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Abstract 

Background: Epigenetic clocks have been used to indicate differences in biological states between individuals of 
same chronological age. However, so far, only few studies have examined epigenetic aging in newborns—especially 
regarding different gestational or perinatal tissues. In this study, we investigated which birth‑ and pregnancy‑related 
variables are most important in predicting gestational epigenetic age acceleration or deceleration (i.e., the deviation 
between gestational epigenetic age estimated from the DNA methylome and chronological gestational age) in cho‑
rionic villus, placenta and cord blood tissues from two independent study cohorts (ITU, n = 639 and PREDO, n = 966). 
We further characterized the correspondence of epigenetic age deviations between these tissues.

Results: Among the most predictive factors of epigenetic age deviations in single tissues were child sex, birth length, 
maternal smoking during pregnancy, maternal mental disorders until childbirth, delivery mode and parity. However, 
the specific factors related to epigenetic age deviation and the direction of association differed across tissues. In 
individuals with samples available from more than one tissue, relative epigenetic age deviations were not correlated 
across tissues.

Conclusion: Gestational epigenetic age acceleration or deceleration was not related to more favorable or unfavora‑
ble factors in one direction in the investigated tissues, and the relative epigenetic age differed between tissues of the 
same person. This indicates that epigenetic age deviations associate with distinct, tissue specific, factors during the 
gestational and perinatal period. Our findings suggest that the epigenetic age of the newborn should be seen as a 
characteristic of a specific tissue, and less as a general characteristic of the child itself.
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Background
DNA methylation (DNAm) is considered a biomarker 
of aging, with the potential to uncover differences in the 
biological age between individuals of the same chrono-
logical age [1, 2]. Epigenetic clocks make use of individ-
ual methylation patterns to estimate epigenetic age, and 

deviations between chronological and epigenetic age 
can be used to calculate relative epigenetic age accelera-
tion (epigenetic age older than chronological age) and 
epigenetic age deceleration (epigenetic age younger than 
chronological age) in underlying tissues [3–5]. Com-
monly, these measures of epigenetic aging are calculated 
as the residuals of regressing predicted epigenetic age on 
chronological age, also called epigenetic age acceleration 
residuals (EAAR).

Epigenetic age acceleration has been linked to dif-
ferences in long-term health outcomes and all-cause 
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mortality in adults [6–8]. Changes in DNA methylation 
status have been proposed to be a mechanism by which 
environmental influences may become biologically 
embedded [9–11], and in fact, epigenetic age has been 
shown to be moderated by environmental exposures and 
lifestyle risk factors, such as education, body mass index 
(BMI), nutrition and smoking, among others [12–14]. 
These findings underscore the utility of epigenetic clocks 
as a means to investigate aging processes in general, and 
how these relate to environmental exposures and nega-
tive health outcomes or diseases. However, despite the 
sensitivity to and importance of epigenetic programming 
during the early developmental period [15, 16], studies 
investigating epigenetic age during the earliest phase of 
life are still underrepresented.

Various epigenetic clocks have been developed, for 
different tissues, ages and purposes [7, 17–19]. Specifi-
cally for the gestational period, two clocks for cord blood 
[20, 21], as well as two clocks for placental tissue [22, 23] 
have been established. For gestational epigenetic age esti-
mation in cord blood, both the Knight [20] and Bohlin 
[21] clocks have been used in previous studies. Apply-
ing Knight’s clock, epigenetic age deceleration has been 
linked to exposure to negative pregnancy environments 
including insulin-treated gestational diabetes mellitus 
in a previous pregnancy, maternal history of depression 
and greater antenatal depressive symptoms, maternal 
Sjögren’s syndrome and a prenatal adverse environment 
assessed with the cerebroplacental ratio, as well as nega-
tive prospective child outcomes such as early childhood 
psychiatric problems [24–26]. These findings, together 
with the observation that epigenetic age acceleration was 
related to a lower need of respiratory interventions, led 
to the hypothesis that gestational epigenetic age decel-
eration may be related to a lower developmental matu-
rity [27]. This seems to be supported by results from the 
Bohlin clock, where epigenetic age acceleration has been 
associated with higher birth weight and length [28], as 
well as higher head circumference, vaginal delivery, male 
sex and higher maternal pre-pregnancy BMI [29]. How-
ever, epigenetic age acceleration has also been associated 
with lower birth length, a lower 1-min Apgar score, fetal 
demise in a previous pregnancy, maternal preeclampsia, 
maternal age over 40 years at delivery and treatment with 
antenatal betamethasone [24], thus not supporting this 
hypothesis. Despite that, it should be noted that it was 
recently shown that CpGs relevant for epigenetic aging in 
general were linked to developmental processes [30].

Regarding placental tissue, Mayne et  al. [23] found 
epigenetic age acceleration to be associated with early 
onset preeclampsia. Another study using Mayne’s 
clock reported a link between higher epigenetic age 
acceleration in the placenta and lower fetal weight and 

other growth measures among males, but increased 
fetal weight and growth among females [31]. Further-
more, placental epigenetic age deceleration has been 
associated with maternal weight gain during preg-
nancy, and for mothers of male offspring with pre-
pregnancy obesity and higher blood pressure [32]. So 
far, to our knowledge, no comparable studies were per-
formed with the placental clock presented by Lee [22]. 
Although research in this field is growing since the 
development of perinatal tissue clocks, studies consid-
ering different available clocks, and various birth- and 
pregnancy-related variables in a combined fashion, are 
largely lacking. More studies are needed to achieve a 
better understanding of the associations of epigenetic 
age deviations in perinatal tissues with exposures and 
outcomes, and especially how these deviations compare 
across tissues. Such insights are critical to gain a better 
knowledge of aging and developmental processes dur-
ing the earliest phase in life and may help to find inter-
vention strategies in the long term.

The aim of this explorative study was to I) identify fac-
tors among various birth- and pregnancy-related vari-
ables which are most predictive of epigenetic (DNAm) 
age acceleration or deceleration in first trimester pla-
cental tissue derived from chorionic villus sampling 
(CVS), term placenta and cord blood collected at birth, 
and II) characterize the relationship between epigenetic 
age deviations across gestational and perinatal tissues 
from the same individuals.

We used data from two independent Finnish cohorts, 
the intrauterine sampling in early pregnancy study 
(ITU), and the prediction and prevention of preeclamp-
sia and intrauterine growth restriction study (PREDO). 
We assessed gestational epigenetic age in early-preg-
nancy CVS samples, and cord blood and fetal-side or 
decidual-side placental tissue sampled at birth (ITU: 
693 individuals and 1176 tissue samples from CVS and/
or term fetal placenta and/or cord blood, PREDO: 966 
individuals and 1083 samples from term decidual pla-
centa and/or cord blood). We calculated the epigenetic 
age with both available clocks per tissue, and applied 
Bohlin’s clock for cord blood [21] and Lee’s clock for 
placenta [22], based on better accuracy metrics of these 
clocks in the data sets. The predictive power of sev-
eral birth- and pregnancy-related variables for a higher 
or lower deviance between estimated epigenetic and 
chronological gestational age (GA) was tested in every 
tissue separately, and finally, cross-tissue correlations 
were evaluated.

To the best of our knowledge, this is the first study 
of epigenetic age in CVS samples, and across multi-
ple gestational/perinatal tissues assessed from the same 
individuals.
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Methods
Study populations
The intrauterine sampling in early pregnancy study 
(ITU) consists of Finnish women and their chil-
dren born between 2012 and 2017. The women were 
recruited through the national voluntary prenatal 
screening program for trisomy 21, available for all preg-
nant women in Finland free of charge.

ITU study comprises two study arms.  1) Women 
in the chromosomal testing arm  had been referred 
to  the  Helsinki and Uusimaa Hospital District Feto-
maternal Medical Center (FMC)  because they had 
an  increased risk of fetal chromosomal abnormalities 
based on routine serum and ultrasound screening, age, 
and patient history. They underwent fetal chromosomal 
testing (CVS, amniocentesis, or noninvasive prena-
tal testing) at FMC. Women were informed about the 
study during FMC visits. If the chromosomal test indi-
cated no fetal chromosomal abnormalities, those who 
had expressed interest in participating were contacted 
for final recruitment. Those whose chromosomal test 
results suggested a fetal chromosomal abnormality 
were not recruited. 2) Women in the no chromosomal 
testing arm underwent  the same routine screening for 
fetal chromosomal abnormalities. Based on their serum 
and ultrasound screening, age and patient history, 
they  were  not  referred to FMC for fetal chromosomal 
testing.  The women were informed about ITU when 
attending the routine screening at maternity clinics. 
Women who expressed interest in participating  were 
contacted for final recruitment into this study. Both 
study arms provided placenta and cord blood samples 
for this study. CVS tissue was only acquired from the 
chromosomal testing arm participants who underwent 
CVS sampling at FMC.

The Prediction and Prevention of Preeclampsia and 
Intrauterine Growth Restriction (PREDO) study is a 
longitudinal multicenter pregnancy cohort study of 
Finnish women and their singleton, born-alive chil-
dren between 2006 and 2010 [33]. The recruitment 
took place when the mothers attended their first ultra-
sound screening in early pregnancy. The PREDO com-
prises two subsamples: the clinical arm recruited based 
on having risk factors for preeclampsia and intrauter-
ine growth restriction, and the epidemiological arm 
recruited from study hospitals independently of the 
presence of risk factors.

All participating women in both cohorts signed writ-
ten informed consent forms for them and their children 
to participate in the study. The consents enabled linkage 
of nationwide health register data using unique personal 
identification numbers assigned to all Finnish citizens 
and permanent residents since 1971.

Sampling of biological tissues
In ITU, CVS samples were taken based on medical indi-
cation between  10–15  weeks of gestation. Any CVS 
surplus tissue, not needed for clinical purposes, was 
immediately stored at − 80℃.

Placenta samples were collected after birth and mid-
wives/trained staff took nine-site biopsies (within maxi-
mum 120  min after delivery for ITU, and maximum 
90  min after delivery for PREDO). In ITU, placental 
samples were taken from the fetal side of the placenta, at 
2–3  cm from umbilical cord insertion and the biopsies 
were first stored at + 5 °C and then at − 80 °C. In PREDO, 
samples were taken from the decidual side of the placenta 
and immediately stored at − 80 °C.

For both ITU and PREDO, cord blood samples were 
taken immediately after birth by a midwife.

DNA methylation
From the collected samples, DNA was extracted accord-
ing to standard procedures. Methylation analyses were 
performed at the Max Planck Institute of Psychiatry in 
Munich, Germany. We aimed to use 400  ng DNA for 
bisulfite-conversion with the EZ-96 DNA Methylation 
kit (Zymo Research, Irvine, CA). For n = 71 CVS sam-
ples, this was not feasible and we used lower amounts of 
DNA (from 48 ng upward). We saw no relation between 
the amount of DNA and our quality control measures. 
DNA samples were run on the Illumina Infinium Meth-
ylationEPIC array (Illumina, San Diego, USA), and for 
an additional set of cord blood samples from PREDO 
on the Infinium HumanMethylation450 BeadChip (Illu-
mina, San Diego, USA). In total, methylation levels 
were assessed in n = 277 CVS samples, n = 500 placen-
tal samples and n = 437 cord blood samples from ITU 
(all assessed on the EPIC array), and in n = 140 placen-
tal samples and n = 160 cord blood samples (EPIC array) 
and an additional n = 876 cord blood samples processed 
with the 450 K array from PREDO.

Preprocessing of all methylation samples was con-
ducted using the same pipeline [34] and the R package 
minfi [35]. Scan intensity signals as stored in.idat files 
were loaded into R and transformed into beta-values.

Samples with a mean detection p value > 0.05 were 
excluded (ITU: eight for CVS, one for placenta, none for 
cord blood; PREDO: none for placenta, three for cord 
blood run on EPIC, three for cord blood run on 450 K). 
Additionally, we excluded samples presenting with dis-
tribution artifacts in raw beta-values (ITU: five for CVS, 
nine for placenta, one for cord blood; PREDO: none for 
placenta, three for cord blood run on EPIC, eight for 
cord blood run on 450  K), as well as samples showing 
sex mismatches between estimated sex (using the getSex 
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function) from methylation data and confirmed phe-
notypic sex (ITU: none for CVS, four for placenta, one 
for cord blood; PREDO: one for placenta, four for cord 
blood run on EPIC, n = 19 for cord blood run on 450 K). 
Further n = 20 samples needed to be excluded from the 
PREDO cord blood data set run on the 450 K array due 
to technical artifacts. Beta-values were normalized using 
stratified quantile normalization [36], followed by BMIQ 
[37]. Afterward, beta-values were transformed into M 
values, and batch-effects were removed using Combat 
[38]. For this, we computed a principal component anal-
ysis (PCA) on the M values and checked which batches 
were most strongly associated with the principal com-
ponents. The strongest batches for the respective data 
set were iteratively removed (for ITU these were plate, 
array and slide in CVS; plate, slide and array in placenta; 
and plate and array in cord blood; for PREDO these were 
plate, array and slide in placenta; plate and array in cord 
blood run on the EPIC array; plate and array in cord 
blood run on the 450 K array). Corrected M values were 
re-transformed into beta-values.

In a next step, we applied MixupMapper [39] to the 
genotype and methylation data to check for possible sam-
ple mix-ups. Mix-ups occurred solely in the PREDO cord 
blood data set from 450 K array and n = 12 samples were 
removed.

For cord blood samples, contamination with maternal 
blood was tested [40] and samples identified as contami-
nated were excluded from further analyses (ITU: nine 
for cord blood; PREDO: one for cord blood run on EPIC, 
n = 19 for cord blood run on 450 K).

The final data sets from ITU comprise 264 samples 
from CVS, 486 samples from placenta and 426 samples 
from cord blood. The final data sets from PREDO com-
prise 139 samples from placenta, 149 samples from cord 
blood from EPIC and 795 samples from cord blood from 
450 K.

The final data sets with sample sizes are illustrated in 
Fig. 1.

Gestational epigenetic and chronological age
Gestational epigenetic age (DNAm GA) was estimated 
for cord blood using both the methods proposed by 
Knight et al. [20] and Bohlin et al. [21]. For Knight’s clock, 
the estimation of DNAm GA was based on the methyla-
tion profile of 142 from the original 148 CpGs, due to the 
lack of 6 CpGs on the EPIC array. Excluding the missing 
CpGs from the calculation was also recommended by the 
authors [20], who reported a high correlation between 
estimates from the full and reduced epigenetic age pre-
dictor. For the calculation of DNAm GA with Knight’s 
clock, we applied the script provided by the authors on 
the raw, un-normalized data. For Bohlin’s clock, the 

estimation of DNAm GA was constituted on 88 from 
96 CpGs, also following from differences between the 
underlying arrays. DNAm GA in chorionic villi and pla-
centa samples was estimated using 558 CpGs proposed 
by Lee et al. [22]. Additionally, we estimated DNAm GA 
using 57 CpGs available on the EPIC array from the origi-
nal 62 CpGs determined by Mayne et al. [23]. A list of the 
CpGs missing on the EPIC array for the respective clocks 
can be obtained from Additional file 1.

Child chronological gestational age (GA) was based on 
fetal ultrasound, performed before 24 + 0 weeks of gesta-
tion and extracted from the Finnish Medical Birth Regis-
ter (MBR).

Cell‑type composition estimations
Cell-type composition into seven cell types (nucleated 
red blood cells, granulocytes, monocytes, natural killer 
cells, B cells, CD4( +) T cells and CD8( +) T cells) in cord 
blood was estimated in minfi based on the approach pro-
posed in Gervin, Salas [41].

Cell-type composition into six cell types (nucleated 
red blood cells, trophoblasts, syncytiotrophoblasts, stro-
mal, Hofbauer, endothelial) in CVS and placenta was 
estimated using a recently published reference [42] and 
implementation within the R package planet, by applying 
the robust partial correlation algorithm [43].

The mean estimated cell types for every data set are 
given in Additional file 2.

Genotyping and ancestry‑related information
Genotyping was performed on Illumina GSA-24v2-0_A1 
arrays for ITU, and on Illumina Human Omni Express 
Arrays for PREDO, according to the manufacturer’s 
guidelines (Illumina Inc., San Diego, CA). Quality con-
trol was performed in Plink 1.9 [44] and R [45]. DNA was 
extracted from cord blood, if available, otherwise placen-
tal tissue was used. SNPs with a minor allele frequency 
below 1%, a call rate below 98%, or with deviation from 
Hardy–Weinberg-Equilibrium with a p value < 1 ×  10–05 
were removed from the analysis. Furthermore, SNPs 
mapping to multiple locations as well as duplicated vari-
ants were removed. Individuals with a genotype call-
rate below 98% were also excluded. Any pair of samples 
with IBD estimates > 0.125 was checked for relatedness. 
Within PREDO, high IBD estimates could be resolved 
due to shared ethnical origin of these individuals except 
for one pair. From this pair, we excluded one sample from 
further analysis. In ITU, seven samples were removed. 
Furthermore, individuals showing discrepancies between 
phenotypic and genotypic sex (one in PREDO, none in 
ITU) were removed.

To retrieve ancestry-related information, we performed 
multi-dimensional scaling (MDS) analysis on the IBS 
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matrix of quality-controlled genotypes [46], where avail-
able. Outliers, defined as samples presenting with a posi-
tion on any of the first ten axes of variation deviating 
more than four standard deviations from the respective 

axis’ mean, were iteratively removed until no more outli-
ers were detected. Afterward, individuals presenting with 
heterozygosity values more than four standard deviations 
away from the mean heterozygosity were also iteratively 

Fig. 1 Sample overview for both cohorts used. Samples with methylation data available from different tissues in ITU and PREDO. In total, the ITU 
data set comprised 693 individuals after QC, with 264 CVS, 486 fetal placenta and 426 cord blood samples. For some individuals, samples were 
available from several tissues, indicated by overlapping circles. The final PREDO data set comprised 171 individuals after QC processed with the EPIC 
array, and additional 795 individuals processed with the 450 K array. From the EPIC data, 139 samples were available from placenta, and 149 samples 
from cord blood. The number of individuals with data from both tissues is again illustrated by the overlapping circles
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removed (none in PREDO, two in ITU). The first two 
components were extracted and included as covariates 
in following analyses. In total, ancestry-related informa-
tion for ITU was available from 587 of the 693 individuals 
included in our analyses, for 148 of the 171 individuals 
from PREDO with methylation data from the EPIC array, 
and for 787 of the 795 individuals from PREDO with 
methylation data from the 450 K array.

Birth‑ and pregnancy‑related variables
We included 14 birth- and pregnancy-related variables 
which were available for all tissues in both data sets.

In both cohorts, child sex, birth weight (kg), birth 
length (cm) and birth head circumference (cm) were 
measured at birth and data were extracted from the 
MBR. Maternal age (years) at delivery, early pregnancy 
BMI, calculated from weight and height verified by meas-
urement at the first antenatal clinic visit, smoking during 
pregnancy (yes or no), parity (primiparous or multipa-
rous), mode of delivery (unaided vaginal delivery or aided 
delivery, including breech, forceps, vacuum, cesarean 
section), and induction of labor (yes or no) were obtained 
from the MBR. Diagnoses of maternal diabetes disorders 
(yes for both types I & II, as well as gestational diabetes 
[ICD-10: E08-E14, O24] or none) until childbirth, and 
hypertensive pregnancy disorders such as gestational 
hypertension or pre-eclampsia in the current pregnancy 
(yes [ICD-10: O10-O14] or no), were extracted combin-
ing data from the MBR and the Finnish nationwide Care 
Register for Healthcare (CRHC). The CRHC carries pri-
mary and subsidiary diagnoses of all inpatient and outpa-
tient hospital visits in Finland and from all treatments in 
specialized public outpatient care in Finland. In PREDO, 
the CRHC and MBR diagnoses were confirmed by a clini-
cal jury, which comprised two physicians and a study 
nurse. Diagnoses of any maternal mental or behavioral 
disorder [ICD-8 and ICD-9: 290–319; ICD-10: F00-F99] 
until child birth were extracted from the CRHC. Alcohol 
use during early pregnancy was reported by the moth-
ers (for PREDO around gestational week 12–13, for ITU 
around gestational week 20).

Statistical analyses
All statistical analyses were conducted in R version 4.0.2 
[45].

Measuring deviations between epigenetic age 
and chronological age
In previous studies, two measures of epigenetic age accel-
eration were considered, one based on the raw differ-
ence between DNAm age and chronological age, and the 
other calculated as the residuals from regressing DNAm 
age on chronological age. While the former provides a 

more intuitive interpretation and the investigation of 
the disjunct effects of epigenetic age, the latter is pref-
erable in terms of its statistical properties—it addresses 
the dependency of age acceleration on chronological age 
and is comparable across studies. Therefore, we defined 
the deviation between gestational epigenetic age (DNAm 
GA) and chronological gestational age (GA) in all statis-
tical models as the residuals (epigenetic age acceleration 
residuals, EAAR ) resulting from regressing DNAm GA 
on GA, cell types of the respective tissue and the first 
two ancestry-related components derived from geno-
typic information. A positive EAAR value suggests faster 
biological aging, i.e., a higher epigenetic than chrono-
logical age (epigenetic age acceleration), and a nega-
tive EAAR value suggests slower biological aging, i.e., a 
lower epigenetic than chronological age (epigenetic age 
deceleration).

Identification of factors impacting epigenetic age 
acceleration/deceleration per tissue
Our aim was to identify those of the available birth- and 
pregnancy-related variables that were most predictive of 
higher or lower EAAR. Without sufficient prior informa-
tion enabling a hypothesis-driven selection of predictors, 
we decided to choose an appropriate data-driven variable 
selection method. Further, to reduce confounding effects, 
all predictors were evaluated in one model and correla-
tions between predictors (see Fig. 2 for an overview) were 
considered, using elastic net regressions combined with 
a bootstrap approach for an evaluation of robustness. 
Separate models were run for all tissues, and cohorts, 
including placental models from ITU (fetal) and PREDO 
(decidual).

For every model, all predictor variables and the out-
come variable (EAAR) were z-standardized, to ensure 
that the penalization was fair to all regressors and to ena-
ble the interpretation of the size of coefficients in terms 
of importance. Further, only complete observations were 
included. Bootstrapping was performed with 1000 boot-
strap samples on every input data set. On every bootstrap 
sample, an elastic net regression was fitted with the R 
package ensr [47], which is built on glment [48]. Hyper-
parameters were selected by tenfold cross-validation, 
default lambda values (n = 100) and a sequence of 11 
alpha values between 0 and 1 (by steps of 0.1). The out-
put was grouped by bootstrap and number of non-zero 
coefficients (nzero) resulting from the different alpha lev-
els. Of these, the models with minimum mean cross-val-
idation error (cvm) with the respective parameters were 
chosen as best models (for every bootstrap and number 
of nzero). Afterwards, the percentage of a variable being 
not zero was calculated over all bootstrap samples for 
every number of nzero. Further, the median cvm over the 
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bootstrap samples was plotted for every number of nzero. 
At this point, a final number of nzero must be chosen, 
with a necessary trade-off between model complexity and 
error (bias-variance tradeoff [49]). To aid the decision of 
non-zero coefficients in smoothly decreasing curves, we 
looked at the elbow in the plot of the median cvm for 
every nzero, by using a function drawing a straight line 
from the first to the last point of the curve and finding 
the data point farthest away from this line. This point 
can indicate the position of most decreasing cvm. The 

respective number of nzero can be used for further anal-
ysis steps. Due to the bootstrapping procedure, there 
was still variation in the variables and their coefficients 
in the final model. If a predictor was selected in > 75% of 
the bootstrap samples, we declared it as sufficiently sta-
ble and important. This approach for variable selection 
was referred to as variable inclusion probability (VIP) in 
a previous paper, where the authors used a comparable 
method for neuroimaging data [50]. The median coef-
ficients and 95% confidence intervals over bootstraps, 
when the variable was not zero, were also calculated. An 
illustration of the analysis steps is given in Additional 
file 3.

Replication of cord blood findings between cohorts
To evaluate the predictability of the chosen predictors 
in ITU in the PREDO data set, the median coefficients 
of the identified variables in ITU were used to predict 
EAAR in PREDO. The one-tailed Pearson correlation 
between predicted and observed EAAR values was cal-
culated. Additionally, we performed the same elastic net 
analysis applied in ITU cord blood data independently 
in the PREDO cord blood data sets to confirm that the 
directions of associations are consistent with those 
observed in ITU (Additional file 4).

Cross‑tissue analyses
Pearson correlations for both DNAm GA and EAAR 
were calculated between cord blood and placenta, as well 
as between CVS and placenta and CVS and cord blood, 
for persons with multiple tissue sample available. To test 
if there are significant differences in mean age accel-
eration or deceleration between the tissues, we applied 
paired Student’s t tests, or paired Wilcoxon signed-rank 
test, between EAAR values of the respective tissues.

Complementary analyses
It has been reported that child sex can be an impor-
tant factor when considering how placenta function is 
affected by direct environmental factors [51], and sex dif-
ferences in epigenetic aging have been reported [31, 32]. 
Therefore, we repeated our analyses in placenta stratified 
by sex as described in Additional file 5.

Additionally, information about maternal alcohol use 
during pregnancy was only available in 580 samples from 
ITU, 153 samples from the EPIC array in PREDO and 
693 samples from the 450 K array in PREDO.

To avoid larger reductions in sample size for the 
remaining predictors, we did not include this variable in 
the main models per tissue, but provide it in supplemen-
tary analyses (Additional file 6).

Fig. 2 Pearson correlations among the predictor variables for ITU 
(N = 693) and PREDO (N = 171)
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Results
A summary of characteristics of the available data sets is 
given in Table 1.

Performance of epigenetic clocks in the investigated 
tissues
We first evaluated the performance of the two epigenetic 
clocks for cord blood [20, 21] and for placenta [22, 23] 
in our sample. The clocks differ in the included CpGs, 
and only share two CpGs (cg07816074, cg16536918; 
cord blood clocks) with negative weights, and one CpG 
(cg00307685; placenta clocks) with positive weight, 
respectively. Nevertheless, we observe high Pearson cor-
relations in DNAm GA between the cord blood clocks 
(r = 0.77, p < 0.001 for ITU; r = 0.76 p < 0.001 for PREDO 
EPIC data; r = 0.51, p < 0.001 for PREDO 450 K data), and 
a medium to high Pearson correlation in the placenta 
clocks (r = 0.44, p < 0.001 for ITU; r = 0.48, p < 0.001 for 
PREDO). Scatter plots are provided in Additional file 7: 
Figure S5.

To evaluate the accuracy of an epigenetic clock, three 
main metrics have been proposed: the average difference 
between DNAm age and chronological age, the median 
absolute difference between DNAm age and chrono-
logical age, and the correlation between DNAm age and 
chronological age [4]. As shown in Table  2, the overall 

accuracy of the clocks was satisfactory, with relatively 
low median absolute deviations and high Pearson cor-
relations between DNAm age and chronological age (see 
Additional file 7: Figure S6 for scatter plots). It is evident 
from these statistics that the estimations were more pre-
cise for cord blood as compared to placenta. Further-
more, Bohlin’s clock outperformed Knight’s clock for 
cord blood and Lee’s clock outperformed Mayne’s clock 
for placenta for all of the named criteria. Based on this, 
all following analyses were conducted with Bohlin’s clock 
for cord blood and Lee’s clock for placenta. Between 
these clocks, there is no overlap in the underlying CpGs.

Factors impacting the relative epigenetic age 
in gestational and perinatal tissues
The association between epigenetic age acceleration 
residuals (EAAR) and birth- and pregnancy-related vari-
ables was tested for cord blood, CVS and placenta tissue 
separately. The results of the elastic net regressions are 
summarized in Fig. 3, and further statistical parameters 
can be found in Additional file 9.

Analyses in cord blood
Cord blood in  ITU Cord blood samples from ITU 
with full observations were available for 385 newborns. 
As described previously in the Methods section, nzero 

Table 1 Characteristics of available data sets: Mean (SD) or N (%) for every variable

Differences in predictor variables between the ITU and PREDO data sets were tested using t tests for continuous variables and  Chi2 tests for categorical variables. 
Variables that showed nominal statistically significant differences (p < .05) are indicated as follows:
a For difference between ITU placenta vs. PREDO placenta data sets
b For difference between ITU cord blood vs. PREDO EPIC cord blood data sets
c For difference between ITU cord blood vs. PREDO 450 K cord blood data sets

ITU PREDO

Cord blood CVS Placenta (fetal) Cord blood (EPIC) Cord blood (450 K) Placenta (decidual)

Sample size 426 264 486 149 795 139

Gestational age (weeks) 40.04 (1.55) 12.79 (0.82) 39.99 (1.60) 39.87 (1.42) 39.74 (1.67) 39.89 (1.43)

Maternal alcohol use,  yesc 40 (10) 24 (14) 48 (10) 16 (12) 115 (17) 17 (14)

Maternal smoking,  yesa,b 18 (4) 29 (11) 20 (4) 13 (9) 32 (4) 13 (9)

Maternal mental disorders, yes 46 (11) 26 (9) 55 (11) 20 (14) 63 (8) 18 (13)

Maternal diabetes,  yesa, c 93 (22) 57 (22) 105 (22) 26 (17) 222 (28) 20 (14)

Maternal hypertensive disorder,  yesa, b, c 26 (6) 23 (9) 28 (6) 36 (24) 272 (34) 33 (24)

Maternal  BMIa, b, c 23.94 (4.21) 24.20 (4.27) 23.82 (4.16) 25.23 (5.76) 27.38 (6.30) 24.85 (5.79)

Maternal age (years)a, b, c 34.70 (4.81) 34.96 (5.75) 34.59 (4.86) 32.13 (5.00) 33.33 (5.74) 32.04 (5.17)

Multiparous,  yesb, c 193 (45) 153 (58) 235 (48) 85 (57) 558 (71) 74 (53)

Induced labor, yes 114 (27) 66 (25) 125 (26) 37 (25) 240 (30) 31 (22)

Delivery mode,  aideda 129 (30) 87 (33) 145 (30) 51 (35) 233 (30) 55 (40)

Head circumference (cm) 35.10 (1.52) 35.04 (1.73) 35.07 (1.62) 35.21 (1.36) 35.13 (2.15) 35.19 (1.34)

Birth length (cm)a, b 50.23 (2.20) 50.13 (2.24) 50.17 (2.40) 49.77 (2.48) 50.21 (2.44) 49.65 (2.53)

Birth weight (g)a 3532 (489) 3489 (526) 3534 (509) 3454 (519) 3546 (559) 3425 (523)

Child sex, female 210 (49) 124 (47) 238 (49) 73 (49) 372 (47) 72 (52)
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(number of non-zero coefficients) of the elastic net model 
was chosen by finding the most decreasing median cvm 
(minimum mean cross-validation error) across bootstrap 
samples. If a predictor was selected in > 75% of bootstrap 
samples in this model, we declared it as sufficiently stable. 
For cord blood data from ITU, the model was chosen with 
nzero = 9, and five variables were selected in a sufficiently 
stable manner: maternal smoking (97% of bootstrap sam-
ples), maternal mental disorders (83%), delivery mode 
(87%), birth length (95%) and female sex (84%). Maternal 
smoking, maternal mental disorders, aided delivery and 
higher birth length were associated with relatively higher 
EAAR; female sex was associated with relatively lower 
EAAR (see Fig. 3a).

Replication of cord blood findings in PREDO Cord blood 
data were available from both cohorts which enabled a test 
of the performance of these predictors identified in ITU 
in an independent cohort (PREDO). In PREDO, 144 sam-
ples had complete data from the EPIC array, and 766 from 
the 450  K array. The beta matrix of median coefficients 
derived from the final model in ITU was used for a pre-
diction of EAAR in PREDO. The one-tailed Pearson cor-
relation between predicted and true EAAR was r = 0.24, 
p = 0.002 for the EPIC array and r = 0.11, p = 0.002 for 
the 450  K array (Additional file  8: Fig. S7), supporting 
that the predictors of EAAR identified in the ITU cohort 
can be predictive for relative epigenetic age acceleration/
deceleration in independent cohorts and different array 
platforms. We then further analyzed the PREDO data sets 
independently (Additional file 4) and compared the results 
with those from ITU. The direction of effects between the 
predictors and EAAR was consistent across cohorts; how-

ever, the strength of the associations and most predictive 
variables varied between data sets.

Analyses in placental tissues
CVS in ITU For CVS, 195 samples were available with 
full information for all predictor variables and EAAR. The 
elastic net regression model with nzero = 8 was chosen. 
Maternal smoking was the only variable with non-zero 
coefficients in more than 75% of the bootstrap models 
(81%), and associated with relatively higher EAAR (see 
Fig. 3b).

Placenta (fetal) in  ITU For fetal placenta in ITU, 427 
complete observations were available, and the model with 
nzero = 7 was chosen. In this model, three variables had 
non-zero coefficients in > 75% of the bootstrap models: 
Child sex (99%), parity (78%) and maternal mental dis-
orders (82%). Maternal mental disorders were associated 
with relatively higher EAAR, while being multipara and 
female sex of the child were related to relatively lower 
EAAR (see Fig. 3c).

Placenta (decidual) in  PREDO For decidual placenta, 
the model could be built from 117 samples, and nzero = 6 
was selected. In this model, maternal mental disorders 
occurred sufficiently stably over the bootstrap samples 
(96%) and were associated with relatively lower EAAR 
(see Fig. 3d).

Complementary analyses
Separate analyses for male and female placentas are 
described in detail in Additional file  5. These analyses 
showed that the strength of association of predictors 

Table 2 Performance metrics of the four clocks in all available tissues

M = mean; SD = standard deviation; MAD = median absolute deviation; r = Pearson correlation coefficient for DNAm GA and chronological GA; DNAm GA = DNA 
methylation gestational age; � DNAm GA = raw difference between estimated DNA methylation gestational age and chronological gestational age (measured in 
weeks)
* p < 0.001

Cord blood Bohlin’s clock Knight’s clock

DNAm GA � DNAm GA r DNAm GA � DNAm GA r

M SD M SD MAD M SD M SD MAD

ITU 39.80 0.93 − 0.23 0.94 0.92 .83* 38.91 1.47 − 1.13 1.19 1.17 .69*

PREDO (EPIC) 39.72 0.84 − 0.16 0.90 0.98 .80* 39.23 1.39 − 0.64 1.05 0.88 .72*

PREDO (450 K) 38.84 1.14 − 0.90 1.19 1.02 .70* 38.44 2.02 − 1.29 1.90 1.55 .48*

Lee’s clock Mayne’s clock

DNAm GA � DNAm GA DNAm GA � DNAm GA

Placenta M SD M SD MAD r M SD M SD MAD r

ITU CVS 10.55 1.48 − 2.24 1.14 1.07 .64* 11.69 1.81 − 1.09 1.63 1.57 .43*

ITU Placenta 38.53 1.40 − 1.45 1.41 1.29 .56* 32.68 1.91 − 7.31 1.91 1.73 .28*

PREDO 38.03 1.25 − 1.85 1.24 1.10 .58* 31.69 1.44 − 8.19 1.56 1.63 .41*
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Fig. 3 Outcomes of elastic net regression models in different tissues. Associations between birth‑ and pregnancy‑related variables (predictors) 
and EAAR (adjusted for gestational age at time of sampling, cell types and ancestry‑related information). Depicted are the percentages of variable 
occurrence in bootstrap models with different number of non‑zero coefficients (left) and the coefficients of variables in the final model (right) 
in cord blood from ITU (a), CVS from ITU (b), fetal placenta from ITU (c) and in decidual placenta from PREDO (d). The color coding shows the 
percentage of occurrence of a variable in the model over bootstraps and the size of the circle is proportional
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with epigenetic age acceleration/deceleration can dif-
fer between males and females. Further, some predictors 
showed tendencies of different directions of associations 
between males and females, but as these patterns were 
not sufficiently stable and strong in our analyses, this 
needs to be confirmed with larger sample sizes in future 
studies.

We additionally report analyses including maternal 
alcohol use (smaller sample sizes, n = 367 in cord blood, 
n = 133 in CVS, n = 412 in placenta from fetal side (ITU), 
and n = 106 in placenta from decidual side (PREDO)) in 
Additional file 6. Overall, maternal alcohol use does not 
seem to be strongly related to epigenetic age acceleration 
or deceleration in gestational and perinatal tissues; only a 
weak association was found with relatively higher EAAR 
in decidual placenta.

Cross‑tissue analyses
To evaluate how epigenetic age and acceleration or decel-
eration relate between the tissues, we calculated Pear-
son correlations between the DNAm GAs and EAARs, 
respectively. We further tested for statistically significant 
differences in epigenetic age acceleration/deceleration 
between tissues using paired Student’s t test or paired 
Wilcoxon signed-rank test in case of unfulfilled assump-
tions for the parametric test. We illustrate the differences 
in EAARs between tissues from the same individuals in 
Fig. 4. For n = 60 children from ITU with complete tissue 
data (cord blood, CVS and fetal placenta), we illustrate 
individual differences in EAAR in Fig. 4d.

Cord blood and placenta
The correlation between DNAm GAs of cord blood and 
placenta was significant in both ITU, r = 0.48, p < 0.001, 
and PREDO, r = 0.48, p < 0.001. This was expected, as 
the DNAm GA is an estimator of GA, which is the same 
for these tissues at birth. However, there was no signifi-
cant correlation between the EAARs, neither in ITU, 
r = −  0.03, p = 0.53, nor in PREDO, r = 0.09, p = 0.32 
(Fig.  4a). This suggests that individual epigenetic age 
acceleration does not correspond between cord blood 
and fetal placenta, nor between cord blood and decidual 
placenta. Furthermore, there was no indication of gen-
erally higher or lower age acceleration/deceleration in 
cord blood (M = −  0.01, SD = 0.49) and fetal placenta 
(M = − 0.02, SD = 1.11) from ITU, t = 0.16, p = 0.88, nor 
in cord blood (M = − 0.01, SD = 0.48) and decidual pla-
centa (M = 0.01, SD = 0.90) from PREDO, t = −  0.27, 
p = 0.79.

CVS and (fetal) placenta
The correlation between DNAm GAs of CVS (at sam-
pling) and fetal term placenta in ITU was significant 
r = 0.27 p = 0.01. However, there was no significant cor-
relation between the EAARs at sampling in CVS and 
fetal placenta, r = 0.18, p = 0.11 (see also Fig.  4b). Over-
all, epigenetic age acceleration/deceleration was not sig-
nificantly higher or lower in CVS (M = 0.03, SD = 0.93) 
versus fetal placenta (M = 0.14, SD = 1.0), t =  − 0.73, 
p = 0.47.

CVS and cord blood
Neither the correlation between DNAm GAs of CVS and 
cord blood in ITU r = 0.09, p = 0.46, nor the correlation 
between the EAARs at sampling in CVS and cord blood, 
r = 0.12, p = 0.34 was significant (see Fig.  4c). Paired 
Wilcoxon signed-rank test showed no significant differ-
ence in epigenetic age acceleration/deceleration between 
CVS (M = 0.08, SD = 0.95) and cord blood (M = −  0.07, 
SD = 0.54), p = 0.32.

Discussion
Our analyses uncovered the strength and direction of 
associations between several birth- and pregnancy-
related variables with gestational epigenetic age accel-
eration or deceleration in CVS, cord blood, fetal and 
decidual placenta tissue. Further, we showed that the fac-
tors related to epigenetic aging differ between the tissues, 
and that there is no correspondence in individual epige-
netic age deviations across these tissues.

Insights from single tissue analyses
We will first discuss variables that showed associations 
with epigenetic age deviations. Among the considered 
child characteristics, we found newborn anthropometric 
data, especially birth length, to be associated with rela-
tively higher epigenetic age acceleration in cord blood. 
This is in accordance with two other studies applying 
Bohlin’s clock [28, 29]. In contrast, anthropometric char-
acteristics of the child seem to be less associated with 
epigenetic aging in placental tissues. Female child sex was 
related to relatively lower epigenetic age acceleration in 
both cord blood and fetal placenta.

Regarding maternal characteristics, smoking during 
pregnancy was associated with relatively higher epige-
netic age acceleration. We observed this in cord blood as 
well as CVS tissue, but neither in fetal, nor decidual term 
placenta.

Furthermore, maternal mental disorders showed an 
association with epigenetic age acceleration in cord blood 
and in fetal placenta within the ITU cohort. However, in 
PREDO, maternal mental health disorders were not asso-
ciated with cord blood epigenetic age, but these disorders 
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were associated with epigenetic age deceleration in 
decidual placenta. Medical treatment can be of relevance 
when considering mental diagnoses, for example, the 

influence of considering SSRIs was reported in a previ-
ous study [52]. However, the differences between ITU 
and PREDO are unlikely to be due to differences in the 

Fig. 4 Relationship of epigenetic age acceleration/deceleration between different tissues. In children with more than one tissue available, the 
relationship of epigenetic age acceleration or deceleration between the respective tissues can be illustrated. Depicted are the scatter plots of 
EAAR for (a) cord blood and placenta from both ITU (n = 363) and PREDO (n = 116), (b) CVS and placenta from ITU (n = 78), and (c) CVS and cord 
blood from ITU (n = 66). The regression line is plotted together with a 95% confidence interval, and the Pearson correlation coefficient is depicted. 
Individual differences in EAARs between CVS, placenta and cord blood from ITU are further illustrated (d) for n = 60 children from ITU, where each 
color represents one individual.
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prevalence or treatment of mental disorders between the 
samples: the rate of mental disorders was similar across 
samples and both cohorts had similar access to care 
through the Finnish healthcare system. In both cohorts, 
lifetime occurrence of any mental disorder up to child-
birth was identified in the same way based on national 
register data. Nevertheless, some differences between the 
cohorts remain: while PREDO was enriched for partici-
pants with risk factors of pre-eclampsia and intrauterine 
growth restriction, ITU was enriched for participants 
who underwent prenatal fetal chromosomal testing. It is 
possible that these differences in the populations explain 
some discrepancies between the findings. Furthermore, 
differences in epigenetic aging may also arise from dis-
tinct biological characteristics of the two placental 
regions with different functions and tissue composition. 
In fact, cell count estimates between CVS and placenta 
but also between fetal and decidual placenta showed 
substantial differences (see Additional file 2). Altogether, 
our results support the hypothesis that maternal mental 
disorders associate with epigenetic age deviations in peri-
natal tissues. We encourage future studies, e.g. with both 
decidual- and fetal-side samples from the same individu-
als, to further evaluate tissue specificity.

Another predictor related to the mother and pregnancy 
was parity, which showed an association with epigenetic 
age deceleration in fetal placenta. Out of the variables 
related to the delivery process itself, aided delivery was 
associated with relatively higher epigenetic age accelera-
tion in cord blood.

Overall, relevant predictors for relative epigenetic age 
acceleration in gestational and perinatal tissues span 
the whole spectrum from child and mother to birth and 
pregnancy characteristics.

Our results indicate that relatively lower or higher 
epigenetic age deviation cannot be clearly assigned to 
birth- and pregnancy-related variables that are consid-
ered as being more favorable versus unfavorable in the 
context of disease risk. This suggests that gestational 
epigenetic age acceleration or deceleration itself may 
not be linked to a higher risk for diseases per se, but 
that these associations are more complex and depend-
ent on the condition and tissue during the earliest 
phase of life. It has been proposed that adjustments 
to the maturational tempo may explain why children 
in both favorable and unfavorable environments can 
exhibit epigenetic age acceleration, as this possibly con-
stitutes specific adaptations to future challenges [53, 
54]. Recent studies in adult populations also reported 
large differences in associations with lifestyle risk fac-
tors among studies and clocks [14, 55, 56], and it was 
assumed that different epigenetic clocks may capture 

the consequences of different environmental stimuli 
[14]. Overall, it has to be noted that the mechanistic 
underpinnings of biological age and epigenetic clocks 
are still discussed and not fully understood [3, 19, 54].

Cross‑tissue relationships
In addition to looking at factors associated with gesta-
tional epigenetic aging in single tissues, we investigated 
the epigenetic age relationship between tissues. The 
estimated epigenetic age was congruent between cord 
blood and placenta, which has also been reported for 
most tissues investigated in adults so far with only few 
exceptions [7].

There was no evidence for one tissue being in general 
epigenetically older or showing remarkable biases toward 
epigenetic age acceleration or deceleration. However, the 
relative epigenetic age acceleration or deceleration in the 
different tissues was not concordant, i.e. a child with rela-
tively high EAAR in one tissue did not necessarily display 
relatively high EAAR in another tissue (see Fig. 4d). This 
is in accordance with the fact that we observed different 
predictors as being the most related to epigenetic aging 
in the different tissues, and in line with the proposition 
of different characteristics of epigenetic age acceleration 
between diverse tissues [19, 57]. Although we can only 
speculate about the underlying processes at this point, 
these results suggest that the factors with strongest influ-
ence on gestational epigenetic age acceleration and decel-
eration vary between functionally different parts of one 
tissue (fetal vs. decidual placenta), developmental stage 
of the placenta (CVS vs. term placenta), and between 
placental and cord blood tissues. This indicates that 
with the currently available epigenetic clocks for spe-
cific gestational/perinatal tissues, the epigenetic age of 
the newborn should be seen as a characteristic linked to 
the respective tissue, and less as a general characteristic 
of the child itself. Thus, future health and developmen-
tal trajectories associated with gestational epigenetic age 
can be expected to show a more tissue dependent pat-
tern, too, which should be kept in mind when interpret-
ing results from one tissue. It would be interesting to see 
if a cross-tissue or phenotypic clock for the gestational 
and perinatal period, as developed for adults [4, 58], also 
shows more congruent associations of epigenetic age 
acceleration and deceleration in newborns with different 
predictors and outcomes. However, it may also be that 
tissue-specific effects are generally more pronounced in 
gestational and perinatal tissues, probably because of the 
particularly dynamic (epigenetic) processes taking place 
in these tissues, and therefore especially important to 
consider and disentangle.
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Strengths and limitations
A major strength of the present study is the inclusion of 
three different perinatal tissues. Insights into epigenetic 
age acceleration in CVS are unique, as well as the exami-
nation of epigenetic aging across gestational and peri-
natal tissues. In addition, we were able to compare and 
contrast tissues from two independent Finnish cohorts. 
While the context of recruitment for the two studies 
was different, as elaborated above, the individual predic-
tors were comparable across studies and showed very 
similar correlation structure (see Table  1 and Fig.  2). 
To thoroughly assess the impact of the different fac-
tors and account for confounding, we chose a modeling 
approach that enables the inclusion of all variables in 
one model, can deal with correlations among predictors 
and performs variable selection [59]. We restricted the 
analysis to the set of variables which were available for 
both cohorts and all tissues. On the one hand, this is a 
strength, as this approach allowed us to identify impor-
tant predictors of epigenetic aging (in cord blood) in one 
cohort, and then test these predictors in a second, inde-
pendent, cohort, to validate the findings. These predic-
tors are also likely to be available in many clinical settings 
and study cohorts. On the other hand, this approach has 
its limitations, as there are likely additional factors influ-
encing gestational epigenetic age acceleration/decelera-
tion, which were beyond the scope of the current study. 
Additional assessments of biological maternal variables, 
such as hormone levels, immune status and placental 
functional, could be important to better characterize 
influences on gestational epigenetic aging. Further, the 
presented results are of correlative nature, and we refer to 
perinatal factors as predictors even when they occurred 
after the measurement of the outcomes, which was done 
for consistency, modeling reasons and ease of interpreta-
tion, but does not imply a causal assumption. Studies in 
animal models or in vitro may help to better understand 
in which cases epigenetic age acceleration or deceleration 
is a cause versus consequence of other factors. Addition-
ally, we did not include any postnatal measures in this 
analysis. Thus, future studies should test whether epige-
netic age deviations in any of these tissues associate with 
altered health trajectories. Furthermore, investigating 
the relationship between genetic architecture and epige-
netic aging during the gestational period was beyond the 
scope of the current analysis, but further studies incorpo-
rating similar approaches as already used for adults [60, 
61] may also provide additional insights for the earliest 
developmental phase. Apart from this, both cohorts are 
of Finnish origin, which could reduce the generalizabil-
ity of findings to other ethnicities and countries with, for 
example, lower socioeconomic status and prenatal health 
care, as well as for clinical samples. Despite the relatively 

large data resource, missing values led to a reduction of 
sample sizes, and biospecimens for more than one tis-
sue were only available for a smaller proportion of indi-
viduals. When considering differences between fetal and 
decidual placenta, it is necessary to take into account that 
these samples were not only taken from different sides 
of the placenta, but also from different individuals and 
cohorts. Future studies sampling the same placenta from 
different sides are needed to better understand potential 
biological differences.

Conclusions
Our results suggest that factors affecting the deviation 
between gestational epigenetic and chronological age 
differ between gestational and perinatal tissues. In addi-
tion, more or less favorable birth- and pregnancy-char-
acteristics were not associated with either accelerated or 
decelerated epigenetic age in a consistent direction. This 
indicates that both epigenetic age acceleration and decel-
eration are associated with distinct risk and protective 
factors, and possibly distinct, tissue specific, develop-
mental trajectories in newborns. In line with this, there 
is no concordance between epigenetic age acceleration/
deceleration in different gestational and perinatal tissues 
from the same individual. Overall, when using the cur-
rently available tissue specific clocks, the epigenetic age 
of the newborn should be evaluated on the tissue-level 
rather than on the individual level. Considering this can 
lead to important insights in health trajectories which 
may be distinct depending on the epigenetic aging profile 
of the underlying tissue.
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