.5 ×  10–3

SYT9 Synaptotag‑
min 9

78 cg07649045 chr11:7,260,764 R − 0.13 1.6 ×  10–9 1.3 ×  10–3 1.3 ×  10–4

ERC2 ELKS/RAB6‑
Interacting/
CAST Family 
Member 2

62 cg24265969 chr3:55,654,481 E, R − 0.32 2.1 ×  10–9 1.6 ×  10–3 0.05

PLD1 Phospholipase 
D1

1469 cg06085579 chr3:171,509,822 TSS, E, T, WE − 0.17 3.1 ×  10–9 2.4 ×  10–3 1.3 ×  10–3

SYT7 Synaptotag‑
min 7

103 cg05131646 chr11:61,324,780 R, WE − 0.12 3.4 ×  10–9 2.7 ×  10–3 8.7 ×  10–3

SYT12 Synaptotag‑
min 12

6 cg13851621 chr11:66,812,262 R, CTCF − 0.19 3.6 ×  10–9 2.8 ×  10–3 7.7 ×  10–3

RAB3B RAB3B, 
Member RAS 
Oncogene 
Family

14 cg01223789 chr1:52,392,189 CTCF − 0.23 3.8 ×  10–9 3.0 ×  10–3 4.5 ×  10–3

SLC17A8 Solute Carrier 
Family 17 
Member 8

0 cg17713193 chr12:100,803,749 R − 0.22 4.6 ×  10–9 3.6 ×  10–3 0.05

SYT1 Synaptotag‑
min 12

12 cg16495154 chr12:79,802,105 CTCF, E − 0.18 5.9 ×  10–9 4.6 ×  10–3 4.4 ×  10–3

SYNJ2 Synaptojanin 2 251 cg19920417 chr6:158,468,344 R, T, WE − 0.21 7.4 ×  10–9 5.8 ×  10–3 9.2 ×  10–3
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suggestive role in periodontal inflammation of the gin-
giva were identified. The most significant gene in the 
paired analysis, DNAJC1 (DnaJ Heat Shock Protein 
Family Member C1), is an endoplasmatic reticulum 
heat shock protein that binds the molecular chaper-
one HSPA5 (alias BiP) [34], which is known to exhibit 
anti-inflammatory and inflammation-resolutory prop-
erties. BiP was proposed to form part of “resolution-
associated molecular patterns” (RAMPs), intracellular 
responses to inflammatory and damage-induced stress, 
mediated by pathogen-associated (PAMPs) and dam-
age-associated (DAMPs) molecular patterns [35]. Fur-
thermore, BiP interacts with SERPINA3 [36], an acute 
phase protease inhibitor, which is supposed to inhibit 
angiotensin activation [18]. The second most significant 
DMP mapped to Leupaxin (LPXN), a focal adhesion 
protein, which showed a cluster of 6 DMPs. It is pref-
erably expressed in hematopoietic cells with a putative 
role as an adapter protein in the formation of the adhe-
sion zone in osteoclasts (Uniprot) and functions as a 
paxillin counterpart that potently suppresses the tyros-
ine phosphorylation of paxillin during integrin signal-
ing [37].

The DMP with the highest effect sizes from the strin-
gent filtering approach mapped to BPI (Bactericidal 
Permeability Increasing Protein) and was also among 
the top 20 significant DMPs (paired analysis) in the 
stringent filtering approach. BPI is a lipopolysaccha-
ride-binding protein with strong antimicrobial activity 
and an important part of innate immune response. It 
is predominantly expressed in hematopoietic cells, but 
is also found in a variety of other tissues, most notably 
the epithelial lining of mucous epithelial cells, where it 
was shown to block endotoxin-mediated signaling and 
to kill Salmonella typhimurium [38].

Enrichment analysis for the 2347 DMPs that were sig-
nificant in the full as well as in the paired analysis showed 
no significant enriched GO terms or KEGG pathways 
after correction for multiple testing. However, GO terms 
with nominal p values < 0.001 were enriched for vesicle 
trafficking. Specifically, while the strongest enriched GO 
term, “inactivation of X chromosome by genetic imprint-
ing”, encompassed only 3 genes, for the second most sig-
nificant GO term, “synaptic vesicle cycle”, we found 25 
out of 229 genes to be differentially methylated in peri-
odontitis-inflamed gingiva. Likewise, the KEGG path-
way “SNARE interactions in vesicular transport” was the 

Genes from the gene ontology term “synaptic vesicle cycle” with significant DMPs [q (full analysis) ≤ 0.05 and padj (paired) ≤ 0.05], sorted by p values (full analysis). 
∆β-values are adjusted according to our intercept method [16]. *mRNA-sequencing in healthy keratinized oral mucosa with 16mio reads/sample [12]. **Based on 
Chip-Seq Data from the ENCODE project. ***in H1-hESC (H1 human embryonic stem cell line) only. TSS = Predicted promoter region including transcription start site, 
PF = Predicted promoter flanking region, E = Predicted enhancer, WE = Predicted weak enhancer or open chromatin cis regulatory element, CTCF = CTCF enriched 
element, T = Predicted transcribed region, R = Predicted repressed or low activity region

Table 8 (continued)

Gene Full name TPM* Probe ID Chr:Pos (hg19) Regulatory 
features**

∆β (full 
analysis)

p (full 
analysis)

q (full 
analysis)

padj paired **

BSN Bassoon 
Presynaptic 
Cytomatrix 
Protein

7 cg20796968 chr3:49,700,419 R − 0.09 1.3 ×  10–8 0.01 0.01

CPLX2 Complexin 2 5 cg14416206 chr5:175,247,405 R − 0.18 1.3 ×  10–8 0.01 2.9 ×  10–3

DDC Dopa Decar‑
boxylase

0 cg08241694 chr7:50,633,896 R, PF − 0.14 1.5 ×  10–8 0.01 0.03

RIMS1 Regulating 
Synaptic 
Membrane 
Exocytosis 1

0 cg26298612 chr6:73,074,746 R − 0.11 2.1 ×  10–8 0.02 2.9 ×  10–3

DNM1L Dynamin 1 
Like

867 cg08823831 chr12:32,871,622 T − 0.16 2.1 ×  10–8 0.02 7.8 ×  10–3

SYT7 Synaptotag‑
min 7

103 cg02284433 chr11:61,280,813 R, WE − 0.13 5.3 ×  10–8 0.04 0.04

PRKAR1B Protein Kinase 
CAMP‑
Dependent 
Type I Regula‑
tory Subunit β

176 cg26669717 chr7:641,028 R, T, TSS − 0.11 5.7 ×  10–8 0.04 0.04

CADPS Calcium 
Dependent 
Secretion 
Activator

12 cg03546671 chr3:62,789,196 R − 0.15 5.8 ×  10–8 0.04 6.3 ×  10–3
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 3rd strongest nominally significantly enriched pathway 
(p = 0.036) and the functionally related pathway “Mucin 
type O-glycan biosynthesis” was the  8th most enriched 
pathway out of 343 (p = 0.09). Interestingly, several genes 
among the most significant differentially methylated 
genes that were part of the vesicle trafficking gene sets are 
known to interact with the genes VAMP3 and VAMP8, 
which are both suggestive risk genes of periodontitis 
[21–23]. VAMP8 and VAMP3 are highly expressed in 
keratinized oral mucosa, with TPM values of 2404 and 
1839, respectively [12], indicating a functional role of 
these genes in epithelial and connective oral tissues. For 
example, in colonic epithelial cells, VAMP8 is required 
for the secretion of the main mucin of the mucin layer of 
the colon, Mucin-2, which has an important role in the 
maintenance of the mucosal barrier integrity. However, 
the observed trend of gene sets enriched for pathways of 
vesicle trafficking and mucin biosynthesis was not signifi-
cant after correction for multiple testing, why these data 
need to be carefully interpreted.

In this context, a limitation of the present EWAS was 
the small sample size that impeded clear statistical evi-
dence for enriched gene sets and a putatively more com-
prehensive set of DMPs. However, to our knowledge, it 
currently represents the largest EWAS that used gin-
gival tissue biopsies and the only EWAS that analyzed 
paired inflamed and uninflamed samples from the same 
patients. Two previous EWAS that investigated differen-
tial methylation of periodontitis-inflamed gingiva [39, 
40] included only 19 and 12 patients, respectively, and 
similar numbers of healthy controls. Moreover, the previ-
ous studies did not adjust for differences in cell type com-
position. Given the substantial immune cell infiltration, it 
is questionable whether findings from studies that ignore 
cell type deconvolution approaches point towards differ-
ential methylation patterns that reflect disease-relevant 
cellular processes or rather reflect differences in cell type 
composition.

In conclusion, this EWAS identified several genes that 
are significantly differentially methylated between per-
iodontitis-inflamed compared to uninflamed gingiva. 
The strongest differences were observed for genes with 
roles in wound healing (ROBO2, PTP4A3), cell adhesion 
(LPXN) and innate immune response (CCL26, DNAJC1, 
BPI). Functional enrichment analyses implied that dif-
ferentially methylated genes were overrepresented in 
gene sets annotated to vesicle trafficking. These results 
propose that the oral mucosa responds to a long-term 
inflammatory environment with specific adaptations in 
wound repair, barrier integrity, and innate host defense.

Methods
Study sample
A total of 60 periodontitis patients of Caucasian descent, 
aged 24–65, with ≥ 30% bone loss from the cement-
enamel junction to the root apex, documented by a full-
mouth set of radiographs or orthopantomographs, at ≥ 2 
teeth were enrolled in this study. Written informed con-
sent was obtained from all subjects according to the Dec-
laration of Helsinki. All participants completed a detailed 
questionnaire to provide general personal information 
(e.g., sex, age, geographical and family descent), informa-
tion on general and oral health, and smoking habits. This 
study was conducted in accordance with the principles of 
Good Clinical Practice and approved by the Independ-
ent Ethics Committee of each participating University 
Hospital.

Collection of ex vivo tissue samples from clinically 
uninflamed and inflamed gingiva
Clinically uninflamed gingival tissue samples were col-
lected during routine tooth extraction, surgical tooth 
lengthening, reopening of a submerged healing implant 
as anyhow performed during the intervention, with a tis-
sue puncher with a diameter of 3 mm or from the tissue 
margins with a scalpel. A tissue sample of periodontitis-
inflamed gingiva was taken from excised tissue due to 
modified Widman flap, osseous resective surgery [41], or 
with a disposable 3 mm gingival tissue puncher. To stabi-
lize DNA and RNA, the biopsies were stored in the All-
Protect reagent (Qiagen, Hilden, Germany) immediately 
after punching at 4  °C for 24 h, and subsequently trans-
ferred to − 20 °C.

Cell culture of gingival epithelial cells and gingival 
fibroblasts
Solid ex vivo biopsies of the masticatory oral mucosa of 
the hard palate were taken from additional healthy sub-
jects of Caucasian descent with 3  mm tissue punchers. 
Biopsies were dissected enzymatically to separate the 
epithelial cells from the fibroblasts by overnight incu-
bation in 5  mg/mL dispase II (Sigma Aldrich) diluted 
in cell growth medium (DMEM, 1% Pen/Strep) at 4  °C. 
Immortalized and primary gingival fibroblast cells 
(iHGFs and pHGFs) were cultured in DMEM cell growth 
medium with 1% Amphotericin B, 1% Pen/Strep, and 1% 
non-essential amino acids. Immortalized gingival epi-
thelial cells (OKG4) [42, 43], kindly provided by James 
Rheinwald, Boston, MA, USA, and primary GECs were 
cultured in DermaLife K medium with 1% penicillin/
streptomycin in the presence of 60 μM or 1.4 mM  Ca2+ 
(CellSystems, Troisdorf,Germany). Gingival fibroblasts 
and epithelial cells were cultivated in collagen-coated 
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flasks at 37 °C and 5%  CO2 until reaching 100% and 80% 
confluence, respectively, before DNA extraction.

DNA extraction
The conserved ex vivo tissue samples were manually bro-
ken up into small pieces with a scalpel and subsequently 
homogenized using the automated mixer mill MM 400 
(Retsch, Haan, Germany) with frozen beads (3  mm, 
Retsch) for 90 s at 30 Hz before further processing. DNA 
was extracted using the AllPrep DNA/RNA/miRNA Uni-
versal Kit (Qiagen, Hilden, Germany). DNA integrity was 
subsequently verified with a 2% agarose gel electrophore-
sis. Concentrations were measured using the Multiskan 
GO Microplate Spectrophotometer (Fisher Scientific, 
Hampton, USA). DNA samples were stored at − 80 °C.

Bisulfite conversion and hybridisation to the Infinium 
MethylationEPIC BeadChips
500 ng DNA per sample was bisulfite converted with the 
EZ-96 DNA Methylation Kit (Zymo Research, Irvine, 
USA) and hybridized to the Infinium DNA Methylatio-
nEPIC BeadChip (Illumina, San Diego, USA) on an iScan 
Microarray Scanner (Illumina) at the Institute for Clini-
cal Molecular Biology, Christian-Albrechts-University 
Kiel, Germany.

Pre‑processing and normalization
For analysis and quality control, the R environment 
(Version 4.0.3) and the R package minfi (Version 1.36.0) 
[44] were used, including the R package limma (Version 
3.36.0) for the differential methylation analysis [45]. The 
Red/Green channel of the array were converted into one 
methylation signal without any normalisation. Using the 
function plotQC, sample-specific QC was estimated and 
no sample was removed. The QC criteria for probes were 
filtering of probes with median detection p values > 0.05, 
probes that lay within 5  bp of a single nucleotide poly-
morphism (SNP) with > 5% minor allele frequency, 
probes on the sex chromosomes and cross-reactive 
probes using the R package maxprobes (https:// rdrr. io/ 
github/ markg ene/ maxpr obes) according to Pidsley et  al. 
[46] and McCartney et  al. [47]. In total, 786,547 probes 
complied with the QC criteria and were included in the 
analysis. Methylation status was estimated according to 
the fluorescent intensity ratio, as any value between β = 0 
(unmethylated) and 1 (completely methylated), and log2-
transformed into M-values, which are considered a more 
statistically valid estimator [48]. After quality control, a 
functional normalisation was performed using the pre-
processFunnorm function in minfi [49].

Cell type deconvolution of EWAS samples
To identify the presence of non-epithelial cells in the oral 
mucosa samples, the EpiDISH algorithm (Version 2.6.0) 
[15] was used, applying the centEpiFibIC.m.rda reference 
dataset on our raw beta-values, which includes centroids 
for epithelial cells, fibroblasts, and immune cells (IC).

Differential DNA methylation analysis
To identify DMPs correlating significantly with periodon-
tal inflammation of the gingiva, we performed a linear 
mixed model (R package lme4, Version 1.1-27.1) [50] 
on the approximatively normally distributed M-values. 
We included affection status (inflamed vs. uninflamed) 
and IC-content (derived from the EpiDish algorithm) 
as fixed effects and the batch effect, i.e., slide and posi-
tion on slide, as random effect with a constant intercept, 
using the R packages Combat and BatchQC [51]. There-
fore, we adjusted the effect of the affection status, i.e., the 
delta M, for the confounder IC-content. Afterwards, we 
transformed the differences in M-values into differences 
in β-values by our recently developed intercept method 
[16]. By doing so, we were able to include the batch effect 
as well as the confounding effect of immune cell infiltra-
tion in gingival tissue.

To exclude potential stratification by the effects of 
smoking, which represents a major risk factor for peri-
odontitis, 1501 probes that corresponded to DMPs in 
buccal mucosa of smokers were removed from the analy-
sis beforehand [14]. Correction for multiple testing was 
carried out using the method by Benjamini and Hoch-
berg [52]. CpGs were annotated to genes according to 
GRCh37/hg19 as provided in the MethylationEPIC Bead-
Chip manifest.

In general, reported effect sizes Δβ were adjusted for 
IC-content and batch effects as described above, unless 
otherwise stated (i.e., referred to as “raw beta” values). To 
compare raw beta values of gingival cells with raw beta 
values of hematopoietic cells at significant DMPs, Illu-
mina EPIC BeadChip data of 69 blood samples taken 
from 34 healthy female individuals at two different time 
points, was downloaded from the NCBI GEO database 
[53], accession GSE123914 [54].

Stringent filtering approach
A more stringent filtering approach was performed for 
DMPs that were significant in the full analysis. As meth-
ylation is spatially correlated [55], next to the information 
on adjusted effect sizes, we incorporated information 
on nearby co-methylation in this filtering approach.The 
applied filtering criteria were: (1) ≥ 2 significant DMPs 
(q < 0.05 in the full analysis) had a maximum distance 
of 2  kb, (2) ≥ 1 DMP of such a cluster showed effect 
sizes > 0.1 in the full analysis, (3) ≥ 1 DMP of such a 

https://rdrr.io/github/markgene/maxprobes
https://rdrr.io/github/markgene/maxprobes
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cluster showed padj < 0.05 in the paired analysis. We chose 
a maximum gap between DMPs of 2 kb as co-methylation 
was found to occur within this distance [56] and allowed 
for DMPs only associated in the full analysis as “support-
ing DMPs” to circumvent the problem of false negative 
findings in the paired analysis (which had less statistical 
power due to its limited size).

Identification of differentially methylated regions
In addition to the stringent filtering process described 
above, which filtered also according to a spatial pattern 
of DMPs, we aimed to identify differentially methylated 
regions (DMR) using a distinct straightforward algo-
rithm, tailored to find regions where methylation pat-
terns deviate from the expected distribution. While this 
approach cannot account for our specific experimental 
setup with a subset of paired samples, it provides a high 
accuracy in finding true positive associations in “stand-
ard” case control settings, also controlling for con-
founding variables. To this end, we applied the Bump 
Hunter package, Version 1.32.0 [18], to our full dataset 
of 48 inflamed and 48 uninflamed samples and to the 
subset of paired samples. The cut-off value, which is a 
user-defined numeric value that determines the upper 
and lower bounds of the genomic profiles that are used 
as candidate regions, was set to 0.02 and the number of 
permutations was set to 1000.

Gene ontology and gene set enrichment analysis 
of differentially methylated genes
For gene set and gene ontology enrichment analysis, 
we used the r packages missMethl and gometh [19]. 
The R package IlluminaHumanMethylationEPICanno.
ilm10b4.hg19 (Version 3.13) was used for annotation. 
344 KEGG terms were gathered using limma’s internal 
function getGeneKEGGLinks with default options for 
gene set enrichment analysis. 22,746 GO terms were 
derived fromorg.Hs.eg.db after cleaning. Gene ontol-
ogy terms and gene sets with q < 0.05 were considered 
as being significantly enriched.
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