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Abstract 

Background:  The development of new biomarkers with diagnostic, prognostic and therapeutic prominence will 
greatly enhance the management of breast cancer (BC). Several reports suggest the involvement of the histone 
acetyltransferases CREB-binding protein (CBP) and general control non-depressible 5 (GCN5) in tumor formation; 
however, their clinical significance in BC remains poorly understood. This study aims to investigate the value of CBP 
and GCN5 as markers and/or targets for BC prognosis and therapy. Expression of CBP, GCN5, estrogen receptor α (ERα), 
progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) in BC was analyzed in cell lines by 
western blot and in patients’ tissues by immunohistochemistry. The gene amplification data were also analyzed for 
CBP and GCN5 using the publicly available data from BC patients.

Results:  Elevated expression of CBP and GCN5 was detected in BC tissues from patients and cell lines more than 
normal ones. In particular, CBP was more expressed in luminal A and B subtypes. Using chemical and biological inhibi‑
tors for CBP, ERα and HER2 showed a strong association between CBP and the expression of ERα and HER2. Moreo‑
ver, analysis of the CREBBP (for CBP) and KAT2A (for GCN5) genes in a larger number of patients in publicly available 
databases showed amplification of both genes in BC patients. Amplification of CREBBP gene was observed in luminal 
A, luminal B and triple-negative but not in HER2 overexpressing subtypes. Furthermore, patients with high CREBBP or 
KAT2A gene expression had better 5-year disease-free survival than the low gene expression group (p = 0.0018 and 
p < 0.00001, respectively).

Conclusions:  We conclude that the persistent amplification and overexpression of CBP in ERα- and PR-positive BC 
highlights the significance of CBP as a new diagnostic marker and therapeutic target in hormone-positive BC.
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Background
Breast cancer (BC) is the most common type of malig-
nancy among females accounting for approximately 2.1 
million new cases and 0.6 million deaths reported in 
2018 worldwide [1]. Management of BC depends largely 
on enhancing the outcome and survival of patients 
through early detection of the disease. The increased BC 

mortality during the past 25 years could be attributed to 
the high percentage of patients who are still diagnosed at 
advanced stages [2–4].

In addition, the cure rates of the currently available 
BC treatment modalities are highly dependent on the 
molecular subtype of the tumor and the stage at diag-
nosis, which, in some cases, do not result in satisfactory 
clinical outcomes [5]. Inherent and/or acquired resist-
ance to the existing hormonal and non-hormonal BC 
therapeutics is the main reason for BC therapy failure [6, 
7]. The great advances in understanding the biology and 
pathogenesis of BC lead to the development of targeted 
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BC therapeutics. Such therapeutics are targeting mol-
ecules such as the human epidermal growth factor recep-
tor 2 (HER2), the phosphoinositide-3-kinase (PI3K), the 
vascular endothelial growth factor  (VEGF), the epider-
mal growth factor receptor (EGFR), the programmed 
death-1 (PD-1), the poly (adenosine diphosphate-ribose) 
polymerase (PARP), or the cyclin-dependent kinases [8]. 
Despite this arena of BC therapeutics, resistance and 
disease relapse is still an issue in some cases. Thus, the 
search for new biomarkers with diagnostic, prognostic 
and therapeutic purposes is still needed to assist in the 
clinical management of BC patients [9]. Currently, the 
BC diagnosis and treatment decisions are mainly based 
on the expression of hormone receptors such as ER, PR 
and the expression status of HER2. Epigenetic modifica-
tions in cancer cells are now recognized to play an essen-
tial role in carcinogenesis and in the response of cells to 
cancer therapy. The development of epigenetic markers 
can therefore largely improve the outcome of advanced 
BC [10].

Acetylation of histone and non-histone proteins is an 
important epigenetic factor that regulates diverse biolog-
ical processes related to DNA replication, transcription, 
DNA repair, cell growth and death [11]. The addition of 
an acetyl group to lysine residues is catalyzed by histone 
acetyltransferases (HATs), while this addition is reversed 
by the function of histone deacetylases (HDACs). Modifi-
cation of the acetylation profile of proteins in cancer cells 
through mutations, overexpression, or dysfunction of 
these two families of enzymes is well known to contrib-
ute to the pathological program of carcinogenesis [12]. 
Besides, the reversible and dynamic nature of histone 
acetylation provides a therapeutic window of opportunity 
[13]. Therefore, it is essential to study the role of these 
epigenetic regulators in the context of tumorigenesis to 
find a suitable epigenetic factor serving as a biomarker as 
well as a therapeutic target.

General control non-depressible 5 (GCN5) and CREB-
binding protein (CBP) are HATs that are reported to play 
a key role in various types of cancers [12]. The overex-
pression of GCN5 has been reported in lung, colon, liver, 
endometrial cancers as well in Burkitt’s lymphoma and 
glioma [14–19]. Indeed, it was found to exert an onco-
genic role through the acetylation of oncoproteins like 
c-MYC, AIB1 and the translocated E2A-PBX1 [16, 20, 
21]. It also plays a fundamental role in mediating diverse 
malignant processes such as cell cycle perturbations, cell 
migration and DNA damage repair [15, 22, 23]. On the 
other hand, several reports mentioned the involvement 
of the CBP in both tumor-suppression and oncogen-
esis pathways, which forms a paradox about the func-
tion of CBP in cancer [12, 24, 25]. The status of CBP in 
cancer was found to be diverse, linked to chromosomal 

translocation in acute myeloid leukemia, somatic muta-
tions in ovarian cancer and overexpression in lung and 
colon cancers [26–29].

Currently, very few reports are available about the sta-
tus of the CBP and the GCN5 in BC. A recent study sug-
gested a role for CBP in the biology of triple negative BC 
[30]. Both HATs were reported previously in regulating 
the estrogen receptor signaling pathway that is impli-
cated in breast carcinogenesis [31]. In particular, CBP/
p300 is a well-known coactivator that functions in stimu-
lating the transcriptional activity of the ER to induce the 
expression of estrogen-response elements [32–34]. Also, 
CBP was previously investigated as a potential target in 
metastatic BC [35].

The aim of this study was to investigate the expression 
status of CBP and GCN5 in BC patients’ tissues and BC 
cell lines compared to their normal counterparts. Also, to 
study the CBP and GCN5 expression profiles in different 
subtypes of BC and their association with the different 
clinicopathological parameters. The ultimate goal was to 
investigate the possibility of using CBP and/or GCN5 as 
markers and targets for BC prognosis and therapy.

Results
CBP and GCN5 expression in breast cell lines and their 
relationship with ERα and HER2 receptors expression
Differential expression of CBP and GCN5 proteins in 
normal and malignant BC cells was investigated in an in-
vitro model using a panel of nine BC cell lines with dif-
ferent ERα, PR and HER2 receptor status and two types 
of normal breast epithelial cells (Fig.  1a, b, Additional 
file 1: Fig. S1, Additional file 1: Table S1). Moreover, the 
relationship between baseline level of CBP and GCN5 
and the status of ERα, PR, HER2 receptors expression of 
BC cell lines was also tested. The baseline level of CBP 
was higher in eight out of nine BC cell lines compared to 
the normal epithelial breast cells (Fig.  1a). Interestingly, 
there is a negative correlation between expression of 
HER2 and CBP (r = − 0.6295, p = 0.0347) (Fig. 1c, Addi-
tional file 1: Fig. S1). This is indicated by the high base-
line level of CBP expression in the seven cell lines lacking 
HER2 overexpression (MCF7, T47D, BT-549, MDA-
MB-231, MDA-468, BT-20 and HS578T) as well as by 
the low baseline level expression of CBP in the two cell 
lines overexpressing HER2 (BT-474 and SkBr3) (Fig. 1a). 
On the other hand, the expression of ERα is positively 
associated with a high baseline level of CBP (r = 0.6957, 
p = 0.0187) (Fig. 1d, Additional file 1: Fig. S1). This asso-
ciation is clear in cells not overexpressing HER2 (e.g., 
MCF7 and T47D); however, in ERα-positive, PR-positive 
cells which also overexpresses HER2, the effect of HER2 
overexpression is predominant and the baseline level of 
CBP is low (e.g., BT-474 cells) (Fig. 1a, d). These results 
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indicate a strong correlation between the receptor (ERα, 
PR and HER2) status of BC cells and the baseline level 
of CBP. It is noteworthy that the baseline level of CBP in 
most cell lines is time-(cell cycle phase) dependent. To 
cancel this effect, we seeded the same number of cells 
and we collected cells for protein extraction at the same 
time point for all tested cell lines. For the baseline level 
of GCN5, there is a general trend to be more expressed 
in BC cells than normal breast epithelial cells. Moreover 
and contrary to CBP, there seems no correlation between 
the baseline level of GCN5 and the expression of ERα, 
PR, or HER2 receptors in BC cells (Fig. 1b).

To investigate the nature of the crosstalk between 
CBP and the expression of ERα and HER2 receptors, 
we investigated the effect of the chemical and biological 

inhibition of ERα and HER2 on the expression of CBP in 
BC cells (Fig. 2). To cancel the effect of time-dependent 
expression of CBP, we used a separate control for each 
studied time point. Downregulation of HER2 by siRNA 
in HER2-overexpressing cell lines (SkBr3 and BT474) 
significantly increased the expression of CBP in both cell 
lines (Fig.  2a, b, Additional file  1: Fig. S2a, b). Particu-
larly, the highest level of increase in CBP (more than 10 
folds) was observed at 96 h of HER2 downregulation. The 
same results were obtained upon chemical inhibition of 
HER2 by trastuzumab; however, the increase in the level 
of CBP was observed at earlier time points (24 and 48 h) 
(Fig. 2c, d). These results confirm the negative feedback 
between HER2 and CBP. Similarly, the biological and the 
chemical inhibition of ER-α resulted in overexpression 
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Fig. 1  Baseline expression level of CBP and GCN5 in a panel of normal and cancer breast cells. Upper panel: Immunoblot images for a CBP and 
b GCN5 expression in normal cells (HMEpC and HME1) and in breast cancer cells (MCF7, T47D, BT474, SkBr3, BT-549, MDA-MB-231, MDA-MB-468, 
BT-20 and Hs578T). Lower panel: Graphs for relative expression level of CBP and GCN5 after normalization to β-actin. Full blots images are available 
in Additional file 1: Figure S4. Average present as mean ± SEM (n = 3). *p < 0.05 versus HMEpC, unpaired t test. c, d Correlation between the 
expression level of CBP and c the expression of HER2 or d ERα in nine breast cancer cell lines. Shown are “r” values (Pearson’s correlation coefficient) 
with the corresponding p values
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of CBP in three ERα-positive BC cell lines (MCF7, T47D 
and BT-474) (Fig.  3). Again, the biological inhibition of 
ERα resulted in late (at 72 and 96  h) overexpression of 
CBP in the three cell lines (Fig.  3a–c, Additional file  1: 
Fig. S2a–e), whereas the effect of chemical inhibition of 
ERα by tamoxifen was observed at earlier time points 
(starting 24 h) in all cell lines (Fig. 3d–f). In addition, the 
downregulation or chemical inhibition of both receptors 
(ER-α and HER2) in the triple-positive BC cell line (BT-
474) resulted in the upregulation of CBP level (Fig.  3g, 
h, Additional file  1: Fig. S2f, g). To check whether CBP 

is acting upstream or downstream of ERα, we downreg-
ulated the expression of CBP in MCF7 and T47D cells 
(expressing a high baseline level of CBP) and we meas-
ured the expression of ERα (Fig. 4, Additional file 1: Fig. 
S3). Figure  4 shows that the downregulation of CBP 
resulted in a reduction in the level of ERα in both cell 
lines. Collectively, these results indicate a strong associa-
tion between CBP and the expression of ERα and HER2 
in which a clear direct relation exists between CBP and 
ERα. On the other hand, the relationship between CBP 
and HER2 expression is not straight forward like ERα.
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Fig. 2  Biological or chemical inhibition of HER2 modulate the expression of CBP in HER2-overexpressing cells. a, b Upper panel: Representative 
western blot images for HER2 and CBP expression in a SkBr3 and b BT-474 cells transfected with negative control (NC) or HER2 siRNA for 24–96 h. 
Lower panel: Relative densitometric graphs of CBP expression after normalization to β-actin. Fold change of CBP expression was done over cells 
transfected with NC siRNA for each time point. c, d Upper panel: Images for immunoblots of CBP in c SkBr3 and d BT-474 cells treated with 10 μg/
mL of HER2-specific humanized antibody Trastuzumab or with DMSO (control cells) for 24–96 h. Lower panel: Graphs for relative expression level 
of CBP after normalization to β-actin. Full blots images are available in Additional file 1: Fig. S5 and Additional file 1: Fig. S6. Average present as 
mean ± SEM (n = 3). *p < 0.05 vs untreated control, unpaired t test
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Expression of CBP and GCN5 in clinical breast tissue 
samples
The expression of CBP and GCN5 was investigated in 

human BC tissues and normal breast tissues using the 
immunohistochemical (IHC) approach as described 
in consort diagram (Fig.  5). The characteristics of the 
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Fig. 3  Biological or chemical inhibition of ERα or/and HER2 regulate CBP expression in ERα-positive cells. a–c Representative western blot analysis 
and relative bar graph quantification of CBP protein extracted from a MCF7, b T47D and c BT-474 cells transfected with negative control (NC) or ERα 
siRNA for 24–96 h. Fold change of CBP expression was done over cells transfected NC siRNA for each time point. d-f Upper panel: Representative 
western blot for CBP expression in d MCF7, e T47D and f BT-474 cells treated with 5 μM of the selective ER modulator Tamoxifen or with DMSO 
(control cells) for 24–96 h. Lower panel: Relative bar graph quantification of CBP protein after normalization to β-actin. g Western blot analysis of 
ERα, HER2 and CBP proteins in BT-474 cells transfected with negative control (NC) or ERα and HER2 siRNAs for 24–96 h. h Western blot analysis 
of CBP expression in BT-474 treated with Tamoxifen and Trastuzumab combination or with DMSO (control cells) for 24–96 h. The graphs show 
the densitometric quantification of CBP bands normalized to β-actin. Fold change of CBP expression was done over untreated control or cells 
transfected with NC siRNA for each time point. Full blots images are available in Additional file 1: Fig. S7, Additional file 1: Fig. S8 and Additional file 1: 
Fig. S9. Average present as mean ± SEM (n = 3). *p < 0.05 versus untreated control, unpaired t test
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studied BC patients’ specimens are presented in Table 1. 
The majority of the included BC cases were diagnosed 
primarily as invasive breast carcinoma (IBC) of no special 
type (NST) with/without an associated in  situ compo-
nent. IBC NST constitutes the majority of the histological 
subtypes of BC [36]. Few cases were reported as ductal 
carcinoma in  situ where no invasion component could 
be identified (Additional file 1: Table S2). Representative 
images of negative and positive expression of CBP and 
GCN5 are shown in Fig. 6a. The subcellular distribution 
of CBP protein showed its localization in the nuclei of 
normal and BC cells and less frequently detected in the 
cytoplasm. On the other hand, GCN5 protein is distrib-
uted in both nuclei and cytoplasm (Fig. 6a). IHC staining 
showed CBP protein to be significantly more expressed 
in breast carcinoma samples both the “invasive and the 
in situ components” samples (No. of positive cases/total: 
217/252) compared with benign neoplasia samples (No. 
of positive cases/total: 31/42), and normal breast samples 
(No. of positive cases/total: 65/94) (p = 0.0001) (Fig. 6b). 
Similarly, GCN5 protein expression is upregulated in 
breast carcinoma sections ((No. of positive cases/total: 
215/256) compared with benign neoplasia (No. of posi-
tive cases/total: 32/42), and normal breast sections (No. 
of positive cases/total: 64/93) (p = 0.004) (Fig. 6c). To get 
more conclusive insight into the expression of CREBBP 
(For CBP) and KAT2A (For GCN5) genes in BC patients, 
the publicly available database (https://​www.​cbiop​ortal.​

org/) was used to download the clinical, pathological and 
omics data for each patient in the dataset. BC dataset 
(METABRIC, Nature 2012 and Nat Commun 2016) was 
used as it includes 2,509 BC patients [37] (Fig. 6d). Since 
we are interested in ductal carcinoma, we selected the 
ductal carcinoma cases only for further analysis. Totally, 
1863 samples were filtered and searched for alteration in 
CREBBP and KAT2A genes in terms of mutation, amplifi-
cation, or altered gene expression (Fig. 6e). CREBBP gene 
is altered in 115 (6%) of 1863 queried samples, and all the 
alterations were of the amplification type (Fig. 6f ). On the 
other hand, KAT2A was amplified in 29 (2%) of queried 
patients (Fig.  6g). These results indicated that CBP and 
GCN5 are overexpressed in breast tumors as well as their 
genes were amplified in some BC patients.

The level of CBP expression correlates with ERα and PR 
protein expression in patient samples
Next, we investigated the expression of CBP and GCN5 
with respect to BC subtypes in our patients’ samples 
(Table  2). The results showed that CBP protein is more 
frequently expressed in luminal A, luminal B HER2-
negative and luminal B HER2-positive compared with 
other molecular (No. of positive cases/total: 82/85, 20/25 
and 9/9, respectively, p = 0.0001). On the other hand, no 
significant variation in the level of GCN5 is observed 
between different BC subtypes (p = 0.166) (Table 2). The 
results of the public data of BC patients demonstrated 
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the persistent amplification of CREBBP gene in luminal 
A, luminal B and triple-negative subtypes, whereas no 
CREBBP amplification was observed in HER2 positive 
subtypes (Fig. 7a). This supports the same finding in our 
cohort of patients’ samples. However, KAT2A gene was 
observed to be significantly amplified in luminal B and 
HER2-overexpressing subtypes (Fig. 7a).

Investigating the expression level of CBP and GCN5 in 
BC tissue samples with different receptors status revealed 
a significantly high level of CBP expression in the ERα-
positive and PR-positive BC compared to ERα- and 
PR-negative tissue samples (p = 0.0001 and p = 0.0001, 
respectively) (Table  3), whereas the expression level 

of GCN5 did not show a significant correlation with 
the status of ERα or PR hormone receptors (p = 0.213 
and p = 0.541, respectively) (Table  3). Additionally, no 
significant correlation is found between the positive 
expression of both HATs (CBP and GCN5) with HER2 
overexpression nor ki-67 status. In line with the results 
of tissue samples, data from publicly available BC data-
bases showed a strong correlation between CBP ampli-
fication and ERα and PR status, whereby ERα-positive 
and PR-positive samples were associated with CREBBP 
amplification more than their corresponding ERα- and 
PR-negative samples (Fig. 7b, c). On the other hand, no 
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Fig. 5  Consort flow diagram showing patient’s inclusion in study association and survival analysis. The other missing data for histopathological 
parameters of the included patients are mentioned in Table 1
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correlation was observed between KAT2A gene amplifi-
cation and ERα or PR status (Fig. 7b, c).

The strong association between CBP and ERα was fur-
ther confirmed from the publicly available BC datasets of 
ERα-positive BC patients who received hormonal ther-
apy. Correlation analysis showed that a high percentage 
of BC patients have amplification in CREBBP gene after 
receiving the hormonal therapy (Fig.  7d). This supports 
the in-vitro results of a positive correlation between CBP 
and ERα.

Relationship between CBP and GCN5 expression 
and clinicopathological features and survival of BC 
patients
To check the clinical significance of CBP and GCN5 
expression in BC patients, we investigated the clini-
cal characteristics of the patients and histopathological 
parameters of the tumors of our BC patient cohort, e.g., 
age at diagnosis, tumor type and its histological grade, 
lymph node status and the TNM stage of breast carcino-
mas as well as the survival of the patients. However, no 
significant associations were found between the CBP or 
GCN5 expression and any of the studied clinicopatho-
logical parameters (p > 0.05) (Additional file 1: Table S3).

The influence of CBP and GCN5 expressions on the 
overall survival (OS) or disease-free survival (DFS) of BC 
patients was investigated using a log-rank test (Fig.  8). 
The analysis showed no significant correlation between 
CBP or GCN5 expression and the 5-year DFS (p = 0.630 
and 0.351 for CBP and GCN5, respectively) (Fig. 8a, b). 
Similarly, no clear impact was found for high CBP nor 
high GCN5 expression on the OS and the DFS of BC 
patients (p = 0.601, 0.670 for OS and DFS, respectively) 
(Fig. 8c, d). Also, the level of expression of the two pro-
teins (CBP and GCN) did not correlate significantly to 
the DFS in the different BC types (Additional file 1: Fig. 
S11, Additional file  1: Fig. S12). However, the analysis 
of the publicly available data of CREBBP and KAT2A 
genes expression in a larger number of patients showed 
significant correlation with regard to the 5-year DFS 
(Fig. 8e–g).

Kaplan–Meier Plotter online tool (http://​kmplot.​com/) 
was used to examine the survival in BC patients. Patients 
were divided into two groups (low and high expression) 
according to the mRNA expression of the given genes. 
Patients with high CREBBP gene expression had bet-
ter 5-year DFS rates than the low gene expression group 
(p = 0.0018) (Fig.  8e). Similarly, the high KAT2A gene 
expression correlated significantly with better 5-year DFS 

Table 1  Clinical characteristics of the patients and histopathological parameters of the tumors of breast cancer (DCIS and carcinoma) 
patients (primary diagnosis, n = 214)

a  The sample is considered ER/PR negative if < 10% of tumor cell nuclei are immunoreactive [59]

Variables N (%) No. of missing data 
(%)

Variables N (%) No. of 
missing 
data (%)

Age at diagnosis (years) 0 (0.0) ER statusa 9 (4.2)

 ≤ 40 15 (7.0) Negative 78 (38.0)

41–70 127 (59.4) Positive 127 (62.0)

 > 70 72 (33.6)

Tumor stage 29 (13.6) PR statusa 13 (6.1)

pTis 6 (3.2) Negative 75 (37.3)

pT1 51 (27.6) Positive 126 (62.7)

pT2 80 (43.2) HER2 overexpression 7 (3.3)

pT3 8 (4.3) Negative 184 (88.9)

pT4 40 (21.6) Positive (> 30%) 23 (11.1)

Histological grade 21 (9.8) Ki67 status 2 (0.9)

G1 8 (4.1) ≤ 20% 188 (88.7)

G2 149 (77.2) > 20% 24 (11.3)

G3 36 (18.7)

Lymph node metastasis 45 (21.0) Subtypes [58] 41 (19.2)

Negative 84 (49.7) Luminal A 86 (49.7)

Positive 85 (50.3) Luminal B HER2− 23 (13.3)

Luminal B HER2+ 10 (5.8)

HER2-overexpressed 9 (5.2)

Triple negative 45 (26.0)

http://kmplot.com/
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of BC patients (p < 0.00001) (Fig.  8f ). Analyzing the OS 
showed significant differences between groups of patients 
with amplified CREBBP, KAT2A or no amplification of 
both genes (p = 0.025), whereby CREBBP amplification is 
associated with better OS and KAT2A gene amplification 
with worse OS (Fig. 8g).

Discussion
Although great advances have been made in the man-
agement of early stages BC, a considerable fraction of 
patients might progress into metastatic BC [38]. Despite 
the different therapeutic options available for the treat-
ment of metastatic BC (such as endocrine therapy, tyros-
ine kinase inhibitors, growth factors antagonists, PARP 
inhibitors and conventional chemotherapy), advanced 
metastatic BC is considered incurable [39].

Histone acetyltransferases (HAT) regulate many cel-
lular processes by modifying the acetylation status of 
histone and non-histone proteins and by acting as tran-
scriptional co-activators [40]. Thus, reporting aberrant 
activity and/or expression of different HATs in many 
diseases including cancer is not surprising. The main 
aim of this study is to investigate the role of two HATs: 
namely CBP and GCN5 as diagnostic or prognostic 
markers in BC. Moreover, we aim at studying the rela-
tionship between these two HATs and the expression of 
ERα, PR and HER2 receptors in BC. This might help in 
more understanding of the pathogenesis of BC and hence 
developing new diagnostic and prognostic markers and 
new therapeutic targets.

The loss of CBP was reported previously to be associ-
ated with the initiation of basal-type BC, which is known 
to be aggressive, resistant to anti-cancer drugs and with 
high mortality rate. This was attributed to the inability of 
breast cells to execute apoptosis upon loss of CBP [41]. 
In another study, CBP was found to be highly expressed 

in triple negative BC patients, an aggressive BC subtype 
and its overexpression correlated to positive lymph node 
metastasis but not with the overall survival [42]. The 
overexpression of the CBP paralog, p300, in breast carci-
noma was previously reported, and it was evaluated as an 
independent biomarker for poor prognosis of BC patients 
[43]. Our results revealed high expression and/or amplifi-
cation of CBP and GCN5 in BC compared to benign neo-
plasia samples and normal breast samples. Importantly, 
high CBP expression or amplification was correlated with 
the positive status of ERα and PR receptors and it was 
displayed more in Luminal A and Luminal B subtypes. 
This may reflect the value of CBP and GCN5 as diagnos-
tic markers in BC. The higher degree of protein expres-
sion in carcinomas in the TMAs of our cohort compared 
to the relatively low number of genetic alterations in pub-
licly available datasets may be explained by the fact that 
in some cases, non-detectable levels of gene expression 
had no effect on the levels of the detected protein expres-
sion, suggesting fast translation in the case of a short half-
life or efficient translation from a small amount of mRNA 
in the case of a low level of mRNA. This is reported in 
the literature [44]. Moreover, the discrepancy between 
our results and the publicly available data regarding the 
correlation between the level of the two proteins and the 
patients’ DFS or OS may be due to the fact that the sur-
vival analysis has been done on the proteins at different 
levels of gene expression (i.e., mRNA and protein) and 
each level could be differentially regulated, which might 
result in this variation. In addition, although datasets 
provide a valuable resource to test hypotheses for indi-
vidual genes/signatures, there are variations in terms of 
size, patient characteristics and molecular composition 
of datasets and they do not necessarily reflect the studied 
cohort of BC patients. This is reported in the literature 
[45]. However, this indicates the need for more studies to 

Table 2  Expression of CBP and GCN5 in tissue samples from breast cancer patients with different subtypes by IHC

a  Negative: IRS 0 to 5
b  Positive: IRS 6 to 9
c  Chi-square test

Group [58] CBP expression GCN5 expression

Negative (%)a Positive (%)b p valuec Negative (%)a Positive (%)b p valuec

Luminal A 3 (3.5) 82 (96.5) 0.0001 9 (10.7) 75 (89.3) 0.166

Luminal B HER2- 3 (13.0) 20 (87.0) 3 (13.6) 19 (86.4)

Luminal B HER2+ 0 (0) 9 (100) 1 (11.1) 8 (88.9)

HER2−overexpressed 3 (37.5) 5 (62.5) 1 (11.1) 8 (88.9)

Triple negative 11 (25.6) 32 (74.4) 8 (17.8) 37 (82.2)

Total 168 169

No. of missing data (%) 41 (19.6) 42 (19.9)
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test the value of these two proteins as prognostic markers 
in BC. Previously p300, a paralog of CBP, was reported 
as a bad prognostic marker in BC [43]. Although CBP 
and p300 have overlapping functions, pieces of evidences 
exist for unique roles and pathways [46].

The high level of CBP and GCN5 in BC cells/tissues 
might be a cause or a consequence of the malignant 
transformation. Their high level may enhance malig-
nant transformation by increasing the activity of the 
growth-promoting genes (oncogenes) through enhanced 
acetylation of their promoter areas or through stimulat-
ing their activity by acting as transcriptional coactiva-
tors. This concept contradicts with the report of Dietze 
et al. who reported that loss of CBP in human mammary 
epithelial cells is associated with the inability of cells to 
execute apoptosis and increases the risk of basal-type BC 
[47]. On the other hand, a malignant transformation may 
increase the expression of CBP and GCN5 to enhance the 
expression of genes involved in processes such as angio-
genesis, DNA repair, invasion and migration aiming to 
support the high level of division of malignant cells or to 
help them to accommodate for cellular stress. This point 
needs more deep investigations to understand the role 
of CBP and GCN5 in breast carcinogenesis and whether 
they are involved in the early stages of carcinogenesis or 
they are needed for the late events of building up a malig-
nant tumor mass.

We also report for the first time the existence of a 
reciprocal relationship between CBP and ERα and CBP 
and HER2. CBP is an established transcriptional coac-
tivator of ERα; therefore, downregulation/chemical 
inhibition of ERα reduces the consumption of CBP and 
increases its free level. On the other hand, the down-
regulation of CBP might reduce the level of ERα by one 
or two ways; (1) reduction of the acetylation of the ERα 
gene promoter area and the subsequent reduction of ERα 
mRNA transcription, or (2) reduced level of CBP which 
is a transcriptional coactivator of ERα results in a reduc-
tion of the transcriptional activating activity of ERα and 
less ability to bind DNA with subsequent enhanced ERα 
degradation. Another hypothesis is that the CBP is con-
trolling the expression of ERα (i.e., CBP acts upstream of 
ERα); therefore, when the level of CBP is low, the level of 
ERα will be low (as in Fig. 1d) and when ERα is inhibited 
(biologically or pharmacologically), the level of CBP will 
be increased to compensate (which is shown in Fig.  3). 

This hypothesis is confirmed in Fig.  4, whereby down-
regulation of CBP resulted in downregulating the expres-
sion of ERα. A similar relationship between ERα and 
CBP was reported previously whereby ligand-activated 
ERα induced reduction of the histone acetyltransferase 
activity of CBP [48]. Also, CBP is involved in estrogen 
receptor signaling through inducing its acetylation and 
enhancing its transcriptional- and DNA binding activities 
[49]. In addition, the public data analysis in our current 
study showed enhanced CREBBP gene amplification in 
tumor specimens from BC patients who received hormo-
nal therapy. These clinical analyses support our in-vitro 
findings for the crosstalk between CBP and ERα. On the 
other hand, ER positivity was massively reported to be 
associated with better prognosis and survival outcomes 
in BC patients [50–53]. The positive correlation between 
CBP and ERα in the BC patients as indicated in this study 
proposes that the prognostic significance of CBP in BC 
could be similar to ERα and introducing CBP as a favora-
ble prognostic biomarker. The increased expression of 
CBP upon HER2 downregulation by siRNA or inhibition 
by Trastuzumab suggests a negative effect of HER2 on 
CBP expression. This may be due to: (1) CBP is involved 
in HER2 signaling and inhibition of HER2 conserves the 
CBP and hence increases its level, (2) CBP is involved in 
HER2 expression by acetylating the promoter area of its 
gene and inhibition of HER2 results in an increased level 
of CBP to compensate, or (3) HER2 inhibition induces 
cellular stress and/or DNA damage and CBP level is 
enhanced as a response to this cellular stress. In this con-
text, a previous investigation showed that the RAS-PI3K-
AKT, a downstream pathway of HER2, targets CBP via 
the MDM2-dependent degradation [54]. Since ERα and 
HER2 signaling pathways are critical for BC progression 
and therapy, our report of crosstalk between CBP, ERα 
and HER2 emphasizes the role of CBP in BC. However, 
more work would be needed to understand the func-
tional interaction between CBP, ERα and HER2 in BC.

Conclusions
In conclusion, we report the overexpression of CBP and 
GCN5 in BC cells/tissues more than the normal ones. 
The relationship between CBP and GCN5 expression and 
patients DFS or OS requires more investigations. Inter-
estingly, a bidirectional crosstalk exists between CBP, 
ERα and HER2, which suggests the contribution of CBP 

(See figure on next page.)
Fig. 7  CREBBP and KAT2A gene amplification in breast cancer cases with different ERα and PR status. a Bars depict the association of CREBBP and 
KAT2A genes amplification (AMP) across different breast cancer subtypes (Luminal B: ERα+/HER2+-high proliferation, Luminal A: ERα+/HER2+-low 
proliferation, Triple negative: ERα−/HER2− and HER2-overexpressed: HER2+). b, c The amplification status of CREBBP and KAT2A genes are depicted 
for b ERα+ (green) and ERα− (orange) samples and for c PR+ (green) and PR− (orange) samples. d The distribution of breast cancer patients who 
received hormonal therapy according to their CREBBP and KAT2A gene amplification status. p < 0.05 is statistically significant
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in BC pathogenesis. Our results present the CBP as a 
potential diagnostic marker and a therapeutic target in 
hormone receptor-positive BC.

Methods
Cell lines
The BC cell lines were purchased from ATCC (VA, USA) 
(Additional file  1: Table  S1). MCF7, T47D, BT-549 and 
MDA-MB-231 were cultured in RPMI (Sigma Aldrich, 
USA), while BT-474, SkBr3, MDA-MB-468, BT-20 and 
Hs578T were cultured in DMEM supplemented with 
10% fetal bovine serum and 1% penicillin/streptomycin 
(Sigma Aldrich, USA). The immortalized human mam-
mary epithelial cells hTERT-HME1 (ATCC, USA) were 
grown in DMEM/F-12 mixture medium supplemented 
with 10% fetal bovine serum and 1% penicillin/strep-
tomycin (Sigma Aldrich, USA). The human mammary 
epithelial cells HMEpC were purchased from cell appli-
cations (CA, USA) and maintained in defined mammary 
epithelial cell medium provided by the company (Cell 
applications, USA).

Drug treatment
The MCF7, T47D, SkBr3 and BT-474 cells were seeded 
in T25 cm2 flasks at a density of 800,000–200,000 cells/
flask. In the next day, the MCF7, T47D and BT-474 cells 
were treated with 5  µM of Tamoxifen (Sigma-Aldrich, 

USA), SkBr3 and BT-474 cells were treated with 10  µ/
mL of Trastuzumab (Mylan, US), and BT-474 cells were 
treated with Tamoxifen and Trastuzumab combination. 
The cells were harvested after 24, 48, 72 and 96 h of treat-
ment for protein extraction.

siRNA transfection
The MCF7, T47D, SkBr3 and BT-474 cells were seeded 
in 6-well plate at a density of 400,000–300,000 cells/well 
in antibiotic-free medium. In the next day, cells were 
transfected with siRNA using lipofectamine RNAiMAX 
reagent (Thermo Fisher scientific, USA) following manu-
facturer’s recommendations. The cells were transfected 
with 50  nM of ON-TARGET plus SMART pool siRNA 
against ESR1 (L-003401-00-0005), ERBB2 (L-003126-
000005) and CREBBP (L-003477-000005) (Dharmacon, 
USA). Non-targeting siRNA (D-001810-1005) was used 
as negative control. The cells were harvested after 24, 48, 
72 and 96 h of transfection for protein extraction.

Protein extraction and western blot
Analysis of the protein expression was performed as 
described previously [55]. Briefly, total cell lysates from 
breast cell lines were prepared in lysis buffer (20% SDS, 
glycerol, 1  M Tris (pH 6.8)) containing protease inhibi-
tor cocktail (Sigma-Aldrich, USA). An equal amount 
of proteins (10  µg) were loaded and separated in 8% 

Table 3  Correlation between CBP and GCN5 expression and the status of ER, PR, HER2 and ki-67 in tissue samples from breast cancer 
patients

a  Negative: IRS 0 to 5
b  Positive: IRS 6 to 9
c  Chi-square test

Molecular subtypes Total No. of 
missing 
data (%)

CBP expression Total No. of 
missing 
data (%)

GCN5 expression

Negative (%)a Positive (%)b p valuec Negative (%)a Positive (%)b p valuec

ER status

Negative 75 17 (22.7) 58 (77.3) 0.0001 78 14 (17.9) 64 (82.1) 0.213

Positive 124 6 (4.8) 118 (95.2) 123 14 (11.4) 109 (88.6)

Total 199 10 (4.8) 201 10 (4.7)

PR status

Negative 71 17 (23.9) 54 (76.1) 0.0001 74 13 (17.6) 61 (82.4) 0.541

Positive 125 7 (5.6) 118 (94.4) 123 17 (13.8) 106 (86.2)

Total 196 13 (6.2) 197 14 (6.6)

HER2

Negative 180 22 (12.2) 158 (87.8) 1.000 181 26 (14.4) 155 (85.6) 0.552

Positive (> 30%) 21 3 (14.3) 18 (85.7) 22 2 (9.1) 20 (90.9)

Total 201 8 (3.8) 203 8 (3.8)

Ki-67 status

≤ 20% 183 22 (12.0) 161 (88.0) 0.354 184 30 (16.3) 154 (83.7) 0.094

> 20% 24 4 (16.7) 20 (83.3) 24 1 (4.2) 23 (95.8)

Total 207 2 (1.0) 208 3 (1.4)
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SDS-PAGE or 3–8% Tris–acetate gel (for CBP only) and 
then transferred into nitrocellulose membrane (Sigma-
Aldrich, USA). Followed by immunoblotting with rab-
bit monoclonal primary antibodies against CBP (#7389), 
GCN5 (#3305), ERα (#13258) and HER2 (#4290) (Cell 
Signaling Technology, USA) at dilution 1:1000 and mouse 
monoclonal antibody against β-actin (#A5441) at dilution 
1:2000 (Sigma-Aldrich, USA), then with secondary anti-
rabbit IgG, HRP-linked antibody and anti-mouse IgG, 
HRP-linked antibody (Cell Signaling Technology, USA). 
The detection of membrane was carried out by the ECL 
method (Biorad, USA) and developed using ChemiDoc™ 
imaging system (Biorad, USA). The band quantification 
was carried out using Image Lab™ software (Biorad, Cali-
fornia, USA) with β-actin as loading control.

Breast cancer tissue samples
For clinical validation of differentially expressed pro-
teins, breast carcinomas and adjacent normal mucosa 
were randomly selected from patients that were part of 
a patient cohort undergoing surgery for breast malig-
nancy at the Institute of Gynecology, University Clinic 
Schleswig–Holstein, Campus Lübeck, Germany, between 

1989 and 1993. All samples were archived in the Institute 
of Pathology at the University Clinic Schleswig–Holstein, 
Campus Lübeck, Germany. This study encompassed 405 
formalin-fixed paraffin-embedded (FFPE) breast tissue 
samples which were obtained from 245 patients primar-
ily diagnosed with invasive breast carcinoma, carcinoma 
in situ or benign neoplasia. In a subset of patients, sup-
plementary samples were collected from the tissue adja-
cent to the sample of the primary histological diagnosis. 
These supplementary samples have been used for com-
parison between the histological groups. A total of 101 
normal tissue samples were collected from the apparently 
normal tissue adjacent to the tumor mass. The FFPE sam-
ples were obtained at the Section of Translational Surgi-
cal Oncology and Biobanking, Department of Surgery, 
University Medical Center Schleswig–Holstein-Lübeck-
Germany, adhering to the guidelines of the local ethi-
cal review board (#08-012). For association and survival 
analysis, only samples of the breast cancer taken for pri-
mary diagnosis were evaluated. The clinical characteris-
tics of the patients and histopathological parameters of 
the tumors of the study cohort are detailed in Table 1 and 
Additional file 1: Table S2.

Fig. 8  Correlation of CBP and GCN5 expression with breast cancer patients’ survival. a, b Kaplan–Meier survival curves of disease-free survival 
for a CBP and b GCN5 expression. c, d Representative c overall survival and d disease-free survival curves for both CBP and GCN5 expression. e, f 
5-year disease-free survival and overall survival analyses for e CREBBP and f KAT2A mRNA expression (http://​kmplot.​com/). g Overall survival curves 
for CREBBP and KAT2A amplification in breast cancer patients. Significant differences were calculated using the log-rank test. p < 0.05 is statistically 
significant

http://kmplot.com/
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Tissue microarray construction
Tissue microarray was constructed as described pre-
viously [56]. Tissue cores of 1.5  mm diameter were 
punched from selected regions of FFPE donor tissue 
blocks and embedded into recipient paraffin block using 
semi-automated arrayer (TMArrayer; Pathology Devices, 
MD, USA).

Immunohistochemistry staining
The immunohistochemistry for CBP and GCN5 was 
performed manually. Deparaffinization of the unstained 
sections was carried out by xylene followed by rehydra-
tion in a series of ethanol. Subsequently, the antigen 
retrieval was carried out using citrate buffer and heated 
for 5  min at 900  W followed by heating for 10  min at 
750  W for two times. After cooling down, the slides 
were washed three times with PBS and the endogenous 
peroxidase was blocked for 10 min by 3% hydrogen per-
oxide. The slides were subsequently washed three times 
with PBS and blocked with goat serum for 45  min, fol-
lowed by incubation with CBP (# sc-7300) or GCN5 (# 
sc-365321) primary antibody at dilution 1:100 (Santa 
Cruz Biotechnology, USA) at 4 °C overnight. On the next 
day, the slides were washed with PBS and incubated with 
rabbit secondary antibody labeled with biotin at dilution 
1:50 for 30 min (Dako, USA) followed by the addition of 
diaminobenzidine substrate (Dako, USA) in combina-
tion with avidin–peroxidase complex solution. Finally, 
the slides were counterstained with hematoxylin, covered 
with aquatex and scanned by a digital microscope (Pan-
noramic DESK, 3D Histech, Budapest, Hungary).

Immunohistochemistry interpretation
Immunopositivity of CBP and GCN5 was assessed semi-
quantitatively by two independent observers to confirm 
the reproducibility of the results. The whole TMA cores 
in each tumor and non-tumor breast tissue were evalu-
ated. The percentage of positively stained tumor cells 
(PP) and the staining intensity (SI) were determined. The 
immunoreactive score (IRS) was as follows: IRS = SI × PP, 
for each sample, as previously described [57]. The inten-
sity was scored as follows: 0: No staining, 1: weakly posi-
tive, 2: moderately positive and 3: strongly positive. The 
percentage of positively stained cells was given the fol-
lowing scores: score 0: 0–1% positive cells, score 1: 2–20% 
positive cells, score 2: 21–50% positive cells and score 3: 
51–100% positive cells. The IRS score thus ranged from 
0 to 9, designated as negative for a score of 0 to 3, weakly 
positive for a score of 4 or 5, moderately positive for a 
score of 6 or 7 and strongly positive for a score of 8 or 
9. Localization of the positivity was also determined: 
nuclear, cytoplasmic, or mixed.

Publicly available cancer genomics and patients’ data
In order to explore the expression and the clinical sig-
nificance of CREBBP (CBP) and KAT2A (GCN5) genes 
in BC patients, the publicly available database (https://​
www.​cbiop​ortal.​org/) was used to extract the clinical, 
pathological and omics data for each patient in the data-
set. BC dataset (METABRIC, Nature 2012 and Nat Com-
munity 2016) was used, it includes 2509 BC patients [37]. 
Invasive breast carcinoma cases were selected for fur-
ther analysis. In order to evaluate the prognostic value of 
CREBBP and KAT2A mRNA expression, Kaplan–Meier 
Plotter online tool (http://​kmplot.​com/) was used to 
investigate the OS in BC patients. Patients were divided 
into two groups (low and high expression) according to 
the mRNA expression of the given genes.

Statistical analysis
GraphPad Prism 6 (GraphPad Software, USA) and SPSS 
statistics (IBM corporation, USA) were used for statis-
tical analysis. For in-vitro experiments, the results are 
expressed as the means ± SEM of at least three inde-
pendent experiments and the unpaired student t-test 
was used for statistical analysis. Association between 
CBP and GCN5 expression and clinical characteristics 
of the patients and histopathological parameters of the 
tumors were examined using the Pearson chi-square test. 
Kaplan–Meier analysis was used to generate survival 
curves. Log-rank tests were used to assess the differences 
between groups in overall survival (OS) and disease-free 
survival. p value < 0.05 was considered as statistically 
significant.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​021-​01060-2.

Additional file 1. Supplementary Tables: Table S1. Molecular subtypes 
of breast cancer cell lines. Table S2. Histopathological features of tissue 
microarray samples. Table S3. Clinical-pathological parameters and CBP 
& GCN5 expression in DCIS and breast carcinoma cases. Supplementary 
Figures: Fig. S1. Baseline expression level of ER and HER2 in a panel of 
normal cancer breast cells. Fig. S2. Efficiency of transfection kinetics for a, 
b HER2 siRNA, c-e ER siRNA and f, g both ER and HER2 siRNAs. Fig. S3. Effi‑
ciency of transfection kinetics for a, b CBP siRNA in MCF7 and T47D cells. 
Fig. S4. Uncropped blots for a CBP and b GCN5 proteins in normal and 
cancer breast cells. Fig. S5. Uncropped blots for HER2 and CBP proteins 
in a SkBr3 and b BT-474 cells transfected with HER2 siRNA for 24-96 hours. 
Fig. S6. Uncropped blots for CBP protein in a SkBr3 and b BT-474 cells 
treated with Trastuzumab for 24-96 hours. Fig. S7. Uncropped blots for ER 
and CBP proteins in a MCF7 and b T47D cells transfected with ER siRNA for 
24-96 hours. Fig. S8. Uncropped blots for ER and CBP proteins in a BT-474 
cells transfected with ER siRNA for 24-96 hours. Uncropped blots for CBP 
protein in b MCF7, c T47D and d BT-474 cells treated with Tamoxifen for 
24-96 hours. Fig. S9. Uncropped blots for ER, HER2 and CBP proteins 
in a BT-474 cells transfected with ER and HER2 siRNAs for 24-96 hours. 
Uncropped blots for CBP protein in b BT-474 cells treated with Tamoxifen 
and Trastuzumab combination for 24-96 hours. Fig. S10. Uncropped blots 
for ER and CBP proteins in a MCF7 and b T47D cells transfected with CBP 
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siRNA for 24-96 hours. Fig. S11. Kaplan-Meier survival curves of disease-
free survival for CBP expression in a Luminal A, b Luminal B HER2 negative, 
c Luminal B HER2 positive, d HER2-positive and e Triple negative breast 
cancer patients. Fig. S12. Kaplan-Meier survival curves of disease-free 
survival for GCN5 expression in a Luminal A, b Luminal B HER2 negative, 
c Luminal B HER2 positive, d HER2-positive and e Triple negative breast 
cancer patients.
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