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Abstract 

Glioblastoma (GBM) is the most aggressive primary brain tumor, having a poor prognosis and a median overall 
survival of less than two years. Over the last decade, numerous findings regarding the distinct molecular and genetic 
profiles of GBM have led to the emergence of several therapeutic approaches. Unfortunately, none of them has 
proven to be effective against GBM progression and recurrence. Epigenetic mechanisms underlying GBM tumor biol‑
ogy, including histone modifications, DNA methylation, and chromatin architecture, have become an attractive target 
for novel drug discovery strategies. Alterations on chromatin insulator elements (IEs) might lead to aberrant chro‑
matin remodeling via DNA loop formation, causing oncogene reactivation in several types of cancer, including GBM. 
Importantly, it is shown that mutations affecting the isocitrate dehydrogenase (IDH) 1 and 2 genes, one of the most 
frequent genetic alterations in gliomas, lead to genome-wide DNA hypermethylation and the consequent IE dysfunc‑
tion. The relevance of IEs has also been observed in a small population of cancer stem cells known as glioma stem 
cells (GSCs), which are thought to participate in GBM tumor initiation and drug resistance. Recent studies revealed 
that epigenomic alterations, specifically chromatin insulation and DNA loop formation, play a crucial role in estab‑
lishing and maintaining the GSC transcriptional program. This review focuses on the relevance of IEs in GBM biology 
and their implementation as a potential theranostic target to stratify GBM patients and develop novel therapeutic 
approaches. We will also discuss the state-of-the-art emerging technologies using big data analysis and how they will 
settle the bases on future diagnosis and treatment strategies in GBM patients.
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Introduction
Glioblastoma (GBM) is the most aggressive type of pri-
mary brain tumor. The current standard-of-care (SOC) 
for patients with GBM includes a combination of surgi-
cal resection, adjuvant radiotherapy, and chemotherapy, 
mainly based on temozolomide (TMZ) [1, 2]. However, 
the prognosis of GBM patients remains dismal, with a 
median survival time of approximately 15  months and 
a recurrence rate of about 90% [3]. In addition to the 

limited benefit in survival, SOC treatments cause signifi-
cant morbidity involving neurological deficits. Formerly 
known as glioblastoma multiforme, the term “multi-
forme” reflects a robust heterogeneous variety of cell 
types coexisting within the tumor. Each cell type exhibits 
a particular molecular profile, leading to different degrees 
of therapy resistance among its tumor cell population [4, 
5]. The detection and characterization of such intratumor 
heterogeneity are of great value to the clinical diagnosis 
and management of this disease. GBM can develop rap-
idly as a de novo brain tumor (primary GBM) in more 
than 90% of cases [6]. To a lesser extent, these tumors 
can originate from previous lower-grade diffuse glio-
mas (secondary GBM). Although these are histologically 
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indistinguishable, they present distinct genetic and epige-
netic signatures that allow their identification.

Recent molecular and computational biology improve-
ments allowed the identification of novel targetable 
molecular mechanisms in GBM. Gene- and gene path-
way-centered approaches have generated a myriad of 
data about GBM mechanisms contributing to invasion, 
progression, unlimited replication, maintenance, and 
drug resistance [7–9]. However, to date, the contribution 
of these scientific advances to the clinical management of 
GBM patients remains insufficient. The limited improve-
ments in the clinical outcomes reflect the inherent multi-
molecular-level, omics-scale complexity that defines 
GBM etiology and pathology. The absence of effective 
therapeutic management represents an inherent chal-
lenge to treat GBM. Taken together, these issues motivate 
the need for alternative approaches to better understand 
and disentangle the integrative molecular alterations 
underpinning the aggressive and treatment-resistant 
phenotype of GBM.

Genetic and epigenetic alterations on insulator ele-
ments (IEs), an essential type of cis-regulatory element 
involved in enhancer–promoter interactions, have been 
recently found in cancer cells [10]. In particular, dys-
functional IEs result in aberrant chromatin conformation 
and the consequent oncogene activation [11]. Therefore, 
this review covers the most recent findings on the role 
of IEs in GBM and the potential effects on gene net-
work regulation. At the same time, it provides an over-
view of the chromatin architecture and IEs in  glioma 
stem cells (GSCs) and its potential translation into novel 
patient-centered diagnosis, prognosis, and therapeutic 
applications.

Role of insulator elements in chromatin organization, gene 
isolation, and concomitant gene expression
The essential role of IEs is the compartmentalization of 
chromatin into structural and functional units known as 
Topologically Associating Domains (TADs). TADs are 
megabase-size regions formed and maintained by the 
architectural protein CCCTC-binding factor (CTCF) that 
restrict chromatin interactions within themselves com-
pared to neighboring genomic regions [12]. TADs can act 
as a single insulated region or as a multidomain structure 
containing several insulated segments, often referred 
to as sub-TADs. Both TADs and sub-TADs are organ-
ized into distinct units of globular conformation, form-
ing DNA loops that confer physical isolation of genes 
confined within a TAD structure that prevents their 
interaction with regulatory regions located outside of 
the TAD [12, 13]. It has been proposed that TAD forma-
tion follows the “loop extrusion” model where CTCF and 
cohesin are the major players [14–17]. In this model, the 

cohesin complex translocates onto chromatin. It travels 
along the DNA molecule, extruding a chromatin loop on 
its way until it reaches a CTCF bound to an inward-ori-
ented CTCF site, blocking further chromatin extrusion.

IEs regulate gene expression via loop formation in 
a position-dependent manner [18]. CTCF-cohesin 
anchored loops can facilitate enhancer–promoter inter-
actions when flanking both elements to constrain the 
enhancer function within the DNA loop, resulting in a 
structural unit known as an “insulated neighborhood” 
[19] (Fig.  1a). Conversely, IEs can also block enhancer–
promoter interactions by capturing a gene promoter 
inside a chromatin loop, unable to reach its former 
enhancer element (EE). This type of IE is known as 
“enhancer-blocking elements” and can only occur if the 
insulator sequence is placed between the EE and the gene 
promoter (Fig.  1b). Also, IEs can separate active chro-
matin (euchromatin) from repressive chromatin regions 
(heterochromatin), independently of CTCF-loop forma-
tion. This latter type of IE is known as “barrier elements,” 
and their mechanism of action consists of recruiting his-
tone modifying enzymes, acting as a physical barrier to 
protect against the linear spread of heterochromatin into 
euchromatin regions, and vice versa [20] (Fig.  1c). All 
these IE functions are notably important in sub-TADs, 
where they grant a more dynamic regulatory control 
over genes located within the loop structure [21]. While 
TADs are highly conserved among mammals and differ-
ent tissues, sub-TADs are more variable. They tend to be 
associated with changes in response to cellular signals, 
gene activity and allow for cell-specific functions [22, 23]. 
These observations suggest that sub-TADs allow fine-
tuned control of the gene expression during specific tran-
scriptional programs such as cell differentiation [24].

Aberrant chromatin insulation function in cancer
Alterations in TAD assembly and high-order chromatin 
organization are often associated with multiple devel-
opmental defects and diseases. While many efforts have 
been made to study transcriptional regulatory elements 
in cancer, most of these focused on promoters and EEs. 
Regarding IEs, loss of CTCF boundaries may disrupt 
insulated neighborhoods containing oncogenes, thus 
becoming reactivated [25]. Alternatively, alterations in 
gene expression could influence and reshape chromatin 
loops to gain tumor-related traits, as shown in several 
types of cancer [26]. Aberrant insulator function could 
be associated with missense mutations in the CTCF 
coding region and CTCF binding sites (CBSs), leading 
to disrupted loop-formation activity and gene expres-
sion dysregulation [27–29]. Supporting the relevance of 
chromatin insulation in cancer, Liu et al. identified 21 IE 
mutations as putative drivers of multiple cancer types 
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[10]. In addition to somatic mutations, CBSs could also 
be affected by epigenetic modifications. The hypometh-
ylation of CBS promotes a higher occupancy by CTCF, 
resulting in de novo formation of TAD boundaries caus-
ing deregulation of gene expression often linked to tumor 
suppressor silencing [30]. On the contrary, hypermeth-
ylation of CBS reduces the recruitment of CTCF, which is 
followed by the disruption of TAD domains and, in many 
cases, leads to aberrant promoter–enhancer interactions 
known as “enhancer adoption” [31]. This enhancer adop-
tion event is frequently related to oncogene activation 
[32].

Dynamic function of chromatin insulation in glioblastoma
Given GBM intratumor heterogeneity, a significant effort 
has been made to search for epigenetic features to stratify 
these tumors into subcategories for accurate diagnosis 
and treatment [33, 34]. The major genomic alterations 
described in GBM are the mutations affecting the isoci-
trate dehydrogenase (IDH) 1 and 2 genes. IDH enzymes 
are best known for playing an essential role in several 

metabolic processes. As such, recurrent mutations of 
these genes are present in various human malignancies 
[35]. While IDH wild-type (IDH-wt) enzymes convert 
isocitrate into α-ketoglutarate (α-KG) as part of the Krebs 
cycle, IDH mutant (IDH-mt) enzymes lose their affinity 
for isocitrate and convert α-KG into D-2-hydroxyglut-
arate (D-2-HG) [36]. Accumulation of D-2-HG leads to 
severe epigenetic alterations by blocking the activity of 
ten-eleven translocation methylcytosine dioxygenase 
(TET), a family of enzymes involved in DNA demeth-
ylation [37]. Consequently, IDH mutations result in 
widespread CpG island methylation, a particular signa-
ture known as glioma CpG island methylator phenotype 
(G-CIMP). Given the dramatic clinical and molecular dif-
ferences associated with the G-CIMP, GBM is classified 
into two distinctive categories: IDH-mt and IDH-wt [38]. 
IDH-mt GBMs represent less than 10% of GBM cases, 
frequently associated with younger individuals, and typi-
cally correspond with secondary GBM. On the other 
hand, IDH-wt GBMs comprise most GBM cases, mostly 
primary tumors, often diagnosed in elderly patients with 
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Fig. 1  Insulator elements mechanism of action. a Insulator flanking a transgene and an enhancer element generates an insulated neighborhood 
via CTCF-loop formation, favoring enhancer–promoter interactions within the DNA loop. b Enhancer-blocking elements result from insulators 
between a transgene and an enhancer, leaving the enhancer outside the DNA loop, blocking its interaction with the transgene promoter. c 
Insulators acting as barrier elements prevent the spread of heterochromatin by recruiting histone-modifying enzymes (HME) to preserve a 
transcriptionally active euchromatin state
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a significantly worse prognosis than IDH-mt GBM [39]. 
Inevitably, genome-wide DNA hypermethylation has a 
notorious impact on chromatin insulation by compro-
mising IE functionality. Flavahan et al. [11] reported that 
many CTCF sites were lost in IDH-mt GBM. A well-
studied case of insulator dysfunction in IDH-mt occurs 
after hypermethylation of CBS and the consequent dis-
ruption of TAD boundaries, enabling the interaction of a 
constitutive EE with the promoter region of the receptor 
tyrosine kinase platelet-derived growth factor receptor A 
(PDGFRA) gene (enhancer adoption), a well-described 
glioma oncogene [11]. However, most likely, many other 
oncogenic events in GBM are deregulated due to epige-
netic alterations and chromatin insulation loss. Expand-
ing our understanding of how IEs reshape chromatin 
and lead to oncogenic reactivation in GBM may uncover 
novel therapeutic targets to improve the diagnosis and 
targeted treatments.

Insulator elements influence gene expression in glioma 
stem cells
Malignant tumors consist of heterogeneous cell popula-
tions, including a small subset called cancer stem cells 
(CSCs), or tumor-initiating cells, which are thought to 
initiate tumor formation, promote metastasis, and grant 
resistance to therapy [40–42]. In GBM, these cells are 
known as GSCs and have become a key target for thera-
peutic developments with the aim to eliminate tumor 
therapy-resistant traits and relapse [43–46]. GSCs must 
activate several signaling pathways such as NOTCH, 
bone morphogenetic protein (BMP), wingless-related 
integration site (WNT), epidermal growth factor (EGF), 
and sonic hedgehog (SHH) to maintain an undifferenti-
ated state often associated with stemness and required 
for self-renewal and rapid differentiation upon tumor 
progression in CSCs [47]. This provides GSCs a cellular 
plasticity capable of generating all the different cell types 
found in the tumor bulk. Also, GSCs present genomic 
regions where active histone marks (H3K4me3) coex-
ist with repressive histone modifications (H3K27me3), 
the so-called bivalent domains, often associated with 
repressed lineage-specific genes to maintain an undiffer-
entiated state [48, 49]. A recent work published by Hall 
et  al. [49] has shown that bivalent regions within GBM 
primary tumors are part of a highly interconnected net-
work under the influence of WNT, SHH, and HOX 
pathways, commonly associated with embryonic devel-
opment. Thus, a subset of transcription factors (TFs) may 
be responsible for establishing a permissive chromatin 
architecture that maintains stemness through several 
cell divisions in GSCs, which, in turn, confers aggressive 
traits, including tumor progression and drug resistance.

A proper chromatin assembly into structural subunits 
is required to coordinate specific gene expression pro-
grams to establish and maintain GSC stemness. GSCs 
present a specific subset of large clusters of EEs known 
as super-enhancers (SEs) that drive a robust transcrip-
tional program determined by core TFs [50]. A recent 
study conducted by Johnston et  al. [51] revealed that 
genes interacting with SEs within a DNA loop are highly 
expressed in GSCs. Moreover, some of these loops con-
taining SEs seem to be GSC-specific as they are strongly 
conserved among different GSC lines. In this same work, 
the authors also showed that structural variants in the 
GSC genome cause rare long-distance loops resulting in 
de novo SE-promoter interactions. Most of these gene 
sets, highly connected through extensive chromatin loop-
ing, play a significant role in brain tumors and stem cell 
biology. Also, an enrichment of TFs regulated by GSC-
specific SEs is associated with shorter survival of GBM 
patients, suggesting an essential role of SEs mediating the 
transcriptional regulatory program behind the mainte-
nance of a GSC phenotype [50]. These data highlight the 
importance of IEs and TAD formation as a key regulatory 
process to assemble the GSC epigenome.

Genome architecture and chromatin insulation are 
essential to maintain cells in an undifferentiated state, 
propitiate cell plasticity, and coordinate differentiation 
programs into cell lineages. Differentiation of embryonic 
stem cells (ESCs) into neural precursors has been corre-
lated with a gain of structural loops and enhanced bind-
ing of CTCF and cohesin leading to durable insulation 
between chromatin boundaries, limiting the enhancer–
promoter interaction to the detriment of the activation 
of developmental genes [52]. Similar to ESCs, GSCs also 
exhibit a more accessible genome-wide chromatin state 
with a global loss of repressive (H3K9me3) and gain of 
active (H3K9ac) histone modification marks [53]. Based 
on these findings, GSCs may present a similar behavior 
to ESCs, where a permissive chromatin state is required 
to sustain self-renewal, and the structural loop rearrange-
ments are needed to reinforce chromatin boundaries 
and give rise to differentiated progeny that will consti-
tute the tumor cell mass (Fig.  2). For example, a neural 
stem cell model for low-grade astrocytoma containing 
IDH1/2 gene mutations caused the loss of CTCF binding 
and the subsequent dissociation of the sex determining 
region y-box  2 (SOX2) promoter–enhancer interaction 
[54]. This alteration resulted in an impaired ability to dif-
ferentiate in vivo due to chromatin loop disruption, thus 
increasing its self-renewal and invasiveness capacities. 
Taken together, IEs could emerge as a new therapeutic 
target to prevent tumor growth in GBM. However, fur-
ther analyses are required to elucidate the impact of IEs 
and chromatin architecture in GSCs on drug resistance, 
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tumor survival, and relative toxicity and off-target effects 
of its inhibition.

How to modulate epigenomic alterations in glioblastoma? 
Technology for druggability testing
GBM treatment remains a challenge as current therapies 
can only improve median prognosis by a few months. 
Epigenetic modulators have become an attractive thera-
peutic target for drug discovery to efficiently regulate 
cancer growth and progression. Numerous studies on 
histone deacetylases inhibitors have shown promis-
ing results in various cancers [55, 56], including GBM 
[57–61]. Following this research line, there is a particu-
lar interest in identifying novel compounds to target 
cancer regulatory elements. The JQ1, a bromodomain 
and extra-terminal domain (BET) domain inhibitor, has 
been shown to downregulate the expression of well-
known oncogenes such as the MYC proto-oncogene, 
bHLH transcription factor (MYC) and B-cell lymphoma 
2 (BLC2) by blocking bromodomain-containing protein 4 
(BRD4) binding at associated SE regions in different can-
cers [62, 63]. Combined with conventional chemotherapy 
agents, BET inhibitors showed a significant anti-tumor 
effect in GBM xenograft models [64]. However, the effi-
cacy of BET inhibitors in clinical trials remains untested. 
Recent studies have revealed the importance of archi-
tectural proteins in cancer treatment and how aberrant 
CTCF function can contribute to a drug-resistant pheno-
type [26, 65]. In a recent work, Kantidze et al. discovered 
curaxins, a novel class of DNA intercalating agents that 
promote the dissociation of CTCF from its binding site 

causing chromatin loop disorganization in tumor cells 
[66, 67]. These modifications resulted in transcriptional 
suppression of several MYC family oncogenes after los-
ing their long-distance interactions with their respective 
SEs. These findings support the potential of epigenetic 
therapies targeting GBM-specific IEs involved in tumo-
rigenesis and therapy resistance. This strategy is cur-
rently being tested in phase I clinical trial for patients 
with cutaneous melanoma or sarcoma (ClinicalTrials.
gov, NCT03727789). Nevertheless, the implementa-
tion of this strategy is still non-genome site specific. A 
novel clustered regularly interspaced short palindromic 
repeats (CRISPR)-based approach consisting of a cata-
lytically inactive CRISPR-associated protein 9 (dCas9) 
fused with the Krüppel-associated box (KRAB) tran-
scriptional repressor and DNA-methyltransferase 3A 
(DNMT3A) can selectively disrupt CTCF recruitment to 
its CBS, allowing to study the role of IEs in a locus-spe-
cific manner [68]. Although Cas9-fused proteins are far 
from being used to treat GBM, the first-ever clinical trial 
to directly deliver CRISPR-Cas9 in the body has recently 
begun recruiting patients with retinal diseases (Clinical-
Trials.gov, NCT03872479), bringing this technology one 
step closer for clinical applications. Forward-thinking, 
a potential strategy would involve restoring chromatin 
conformation by targeting IEs involved in enhancer–pro-
moter interactions to prevent (1) oncogene activation, 
(2) tumor suppressor gene silencing, and (3) interaction 
of SEs with stemness genes in GSCs. However, despite 
the promising potential of drugs targeting tumor cells 
genome-wide organization, further studies would be 
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Fig. 2  Chromatin loop formation in GSC differentiation. GSCs present a more relaxed and accessible chromatin state with permissive interactions 
between enhancers and promoters among different domains. During GSC differentiation, loss of stemness in non-stem glioma cells (NSGC) 
correlates with increased chromatin-loop formation, adopting a more restricted chromatin conformation with strong domain boundaries and 
limited enhancer–promoter interactions
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required to anticipate and prevent undesired outcomes. 
Therefore, a better understanding of chromatin insula-
tors and their role in dynamic chromatin organization is 
a crucial initial step toward a more effective therapeutic 
combination and personalized anti-GBM therapy.

Impact of insulator elements on glioblastoma precision 
oncology
The next frontier in the clinical management of GBM 
is the implementation of precision medicine models to 
generate biomarkers for early detection, identification of 
patient-tailored treatments, and personalized follow-up. 
Advances in GBM epigenetics, particularly IEs modulat-
ing chromatin conformation, could provide additional 
information on current multi-omics profiling. Epigenetic 
alterations in GBM are currently employed for response 
to TMZ prediction (O-6-methylguanine-DNA methyl-
transferase (MGMT) gene promoter hypermethylation) 
[69], prognosis estimation (G-CIMP) [70], and molecular 
stratification (GBM molecular subtype classification) [5]. 
Advances in integrating the patient’s and tumor’s genetic 
makeups with epigenome-wide DNA methylation pro-
files, chromatin conformation, and TF occupancy to 
generate gene regulatory circuits active in each patient 
will improve our ability to stratify patients and improve 
clinical management (Fig. 3). These changes will advance 
our ability to build accurate models capable of determin-
ing the best available treatment and improve the clinical 
management of this deadly disease. As recently proposed, 
the implementation of systems biology approaches to 
integrate clinical with multi-omics data, including epige-
netics, provides the basis to design N-of-1 precision med-
icine treatments [71]. Examples of these advances involve 
the repurposing of drugs and treatments that have shown 
poor results in unselected cohorts of GBM patients. Such 
an endeavor will be appeased by emerging technologies 
capable of profiling epigenetic landscapes with minimum 
tissue requirements. The most remarkable improvements 
in this area involve the capabilities to perform dual chro-
matin accessibility and DNA methylation profiling [72, 
73], long-read sequencing that allows profiling DNA 
modifications beyond 5-methylcytosine, and chromatin 
accessibility [72, 74–76], and its applications to single-
cell samples.

Regarding the study of chromatin architecture, many 
techniques have been developed during the last years. 
3D chromatin is mainly assessed through three differ-
ent approaches: (1) by imaging, which includes DNA-
Fluorescence in Situ Hybridization (DNA-FISH) and its 
derivatives; (2) using chromatin conformation capture 
(3C)-derived techniques, which require the ligation of 
DNA fragments; and (3) performing ligation-free meth-
ods. The advantages and limitations of these techniques 

are greatly discussed in a recent review by Kempfer 
et  al. [77]. The rise of the studies of 3D chromatin may 
increase our understanding of GBM biology. However, 
many of the current techniques require large amounts of 
cells, representing an unsolved limitation. To overcome 
this restriction, the techniques that may be translated to 
the bedside for GBM are genome architecture mapping 
(GAM) and Capture Hi-C, which require less than 105 
cells. GAM is based on laser microdissection on sucrose-
embedded cells, followed by DNA sequencing [78]. Cap-
ture Hi-C is a 3C-based method where the 3C library 
can be enriched for targets of interest. This approach 
has been used to detect interactions to promoter regions 
genome-wide [79], but it can also be performed to detect 
interactions between IEs.

On the other hand, genetic variations affecting non-
coding genomic regions are starting to find functional 
relevance due to the integration of Genome-Wide Asso-
ciation Studies (GWAS) datasets with GBM epigenetic 
profiles [80]. For example, mutations in the promoter 
region of the TERT gene modify the binding affinity of 
the cAMP response element-binding protein (CREB) 
transcription factor and lead to an enhanced expression 
of the telomerase gene in several types of cancer [81, 82]. 
Today, this non-coding alteration is part of the genetic 
changes considered for GBM classification [83]. Similarly, 
we believe that dysfunctional IEs could be considered 
potential theranostic markers for personalized treat-
ments in GBM. A significant milestone to successfully 
apply this strategy is to comprehensively overlay muta-
tion signatures, gene expression, and clinical information 
with master TF regulators of the epigenomic dynamics. 
Thus, key TFs and microRNA orchestrating transcrip-
tional regulatory networks (TRN) in gliomas have been 
unraveled thanks to the development and application of a 
platform known as the GBM SYstems Genetics Network 
AnaLysis pipeline (gbmSYGNAL) [84]. This pipeline 
has shown that TRN structures can be integrated with 
data from currently-approved cancer drugs to identify 
patient-specific novel and synergistic therapeutic interac-
tions. This pioneering development is just the start of the 
upcoming era of GBM precision medicine aided by epig-
enomic networks.

Conclusions
Although TAD formation and its role in regulating 
gene expression have been widely studied over the last 
years, the mechanisms on how enhancers preferentially 
interact with their target genes are still not fully under-
stood. As a result, alterations of non-coding regula-
tory elements associated with tumorigenesis, and IEs 
in particular, have been largely underestimated. Given 
the relevance of these high-order chromatin alterations 



Page 7 of 10Sesé et al. Clin Epigenet          (2021) 13:150 	

in driving oncogenic programs, continued efforts to 
uncover IE regulatory mechanisms are required. In 
GBM, an in-depth look at how IEs reshape chroma-
tin topology to achieve a malignant phenotype will be 
paramount to find new therapeutic strategies against 
this devastating type of tumor. The road to integrating 
epigenomics into clinical decision-making algorithms 

for patients with GBM will be paved with progress in 
computing capabilities and enhanced analytical algo-
rithms. Technological advances are needed to reduce 
the complexity of widespread aberrant chromatin 
insulation and its impact on long-range interactions 
among genomic regulatory elements. Computer science 
leading the incorporation of artificial intelligence into 
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Fig. 3  Precision neuro-oncology cycle. Patient stratification based on traditional histopathological evaluation of GBM tumors improves by 
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clinical nomograms to generate integrative systems for 
medicine is changing our approaches to analyze large-
scale and complex datasets. Machine learning algo-
rithms are already changing the field of cancer diagnosis 
and prognosis by exploring diverse data types, includ-
ing imaging, histology, and multi-omics, to efficiently 
classify various clinically relevant GBM traits [85–88]. 
These advances will undoubtedly bring novel and more 
personalized diagnostic and therapeutic alternatives for 
patients with GBM.
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box; DNMT3A: DNA-methyltransferase 3A; MGMT: O-6-methylguanine-DNA 
methyltransferase; 3D: Three-dimensional; DNA-FISH: DNA-fluorescence in situ 
hybridization; GAM: Genome architecture mapping; 3C: Chromosome confor‑
mation capture; Hi-C: High-throughput chromosome conformation capture; 
TERT: Telomerase reverse transcriptase; CREB: CAMP response element-
binding; TRN: Transcriptional regulatory networks; gbmSYGNAL: Glioblastoma 
systems genetics network analysis pipeline; HME: Histone-modifying enzymes; 
NSGC: Non-stem glioma cells.
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