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Abstract 

Background:  Epigenetic alterations are known contributors to cancer development and aggressiveness. Additional 
to alterations in cancer cells, aberrant epigenetic marks are present in cells of the tumor microenvironment, includ-
ing lymphocytes and tumor-associated macrophages, which are often overlooked but known to be a contributing 
factor to a favorable environment for tumor growth. Therefore, the main aim of this review is to give an overview of 
the epigenetic alterations affecting immune cells in the tumor microenvironment to provoke an immunosuppressive 
function and contribute to cancer development. Moreover, immunotherapy is briefly discussed in the context of epi-
genetics, describing both its combination with epigenetic drugs and the need for epigenetic biomarkers to predict 
response to immune checkpoint blockage.

Main body:  Combining both topics, epigenetic machinery plays a central role in generating an immunosuppressive 
environment for cancer growth, which creates a barrier for immunotherapy to be successful. Furthermore, epigenetic-
directed compounds may not only affect cancer cells but also immune cells in the tumor microenvironment, which 
could be beneficial for the clinical response to immunotherapy.

Conclusion:  Thus, modulating epigenetics in combination with immunotherapy might be a promising therapeutic 
option to improve the success of this therapy. Further studies are necessary to (1) understand in depth the impact 
of the epigenetic machinery in the tumor microenvironment; (2) how the epigenetic machinery can be modulated 
according to tumor type to increase response to immunotherapy and (3) find reliable biomarkers for a better selec-
tion of patients eligible to immunotherapy.
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Background
The epigenome is defined by heritable alterations in gene 
expression, either activation or suppression, without 
altering the DNA nucleotide sequence. The mechanisms 
responsible for these changes can be broadly divided into 

altered gene accessibility for the transcriptional machin-
ery, disrupted chromatin organization or modulation of 
gene expression at the post-transcriptional level through 
altered mRNA translation mainly by non-coding RNAs, 
including miRNAs. Fundamental mechanisms for epige-
netic regulation include DNA methylation, histone modi-
fications, chromatin remodeling and non-coding RNA 
interference [1]. Nevertheless, these modifications of the 
RNA sequence and their associated regulatory factors 
represent functionally relevant changes to the transcrip-
tome without altering the RNA ribonucleotide sequence, 
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recently encompassed by the term ‘epitranscriptom-
ics’ [2]. Since epitranscriptomics is recognized as a dif-
ferent area of study that goes beyond the scope of this 
review, we will only focus on DNA methylation, histone 
modifications and chromatin remodeling as epigenetic 
regulatory mechanisms. Those mechanisms are briefly 
discussed below.

Epigenome functions are essential for normal gene 
expression, and their modifications affect primary cel-
lular processes like proliferation, differentiation, and 
apoptosis. Even though its effect on human carcinogen-
esis is not entirely acknowledged, epigenetic dysfunction 
is a rising hallmark of malignancy. As epigenetic modi-
fications are essential in the regulation of normal gene 
expression, epigenetic deregulation results in aberrant 
gene expression patterns which have been found to favor 
tumorigenesis, among others [1].

Whereas the role of epigenetic modifications in cancer 
research has been mainly focused on cancer cells, rising 
evidence indicates their contribution to the develop-
ment of a favorable tumor microenvironment (TME), 
including their effect on surrounding cell phenotypes 
like fibroblasts, immune cells, endothelial and inflamma-
tory cells, blood and lymphatic vascular networks, and 
the extracellular matrix (Table  1) [3]. Nevertheless, due 
to the extreme complexity of the variety of cells and their 
potential epigenetic modifications affecting tumorigen-
esis, this review will be focused on the epigenetic regula-
tion of different immune cell types in the TME and their 
involvement in the generation of a cancer-prone TME.

We further discuss the inhibition of epigenetic mod-
ulators as therapeutic option to modify the immu-
nosuppressive TME, and we provide an overview on 
immunotherapy and the potential of epigenetic biomark-
ers of response to this therapy. Finally, the application 
and success of immunotherapy as well as the inhibition of 
epigenetic processes involved in immune activation will 
be briefly discussed in the context of bladder cancer (BC).

Epigenetic regulatory mechanisms
DNA methylation
DNA methylation represents a process by which methyl 
groups are transferred onto the 5′ position of a cytosine 
molecule without altering the DNA sequence. Meth-
ylation commonly occurs on the cytosine of CpG sites, 
meaning that the cytosine molecule precedes a guanine. 
DNA regions with a higher density of these CpG sites 
(so-called CpG islands) have been found throughout the 
genome, mostly coinciding with gene regulatory regions. 
This way, methylation of CpG islands plays an important 
role in the regulation of normal gene expression (Fig. 1) 
[62, 63].

DNA methyltransferases (DNMTs) are the enzymes 
responsible for the control of DNA methylation patterns 
through maintenance DNA methylation and de novo 
DNA methylation. In general, DNMT1 is the enzyme 
responsible for maintenance of inherited DNA meth-
ylation, whereas DNMT3a and DNMT3b provide de 
novo DNA methylation. Nevertheless, DNMT3a and 
DNMT3b methyltransferases have been described to 
perform maintenance methylation as well, and DNMT1 
has also been found to carry out de novo DNA methyla-
tion [63].

Alterations in DNA methylation status have been 
described in various diseases, including cancer. For 
example, gene silencing of tumor suppressor genes 
(TSGs) is the result of the hypermethylation of CpG 
islands in the promoter regions of those genes. TSGs 
are mainly involved in biological pathways like cell cycle 
control, DNA repair and apoptosis, and its silencing has 
been frequently found in tumorigenesis [64].

Histone modifications
Chromatin structure changes as a result of dynamic pro-
cesses involving post-translational modifications (PTMs) 
at the histone N-terminal tails. Various PTMs can be dis-
tinguished, including histone acetylation, methylation 
and phosphorylation as well as less known ubiquityla-
tion, deamination and sumoylation, which affect chro-
matin packaging and availability to the gene transcription 
machinery (Fig. 1) [65]. Currently known histone PTMs 
have been extensively reviewed. Here, we briefly mention 
the three most common histone PTM activities.

Histone acetylation consists of the reversible addition 
of acetyl groups to the histone tail by histone acetyltrans-
ferases (HATs), which weakens the DNA-histone bonds 
and allows binding of transcription factors. Contra-
rily, histone deacetylases (HDACs) remove those acetyl 
groups, allowing for compact wrapping of the DNA 
around histones, disabling the access of other enzymes. 
Regarding histone methylation, the transfer of methyl 
groups is a reversible process regulated by histone meth-
yltransferases and demethylases. The attachment of a 
methyl group to the histone tail may differentially affect 
gene expression depending on the specific residue modi-
fied. Likewise, the interaction between the DNA and 
histone tails is regulated by histone (de)phosphorylation 
processes [66].

Chromatin remodeling
Changes in nucleosome position have also been found 
responsible for rearrangement of chromatin structure, a 
process known as chromatin remodeling. Nucleosomes, 
consisting of a histone core (H2A, H2B, H3 and H4) 
wrapped by an approximately 150-bp DNA sequence, can 
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be affected in several ways, including nucleosome sliding, 
nucleosome ejection and histone eviction. Nucleosome 
sliding represents the movement of the histone octamer 
across the DNA sequence, whereas nucleosome ejection 
implies the complete segregation of the histone core from 
the DNA. Histone eviction includes the disintegration of 
the core histone octamer trough removal or replacement 
of H2A–H2B dimers (Fig. 1) [67].

Since nucleosome sliding and ejection as well as 
removal of the H2A–H2B dimers result in DNA exposi-
tion and nucleosome destabilization, these processes play 
an important role in the regulation of gene accessibility 
to the transcriptional machinery.

Histone variants
Histone variants add further complexity to epigenetic 
regulation of the genome. They represent a unique pro-
tein sequence compared to core histones and can be 
identified by a combination of variant-specific proteins 
and chromatin remodeling complexes which control 
their localization within the genome. Various histone 
variants are characterized for H2A (such as macroH2A, 

H2A.B, H2A.J, H2A.X and H2A.Z.1/2), H2B (includ-
ing TSH2B) and H3 (like H3.1 till H3.8, H3.X, H3.Y and 
CENP-A), whereas no variants have been described for 
H4. Additionally, histone variants are subjected to post-
translational modifications which elaborates the epige-
netic control of gene expression (Fig. 1) [68, 69].

Epigenetic regulation of immune cell function 
in TME
A favorable TME is characterized by immune tolerance. 
Cancer cells employ a variety of epigenetic regulated-
immune escape mechanisms, including downregulation 
of tumor-associated antigens (TAAs), loss of antigen 
processing and presentation machinery (APM) as well 
as expression of a tumor-promoting balance in co-
stimulatory and co-inhibitory molecules (also known as 
immune checkpoint receptors). Whereas these processes 
have been extensively studied and reviewed, epigenetic 
alterations affecting immune cell function in the TME 
represent a growing area of investigation. The epige-
netic-induced immunosuppressive function of dendritic 
cells (DCs), myeloid-derived suppressor cells (MDSCs), 

Fig. 1  DNA methylation, histone modifications and chromatin remodeling as regulatory mechanisms of epigenetic gene regulation. DNA 
methylation represents a process by which methyl groups are transferred onto the 5′ position of a cytosine molecule, commonly in the context of 
CpG sites, without altering the DNA sequence. Histone modifications include post-translational modifications at the histone N-terminal tails, such 
as acetylation, methylation and phosphorylation, causing chromatin structure alterations. Changes in nucleosome position are also responsible 
for rearrangement of chromatin structure, a process known as chromatin remodeling. Nucleosomes can be affected in several ways, including 
nucleosome sliding, nucleosome ejection and histone eviction. Histone variants add further complexity to epigenetic regulation of the genome. 
Various histone variants are characterized for H2A, H2B and H3. All these mechanisms are highly interrelated and play an important role in the 
regulation of gene accessibility to the transcriptional machinery
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tumor-associated macrophages (TAMs), tumor-infiltrat-
ing lymphocytes (TILs), regulatory T cells (Tregs) and 
natural killer cells (NK cells) in the TME will be discussed 
below.

Dendritic cells
DCs represent important antigen-presenting cells 
(APCs) that mediate antigen-specific anti-tumor immune 
responses mainly through the activation of T cells. 
Whereas these cells are normally able to capture TAAs 
expressed on cancer cells through accurate MHC expres-
sion and cross-present them to cytotoxic T cells (CTLs) 
by the expression of co-stimulatory molecules, resulting 
in tumor elimination, tumor-infiltrating DCs show an 
immune-tolerant phenotype favoring tumor growth [18]. 
Next to low MHC expression and repression of various 
co-stimulatory molecules in tumor-infiltrating DCs, epi-
genetic alterations affecting DC polarization and activity 
are suggested to impair an effective anti-tumor immune 
response.

For example, dynamic changes in the levels of chro-
matin regulator ‘special AT-rich sequence binding 1 
(SATB1)’ are essential for the generation of inflammatory 
DCs and their anti-tumorigenic activity. SATB1 recruits 
chromatin remodeling complexes to anchored DNA 
regions, consisting of a characteristic ‘ATC-sequence 
context’ (well-mixed A’s, T’s and C’s but not G’s on a sin-
gle strand), thereby controlling gene transcription over 
long-distance DNA sequences through the regulation 
of nucleosomal positioning and histone modification 
[70]. Additionally, the recruitment of HATs and HDACs 
directly to gene promoter regions has been reported 
[71]. A continuous increased expression of SATB1 has 
been described to convert inflammatory anti-tumor DCs 
into pro-tumor DCs by enhanced secretion of pro-tum-
origenic cytokine IL-6 and immunosuppressive factor 
Galectin-1, activating immune-evasive pathways in these 
cells [7]. Accordingly, SATB1 has been found to be over-
expressed in a wide range of tumors, including breast, 
lung, pancreas, colorectal, liver, bladder, prostate and 
ovarian cancer, and has been associated with tumor pro-
gression and poor prognosis [19]. Additionally, next to its 
role in the direct activation of IL-6 transcription, Krup-
pel-like factor 4 (KLF4) modulates IL-6 production at 
the post-translational level through histone acetylation. 
Decreased expression of KLF4 has been described in 
many tumors, including esophageal, lung, gastric, intesti-
nal, colon and prostate cancer, leading to altered produc-
tion of cytokine IL-6 in DCs (Fig. 2, Table 1) [20, 21].

Taken together, increasing our knowledge on tumor-
induced epigenetic modifications affecting DC polari-
zation and activity might help modifying the TME to 

become more “receptive” to the development of an effec-
tive anti-tumor response.

Myeloid‑derived suppressor cells
MDSCs represent immature myeloid cells and are mainly 
characterized by their immunosuppressive function 
providing tumor immune evasion [27]. These cells are 
known to have a major impact on cancer progression as 
the TME has been found to support this cell population, 
promoting MDSC persistence, proliferation and func-
tion. Indeed, the presence of MDSCs has been associ-
ated with poor prognosis and reduced patients’ survival 
in many cancer types, including head and neck, breast, 
lung, kidney and prostate [26, 27]. Several studies have 
suggested the role of epigenetic mechanisms in MDSC 
accumulation and functions.

For example, an elevated expression of signal trans-
ducer and activator of transcription 3 (STAT3) has been 
defined in several tumor types including lung, pancreas 
and renal cancer [28–31]. Overexpression of STAT3 
can be the result of promoter silencing of DNMT3a 
and DNMT3b through hypermethylation, followed by 
promoter hypomethylation of the STAT3 gene. Besides, 
Villagra et  al. proposed HDAC11 as a transcriptional 
repressor of IL-10 (a STAT3-activating cytokine) through 
interaction with the IL-10 promoter at the chromatin 
level and indicated that elevated levels of STAT3 in APCs 
might be associated with the absence of HDAC11 [72]. 
More recently, HDAC11 has been described as an essen-
tial regulator of IL-10 levels in myeloid cells and its role 
in the MDSC expansion was demonstrated [73]. Moreo-
ver, Cheng et  al. showed that HDAC6 has a regulatory 
function in STAT3 activation in the MDSC population. 
Surprisingly, HDAC6 seems to act as a transcriptional 
activator of IL-10 expression [74]. Next to their possi-
ble individual implications, HDAC6 and HDAC11 have 
been reported to interact and be recruited together 
toward the IL-10 promoter site where they control IL-
10 transcription and subsequent STAT3 expression [74]. 
Increased STAT3 expression leads to augmented expres-
sion of immunosuppressive factors S100A8 and Arginase 
1 (Arg1) in MDSCs. Additionally, the induction of these 
proteins, together with the STAT3-mediated induction 
of S100A9 expression, has been shown to provide expan-
sion, accumulation and recruitment of immunosuppres-
sive MDSCs in TME (Fig. 2, Table 1) [29, 75].

As abovementioned, this MDSC population represents 
immature myeloid cells which fail to differentiate into 
macrophages and DCs. Several studies already described 
the accumulation of immature myeloid cells as a result 
of retinoblastoma gene (Rb) transcriptional silenc-
ing [76, 77]. Concordantly, Young et  al. proposed that 
HDAC2 might be the epigenetic regulator provoking Rb 
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transcriptional silencing in this cell population through 
its direct interaction with the Rb1 gene promoter [78].

Taken together, the MDSC population represents a 
major barrier for immunotherapy. Accordingly, further 
research is needed to increase our knowledge on MDSCs 
in the TME and be able to improve the ability to revert 
their immunosuppressive function.

Tumor‑associated macrophages
TAMs represent the main component of the immune 
infiltrates in TME of solid tumors and have frequently 
been associated with worse prognosis [79]. By continu-
ously sensing their surrounding environment, this cell 
population has refined regulatory epigenetic mechanisms 

to manage their polarization state. Depending on their 
polarization into classically activated (M1) or alter-
natively activated (M2) macrophages, they inhibit or 
promote tumor growth, respectively. Epigenetic modifi-
cations have been widely shown to be involved in mac-
rophage differentiation, activation and survival [80].

Yang et al. indicated a significant role for DNMT3b in 
macrophage polarization. They showed that DNMT3b 
knockdown induces elevated expression of M2 mac-
rophage markers, such as Arg1, as well as increased Arg1 
function. In concordance with these results, Arg1 activity 
has been reported to define immunosuppressive subsets 
of TAMs. Additionally, DNMT3 knockdown resulted in 
significantly decreased expression of inflammatory genes, 

Fig. 2  Epigenetic regulation of immune cells in the tumor microenvironment. Decreased KLF4 and increased SATB1 expression affect IL-6 
(upregulation) and Galectin (downregulation) expression, remodeling anti-tumor DCs into pro-tumor DCs. MDSCs expansion, accumulation and 
recruitment are favored by STAT3-induced expression of immunosuppressive factors S100A8, Arg1 and S100A9. In this cell population, STAT3 
expression is controlled by DNMTT3a/b, HDAC6 and HDAC11. Macrophages can convert into TAMs under the influence of multiple epigenetic 
factors, including DNMT3b, PRMT1, HDAC3/4, HDAC9 and SIRT2, favoring acquisition of the M2 phenotype through various pathways, such as 
increased PPARγ and Arg1 expression as well as downregulation of inflammatory factors TNF-α and IL-1β. SMYD3 activates M2 marker ALOX15. 
Impaired NK-cell anti-tumor cytotoxicity can be the result of increased EZH2 expression, which downregulates activating NK-cell receptor 
NKG2D through enhanced H3K27me3 levels. The same way, EZH2 also regulates inhibition of regulatory T-cell pro-inflammatory activities. Naïve 
CD8 + T-cells differentiate into TILs or exhausted CD8 + cells dependent on epigenetic profile. Whereas specific DNA methylation patterns of CTLA4, 
PDCD1 and LAG3 are identified in exhausted CD8 + T-cells, DNMT1 and EZH2 inhibit CD8 + TILs infiltration through downregulation of CXCL9 and 
CXCL10 chemokines. TGF-β and SATB1 affect TILs infiltration by controlling PD-1 expression. DCs, dendritic cells; MDSCs, myeloid-derived suppressor 
cells; TAMs, tumor-associated macrophages; NK, natural killer; Tregs, regulatory T-cells; TILs, tumor-infiltrating lymphocytes
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such as TNF-α and IL-1β, emphasizing the importance of 
DNMT3b in the regulation of both macrophage differen-
tiation and inflammation [81, 82]. Moreover, DNMT3b 
has been reported to methylate the peroxisome prolifera-
tor-activated receptor γ (PPARγ) promoter region.

Protein arginine methyltransferase 1 (PRMT1) 
has been reported as a positive regulator of PPARγ-
dependent M2 polarization through methylation of 
the arginine located at residue 3 on the tail of histone 
4 (H4R3me2a). Furthermore, Ishii et  al. demonstrated 
that expression of M2 macrophage markers seems to 
be epigenetically controlled by convertible changes in 
H3K4 and H3K27 methylation [83]. Accordingly, H3K4 
methyltransferase SET and MYND Domain 3 (SMYD3) 
has been shown to play a role in M2 differentiation. Kit-
tan et  al. [84] showed that the increased expression of 
SMYD3 is associated with the methylation and activa-
tion of the M2 marker arachidonate 15-lipoxygenase 
(ALOX15). The only histone demethylase recognized as 
a crucial regulator of M2 polarization is Jumonji domain-
containing protein D3 (JMJD3), a H3K27 demethylase. 
IL-4-induced STAT6 activation leads to STAT6-mediated 
increased expression of JMJD3, provoking H3K27me2/3 
demethylation and subsequent transcriptional activation 
of several M2 marker genes, including Arg1 [83, 85]. IL-4 
increased expression has been found in various tumor 
types, including breast, lung, pancreatic, colon, bladder 
and ovarian carcinomas [42].

Whereas the role of HATs in macrophage polarization 
remains unclear, the function of HDACs as epigenetic 
modifiers in the regulation of M2 differentiation and 
phenotypic control has been explored by various stud-
ies. Mullican et al. indicated that HDAC3 activity leads to 
suppressed IL-4 activity through deacetylation of histone 
tails at regulatory sequences. Together with the finding 
that HDAC3 knockdown resulted in decreased inflam-
matory gene expression, HDAC3 has been proposed to 
negatively regulate M2 polarization [86, 87]. HDAC9 
has also been described as a negative regulator of M2 
phenotype as HDAC9 deficiency results in PPARγ pro-
moter acetylation and increased PPARγ expression lev-
els, promoting M2 polarization and downregulating M1 
phenotype inflammatory genes [88]. Contrarily, HDAC4 
positively regulates the M2 phenotype through IL-4-ac-
tivated HDAC4-induced STAT6 signaling and Arg1 
expression [89]. Another HDAC, SIRT2, positively con-
trols M2 polarization through its function in the expres-
sion of M2 macrophage markers, such as Arg1, and 
downregulation of M1 polarization by NFkB acetylation, 
provoking decreased NFkB signaling and suppression of 
IL-1β expression (Fig. 2, Table 1) [90].

Accordingly, targeting these epigenetic enzymes 
responsible for polarization of TAMs into M2 

macrophages would prevent their tumor-supporting 
function. Nevertheless, it should be considered that these 
regulators disclose secondary functions and that his-
tone-modifying enzymes also affect proteins other than 
histones.

Tumor‑infiltrating lymphocytes
TILs represent the major component of the adaptive 
immune system in the TME and can be classified into 
two main categories: 1) CD4-expressing T cells (CD4 + T 
cells), which can differentiate into the T helper1 (Th1) 
or T helper2 (Th2) phenotype, and 2) CD8-express-
ing T cells (CD8 + T cells), which are able to eliminate 
tumor cells after differentiation into cytotoxic effector T 
lymphocytes.

Whereas the important role of CD8 + CTLs in anti-
tumor immune response has been known for many 
years, the potential importance of CD4 + Th cells in the 
generation and maintenance of anti-tumor activity has 
only recently been reported [91]. Even though further 
research is needed to find out whether and, if so, how 
epigenetic mechanisms affect CD4 + cells in an immuno-
suppressive TME, DNA demethylation has been reported 
to play an important role in differentiation of CD4 + T 
cells toward Th1/Th2 lymphocytes [92].

Additionally, epigenetic modulation has been found 
to control rapid activation and differentiation of naïve 
CD8 + into CTLs upon antigen stimulation. For example, 
Peng et al. associated DNMT1-mediated DNA methyla-
tion and enhancer of zeste homolog 2 (EZH2)-mediated 
H3K27 trimethylation with impaired T-cell infiltration 
in the TME through downregulation of CXCL9 and 
CXCL10 chemokine expression [93]. Furthermore, Yang 
et al. reported that whole-genome methylation profiling 
showed a distinct methylome pattern for tumor-reactive 
CD8 + T cells compared to the naïve subtype. Moreover, 
specific DNA methylation patterns have been discovered 
in exhausted CD8 + T cells. PDCD1 and CTLA4 expres-
sion in exhausted CD8 + T cells has been found to be 
epigenetically controlled by DNA demethylation, and the 
LAG3 gene has been found methylated in naïve cells but 
demethylated during the activation of naïve CD8 + T cells 
[94]. Ghoneim et  al. [95] found that high programmed 
death 1 (PD-1)-expressing tumor-infiltrating CD8 + T 
cells in prostate cancer display exhaustion-associated 
DNA methylation patterns. Stephen et al. further showed 
that chromatin organizer Satb1 recruits the nucleosome 
remodeling deacetylase complex to regulatory regions of 
the Pdcd1 gene, reducing PD-1 expression levels upon 
T-cell activation. Nevertheless, Satb1 is known to be 
downregulated by Smad proteins under the influence of 
TGF-β, an immunosuppressive cytokine found to play a 
relevant role in cancer, resulting in elevated PD-1 levels. 
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Accordingly, Satb1 prevents premature T-cell exhaus-
tion by controlling PD-1 expression, a pathway that is 
altered in cancer, causing reduced anti-tumor activity 
[96, 97]. Another mechanism underlying tumor-specific 
T-cell dysfunction in tumor progression is represented 
by chromatin state dynamics. Philip et  al. reported that 
naïve T cells differentiate into a dysfunctional but repro-
grammable chromatin state upon tumor antigen recogni-
tion in premalignant lesions, which converts into a fixed 
non-reprogrammable dysfunctional state during tumor 
progression. The presence of surface markers CD101 and 
CD38 has been associated with reduced reprogramma-
bility of high PD-1-expressing tumor-infiltrating CD8 + T 
cells, a finding with important clinical relevance as these 
markers can be used to discriminate reprogrammable 
from non-reprogrammable PD-1 high T cells within the 
heterogeneous TIL populations [98]. This mechanism 
might explain why certain patients do not respond to 
therapies based on immune-checkpoint blockade as well 
as it provides new insights in possible strategies to revert 
non-reprogrammable PD-1 high T cells into tumor-reac-
tive CD8 + T cells (Fig. 2, Table 1).

Taken together, impaired CD8 + T cell functions seem 
to play a major role in the generation of an immuno-
suppressive TME. Importantly, the prevention of T-cell 
exhaustion might represent a potential strategy to reverse 
a TIL-mediated immunosuppressive TME.

Regulatory T cells
Tregs represent a functionally different T cell popula-
tion which is essential for the maintenance of homeo-
stasis and immune tolerance. Accordingly, mature Tregs 
provide a tumor-supportive microenvironment [47]. 
Various studies have reported a key role for Foxp3 in the 
development of these cells as well as their function, and 
epigenetic regulation of Tregs through Foxp3 has been 
emphasized by recent studies [99, 100].

Moreover, epigenetic modifications controlling Treg 
development and function have been found to play an 
important role in the establishment of an immunosup-
pressive TME. Ohkura et  al. reported that Treg matu-
ration involves the generation of genome-wide CpG 
DNA hypomethylation pattern, needed for Treg-specific 
gene expression and immunosuppressive activity [101]. 
Besides, Foxp3 seems to exert an EZH2-mediated repres-
sive role upon CD28-mediated Treg activation as target 
genes show elevated H2K27me3 levels. As CD28 not 
only provides a key role in the stimulation of Tregs, but 
also in effector T-cell (CD4+/CD8+) activation, this 
suppressive role of Foxp3 might be essential to preserve 
the Treg-specific gene expression profile upon T cell 
stimulation through downregulation of genes involved 
in the effector T-cell activation [102]. Indeed, Wang et al. 

showed that inhibition of EZH2 resulted in Treg-medi-
ated pro-inflammatory activities in the TME, supporting 
the generation of an effector T-cell-mediated anti-tumor 
immune response (Fig. 2, Table 1) [103].

Taken together, targeting the maturation of functional 
Tregs might be a potential strategy to convert an immu-
nosuppressive TME into a microenvironment able to 
provide anti-tumor activity.

Natural killer cells
The NK cell population forms part of the innate immune 
system and is able to control tumor growth by their abil-
ity to recognize and eliminate tumor cells. Epigenetic 
modification has been reported to play an key role in the 
NK cell maturation, differentiation and activation [104]. 
Regulation of the effector function of this cell population 
mainly depends on the balance between inhibiting and 
activating receptors present on NK cell surface, the acti-
vation status of which seems to be epigenetically modu-
lated, as well. Accordingly, rising evidence indicates the 
involvement of epigenetic processes in impairing NK-cell 
mediated anti-tumor immune response.

An impaired NK-cell-mediated anti-tumor immune 
response is highly associated with NK-cell exhaustion 
because of diminished expression of activating receptors 
and increased expression of inhibitory receptors, among 
others. Specific activating NK-cell receptors include 
NKG2D, NKp30, NKp44, NKp46 and DNAM-1/CD226, 
whereas inhibitory receptors are represented by PD-1, 
TIM-3, TIGIT and CD94-NKG2A. Fernandez-Sanchez 
et al. reported the involvement of DNA methylation and 
histone acetylation in the regulation of NKG2D levels, 
with NKG2D gene demethylation and H3K9 acetyla-
tion providing NKG2D expression [105]. Nevertheless, 
whether reduced expression of this receptor is due to 
NKG2D hypermethylation remains unknown. Addi-
tionally, Ogbomo et  al. proposed that the regulation 
of NKp30 and NKp46 expression levels is controlled 
by histone acetylation [106]. Using an HDAC inhibi-
tor (HDACi), they showed that the suppression of NK-
cell activity is caused by decreased expression of NKp30 
and NKp46, but is independent of activating NKG2D, 
NKp44 and DNAM-1 expression levels as well as inhibi-
tory NKG2A expression. Finally, Yin et  al. revealed that 
enhanced levels of the activating NKG2D receptor are 
associated with elevated NK cell expansion and cyto-
toxicity against the tumor. Inhibition of EZH2 activity 
has been associated with decreased H3K27me3 levels, 
providing increased expression of the NKG2D receptor 
(Fig. 2, Table 1) [107, 108].

Although epigenetic modifications affecting NK cell 
development and function are widely examined, further 
studies are needed to increase our knowledge on the 
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epigenetic regulation of NK cells and the potential of epi-
genetic enzymes/markers as therapeutic targets.

Inhibition of epigenetic modulators as therapeutic 
option to modify the immunosuppressive TME
A favorable TME, created by tumor cells affecting differ-
ent immune cell populations, forms a major barrier for 
cancer therapy. Nevertheless, the study into epigenetic 
mechanisms underlying the generation of this immuno-
suppressive TME currently represents subject of utmost 
interest. As previously stated, a variety of epigenetic 
modifications affects the phenotypes of diverse immune 
cell populations in the TME to become immunosuppres-
sive. Accordingly, modifying the TME to become more 
“receptive” to the development of an effective anti-tumor 
response could be achieved by molecular re-wiring using 
pharmacologic modulators of epigenetic enzymes. In this 
regard, when considering the use of compounds target-
ing the epigenetic machinery, it is worth considering that 
these compounds not only affect tumor cells, but also 
TME cells. Accordingly, a proper selection of inhibitors 
could become a two-edge sword to tackle tumors.

For example, SATB1 represents an attractive therapeu-
tic target as it modifies different immune cell popula-
tions under tumor’s influence, including DCs and CTLs. 
The statins fluvastatin and simvastatin have been found 
to suppress SATB1 expression, probably acting at the 
post-translational level [109, 110]. Additionally, in  vivo 
silencing of Satb1 expression in tumor-associated DCs 
was found to diminish immunosuppression in the TME, 
boost T-cell mediated anti-tumor activity and delay 
tumor progression [7]. In the context of immunotherapy, 
Satb1 has been described as a possible TAA that can be 
recognized by CD8 + T cells. Accordingly, Wang et  al. 
proposed that Satb1-derived epitope might be used as 
immune target for cancer vaccine generation [111].

Furthermore, the importance of HDAC activation 
and IL-6 signaling in controlling the immunosuppres-
sive function of MDSCs as well as its recruitment to 
the TME has been reported by Nair et  al. [26]. Various 
studies demonstrated the potential of entinostat, a class 
I HDACi, as therapeutic compound to modulate the 
immunosuppressive TME through inhibition of MDSC 
activity. Besides, the application of entinostat not only 
resulted in decreased MDSC function, but also aug-
mented the effect of checkpoint inhibitor treatment 
[112–115]. Kim et  al. reported that entinostat reduces 
the MDSC population and the combination of entinostat 
with PD-1 and cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA-4) antibodies resulted in an elimination 
of approximately 80% of the tumor, whereas the use of 
immune checkpoint inhibitors against PD-1 and CTLA-4 
alone did not provide an anti-tumor immune response 

[113]. The potential role of HDACi in priming the TME 
for enhanced response to immunotherapy has been fur-
ther emphasized by Briere et  al., who obtained similar 
results using a class I/IV HDACi (mocetinostat) in com-
bination with anti-programmed death-ligand 1 (PD-L1) 
antibody [114]. Additionally, Orillion et  al. observed 
reduced macrophage population in the TME after enti-
nostat treatment [112]. Other potential therapeutic tar-
gets to suppress MDSCs function would be HDAC2, 
HDAC6 and HDAC11. Nevertheless, further studies are 
needed to investigate the therapeutic potential of their 
corresponding inhibitors [78, 115, 116].

Regarding the polarization of TAMs into M2 mac-
rophages, targeting the enzymes responsible for the 
acquisition of M2 phenotype would attenuate their 
tumor-promoting function. Accordingly, Tikhanovich 
et  al. reported the therapeutic potential of AMI-1, a 
PRMT1 inhibitor, inhibiting M2 processes [117]. Addi-
tionally, GSK-J4 might diminish the immunosuppressive, 
tumor-supporting function of M2 macrophages through 
KDM6B (a lysine-specific demethylase that demethyl-
ates H3K27me2 or H3K27me3) inhibition. Nevertheless, 
in concordance with the essential role of KDM6B in both 
M1 and M2 polarization, GSK-J4 has also been found to 
inhibit the expression of TNF and other M1 inflamma-
tory cytokines [118, 119]. Noteworthy is the effect of 
histone-modifying enzymes on proteins other than his-
tones and the importance of non-histone protein modi-
fications in macrophage-polarizing process. Moreover, 
macrophage polarization is a complex dynamic process 
in which most epigenetic enzymes are neither involved 
exclusively in the polarization toward M1 or M2 pheno-
type nor do they all have opposing roles in M1 versus M2 
phenotype acquisition [120]. Accordingly, the discovery 
of therapeutic epigenetic targets in this cell population is 
very challenging.

Another attractive therapeutic target is EZH2, respon-
sible for the immunosuppressive phenotype of several 
immune cell populations in the TME, including TILs, 
Tregs and NK cells. This epigenetic regulator has already 
been extensively studied for its potential as therapeutic 
target to convert the immunosuppressive TME into an 
immune-promoting microenvironment. Various stud-
ies described an enhanced effector-T cell infiltration and 
cytotoxic activation in the TME upon EZH2 inhibition 
as well as functional alterations of the Treg population 
resulting in Treg-mediated pro-inflammatory activi-
ties [93, 103, 121, 122]. Additionally, targeting EZH2 has 
been reported as an attractive strategy to combine with 
immunotherapy, as it might overcome resistance to 
immune checkpoint therapies, including CTLA-4, PD-1 
and PD-L1 [93, 121–123]. Among the EZH2-inhibit-
ing compounds, small molecule inhibitors of EZH2, 
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GSK-126, PF-06821497, MAK683, CPI-0209, CPI-1205 
and DS-3201 have entered into clinical trials, although 
none of these has been approved for cancer treatment, 
yet [122]. Tazemetostat, a selective inhibitor of EZH2, 
has been approved by the Food and Drug Administration 
(FDA) in 2020.

Another relevant aspect is the profound interac-
tion between the different immune cell populations in 
immune response regulation. Therefore, it is important 
to take into account that epigenetic reprogramming of 
a certain immunosuppressive immune cell population 
might positively co-opt other immune cell populations to 
provoke an effective anti-tumor immune response. One 
example is the Treg-mediated pro-inflammatory func-
tion upon EZH2 inhibition causing increased effector-T 
cell infiltration and activity. Furthermore, MDSCs play a 
central role in the immunosuppressive, tumor-promoting 
TME and have been found to interact with many of the 
other immune cell populations. Accordingly, epigenetic 
targeting of this cell type might be sufficient to modify 
the TME to become more “receptive” to the development 
of an effective anti-tumor response.

Immunotherapy—an overview
The immune system plays a critical role in cancer devel-
opment and progression by both eliminating cancer 
cells and determining tumor immunogenicity [124]. 
Thus, cancer immunoediting helps to understand how 
tumors escape the immune system by dividing the pro-
cess in three distinct phases: “elimination,” “equilibrium” 
and “escape.” At first, when cancer cells are present, 
the immune system can recognize these and eliminate 
them. However, when not all cancer cells are eradicated 
in this process and an equilibrium is reached, the adap-
tive immune system impedes tumor’s growth associated 
with a dormancy state and high genomic instability. T 
cells, IL-12 and interferon (IFN)-γ are needed to main-
tain tumor dormancy [125, 126]. Subsequently, cancer 
cells escape from the immune system by expressing sup-
pressive effects and losing target antigen expression. At 
this stage, tumor immune escape occurs, since the adap-
tive immune system fails to recognize cancer cells, which 
became resistant to immune effector mechanisms and 
induced an immunosuppressive state [127].

Immune responses are regulated by an interplay of 
costimulatory and inhibitory signals that balance the 
immune response and self-tolerance [128]. Immune 
checkpoint inhibitors are essential as negative signals to 
stop immune response and impede autoimmunity [129]. 
PD-1 is expressed in T lymphocytes and prevents the 
activation of these cells by binding to its ligands PD-L1 
and PD-L2 [130]. Additionally, cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4) leads to suppression of 

T-cells activation by competing with the costimulatory 
signal CD28 for binding to B7-1 and B7-2, attenuating 
the activation signals of CD28 [131, 132]. Interestingly, 
PD-L1 is overexpressed in cancer cells, facilitating cancer 
cells to escape immune surveillance by T cells [133].

Checkpoint inhibitor immunotherapies consist of 
monoclonal antibodies that target CTLA-4 or the pro-
grammed cell death protein 1 pathway (PD-L1, PD-1) 
[133]. When the antibodies bind to PD-L1/PD-1 or 
CTLA-4, the inhibitory effect is canceled and an immu-
nological response against cancer cells starts by acti-
vation of tumor-reactive T cells [134]. Of note, several 
clinical trials have demonstrated increased efficacy of 
combining anti PD-L1/PD1 and anti-CTLA4, although 
with increased risk of adverse reactions. The use of 
immune checkpoint inhibitors as cancer therapy was 
firstly approved for treatment of metastatic melanoma. 
Since then, several antibodies have been approved for 
treatment of non-small cell lung cancer, head and neck 
squamous cell carcinoma, hepatocellular carcinoma and 
BC [134].

A significant subset of cancer patients does not respond 
or respond poorly to immune checkpoint blockage treat-
ments [135]. This can be a consequence of primary resist-
ance that occurs prior to treatment, associated with a 
reduction of antigen expression and changes in meta-
bolic pathways or through acquired resistance during 
the course of the treatment [136]. The one and foremost 
biomarker used for prediction of response to PD-L1/
PD-1 blockade is PD-L1 expression [137]. It seems to be a 
biomarker of aggressive disease and it might also be con-
sidered a prognostic biomarker. However, the evaluation 
of PD-L1 as a single biomarker across clinical trials was 
shown to be heterogeneous [138]. Several reasons can 
be appointed for the presence of this heterogeneity: (1) 
clinical trials used different PD-L1 immunohistochemis-
try scoring assays [137]; (2) the scoring compartment dif-
fers for each specific therapy, namely pembrolizumab and 
nivolumab use PD-L1 tumor cell expression, whereas ate-
zolizumab uses PD-L1 immune cell expression; (3) intra-
tumoral heterogeneity; and (4) the sample available may 
not represent the full intratumoral heterogeneity [139]. 
All these data indicate that PD-L1 expression as a single 
biomarker is probably not adequate to accurately predict 
immunotherapy response and more reliable biomarkers 
could help to better predict and improve patient selection 
for these therapies [139].

Other approaches have been used to try to predict 
immunotherapy response including tumor mutational 
burden, tumor mismatch-repair deficiency, grade of 
TILs [140–142], among others, depending on tumor 
type. For example, the TCGA-based molecular subtypes 
in BC have been associated with response to immune 
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checkpoint blockage. Specifically, the neuronal subtype 
seems to display a better response to immunotherapy 
[143]. However, the criteria to define BC subtypes have 
to be uniformed before it may be considered a pos-
sible biomarker for immunotherapy [144]. Moreover, 
tumor mutational burden has been proposed to pre-
dict response to immunotherapy [145]. With a high 
rate of mutations, novel antigens emerge regularly so it 
could potentiate the use of immunotherapy. Nonethe-
less, some patients with low mutational burden endure 
response to immunotherapy, which demonstrates that 
criteria to define the tumor mutational burden have to 
be clarified [145]. Interestingly, pembrolizumab was 
approved for patients with microsatellite instability and 
mismatch repair-deficient malignancies showing pro-
gression after failure of other approved treatments [142]. 
Finally, immune expression profiling has the potential 
to correctly identify “hot” or “cold” tumors by assessing 
levels of chemokines, cytokines and cell surface proteins 
reflecting the inflammatory status [146]. Also, it can take 
into account the several cell types present in the TME, 
which can be useful in defining immunotherapy response 
[147]. Examples include IFN-γ, CXCL9 and CXLC10 
whose expression correlates with response to immuno-
therapy [146, 148].

Epigenetic mechanisms are known to regulate several 
aspects related to immune regulation and actions [149]. 
5-Azacytidine (5-aza), a demethylating agent, was shown 
to upregulate innate and adaptative immune-related 
genes, specifically to immune invasion, such as PD-L1 at 
both transcript and protein levels without altering CD80 
and CD86. Furthermore, genes related to antigen presen-
tation including HLA class I, B2M, CD58, TAP1, PMSB9 
and PSMB8 were upregulated after 5-aza treatment 
[150]. Treatment of leukemia cells with decitabine (DAC) 
translated into upregulation of PD-L1, PD-L2, PD-1 and 
CTLA-4 in these cells [151]. This topic is thoroughly 
discussed in a recently published review [152]. A DNA 
methylation-based profile—EPIMMUNE signature—of 
stage IV non-small cell lung cancer patients treated with 
anti-PD-1 therapies associated with improved progres-
sion-free and overall survival. EPIMMUNE-negative 
tumors disclosed a TME enriched in TAMs, cancer-asso-
ciated fibroblasts and neutrophils. Moreover, unmethyl-
ated FOXP1 associated with better progression-free and 
overall survival [153]. Promoter methylation of RAD51B 
seems to associate with PD-L1 expression in lung cancer 
patients, with high levels of RAD51B methylation associ-
ating with lower risk of disease progression. Remarkably, 
combining RAD51B methylation and PD-L1 improved 
sensitivity to predict response to anti-PD-1 blockade and 
associated with a lower risk of death [154].

Although several studies showed that modulating 
epigenetic marks can improve therapeutic response to 
immune checkpoint inhibitors, the search for biomark-
ers is ongoing and needs further exploitation (Additional 
file 1: Table 1).

Epidrugs in cancer
Epigenetic mechanisms including DNA methylation and 
histone post-translational modifications represent an 
alluring target for cancer therapy since they are revers-
ible alterations important for tumor cells’ development 
[155, 156]. Therefore, a class of compounds that came to 
be known as “epidrugs” were developed targeting these 
alterations (Table 2) [157]. Currently, DNMT and HDAC 
inhibitors are the most used epidrugs for cancer treat-
ment in both clinic and clinical trials, namely in combi-
nation with chemo- and immunotherapy (Table 2).

DNMT inhibitors are classified into two main groups: 
nucleoside and non-nucleoside analogues (Table 2) [158]. 
5-aza was the first compound developed and approved 
for clinical usage for DNMT inhibition. Indeed, 5-aza 
and decitabine (5-aza-2′-deoxycytidine) are already 
approved for treatment of hematological malignancies 
including acute myeloid leukemia (AML), myelodys-
plastic syndrome and chronic myelomonocytic leukemia 
(CMML) by European Medicines Agency (EMA) and 
FDA (Table  3) [157, 159, 160]. Nucleoside analogues 
include analogues of cytosine that are integrated in 
DNA and lead to the formation of a covalent bond with 
the DNMT, which results in its degradation and DNA 
methylation inhibition [157, 161]. Both are nucleoside 
analogues characterized by replacing cytosine during 
DNA replication, which translates in the formation of a 
covalent bond when DNMTs exert their function, result-
ing in DNMTs’ inhibition and further degradation [161–
163]. Despite both showing to have anti-tumoral effects, 
namely by inducing apoptosis, cell and re-expression of 
tumor suppressor genes [164, 165], 5-aza and DAC dis-
play low bioavailability and a limited half-life, which hin-
ders their wide implementation in clinical practice [161, 
166]. More stable compounds with the same effect and 
mechanism of action have been described in the past 
years including zebularine, 5′-fluoro-2′-deoxycytidine 
(FdCyd), guadecitabine and RX-3117. For example, 
FdCyd, a fluoropyrimidine analogue, is less toxic and 
more stable when compared to 5-aza and DAC (77). Fur-
thermore, FdCyd showed to stop cell arrest at G2/M in 
HCT116 cells though the DNA damage response path-
way [167]. RX-3117 (fluorocyclopentenylcytosine) is a 
recent cytidine analogue with a modified ribose molecule 
being activated specifically by uridine-cytidine kinase 2 
(UCK2), leading to DNA damage and lower DNA meth-
ylation levels though DNMT1 inhibition [168]. Another 
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Table 2  Epidrugs approved and in clinical trial for cancer treatment, with respective effects and drug category

Drug Approved Clinical trial Effects

Azacitidine Vidaza® High-risk myelodysplastic syn-
dromes

Chronic Myelomonocytic Leukemia
Acute Myeloid Leukemia

Pancreatic, colorectal, prostate, 
esophageal, breast, non-small 
cell lung cancer, thyroid, ovarian, 
nasopharyngeal and bladder can-
cer, hematological malignancies 
sarcoma, melanoma, germ cell 
tumors and renal cell carcinomas

Nucleoside DNMT inhibitor

Decitabine Dacogen® High-risk myelodysplastic syn-
dromes

Chronic Myelomonocytic Leukemia
Acute Myeloid Leukemia

Ovary, head and neck, colorectal, 
breast, esophageal, non-small cell 
lung, prostate, thyroid cancers, 
B cell lymphoma, glioma and 
medulloblastoma

Nucleoside DNMT inhibitor

5′-Fluoro-2′-deoxycytidine (FdCyd) – Head and neck, lung, urinary 
bladder, breast cancer and acute 
myeloid leukemia

Nucleoside DNMT inhibitor

Guadecitabine – Kidney, lung, ovarian, prostate, 
colorectal, gallbladder, pancreatic, 
urothelial cancer, extrahepatic 
bile duct adenocarcinoma, biliary 
type, testicular germ cell tumors, 
chondrosarcoma, melanoma, 
acute myeloid leukemia and 
myelodysplastic syndrome

Nucleoside DNMT inhibitor

RX-3117 (fluorocyclopentenylcy-
tosine)

– Pancreatic and bladder cancer Nucleoside DNMT inhibitor

Genistein – Breast, prostate, colorectal, lung, 
pancreatic, bladder, kidney, endo-
metrial cancer and melanoma

Isoflavone non-nucleoside DNMT 
inhibitor

Curcumin – Prostate, colorectal, breast, lung, 
head and neck and cervical 
cancer

Natural phenol non-nucleoside 
DNMT inhibitor

Hydralazine – Ovarian, cervical, lung and breast 
cancer

Repurposed drug non-nucleoside 
DNMT inhibitor

Belinostat Beleodaq® Peripheral T-cell Lymphoma Lung, breast, ovary, hematological 
malignancies, bladder, liver cancer 
and chondrosarcoma

Hydroxamic acid pan-HDAC inhibitor

Givinostat – Chronic Myeloproliferative Neo-
plasms Polycythemia Vera

Hydroxamic acid pan-HDAC inhibitor

Panobinostat Farydak® Multiple Myeloma Breast, lung, pancreatic, prostate, 
colorectal, head and neck, esoph-
ageal, neuroendocrine, renal, 
thyroid, brain cancer, hematologic 
neoplasms and melanoma

Hydroxamic acid pan-HDAC inhibitor

Trichostatin A – Hematological malignancies Hydroxamic acid pan-HDAC inhibitor

Vorinostat Zolinza® Cutaneous T cell Lymphoma Breast, ovarian, pancreatic, lung, 
colorectal, gastric, liver, prostate, 
renal, bladder brain cancer, 
melanoma and hematological 
malignancies

Hydroxamic acid pan-HDAC inhibitor

Entinostat – Breast, colorectal, ovarian, neu-
roendocrine, lung, prostate, renal, 
pancreatic, endometrial cancer, 
hematological malignancies and 
cholangiocarcinoma

Benzamide class I HDAC inhibitor

Romidepsin Istodax® Cutaneous T-cell lymphoma Lung, breast, pancreatic, colorectal, 
thyroid, bladder, ovarian cancer, 
glioma and hematological malig-
nancies

Benzamide class I HDAC inhibitor
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compound that shows great stability, including being 
possible to administer orally, is zebularine [169], which 
showed to have an specific effect on cancer cells and not 
fibroblasts [170, 171]. However, since it showed great tox-
icity in primates, it was not continued for clinical trials 
(Table 3) [172, 173]. Guadecitabine is a CpG dinucleotide 
analogue hypomethylating agent [174] with proven anti-
tumoral activity, such as in combination with cisplatin in 
platinum-refractory germ cell tumors [175].

Another heterogeneous group of compounds with 
DNMT inhibition activity is the non-nucleoside ana-
logs, which inhibit DNMTs independently from DNA 
incorporation (Table 2) [176]. These include natural com-
pounds, DNA binders, SAM competitors and repurposed 
drugs [176, 177]. Regarding natural compounds, mol-
ecules such as genistein, the natural polyphenol epigal-
locatechin-3-gallate (EGCG) and curcumin that displays 
anti-inflammatory and anti-oxidant properties showed 
to inhibit DNA methylation, translating in anti-tumoral 
activity [158, 178–180]. 3-Halo-3-nitroflavanones, a novel 
class of DNMT inhibitors described recently, showed 
anti-tumoral activity associated with higher stability 
and low cytotoxicity than the most used DNMT inhibi-
tors [181]. Interestingly, a compound from this family 
MLo1302 caused a decrease in cell viability, namely in 
cisplatin-resistant cell lines, pluripotency markers and 
an activation of apoptosis and cell cycle arrest in germ 
cell tumors cell lines [182]. RG108 is a SAM competitor 
that binds to the catalytic pockets of DNMTs, forming 
covalent bonds and inhibiting the enzyme action [183]. 
Treatment with RG108 caused radiosensitivity of esopha-
geal cancer cells, enhancing apoptosis and G2/M phase 
arrest by radiation [184]. SGI-1027, a quinolone-based 
molecule which binds to both DNMT3a and DNMT1 
[185], combined with AH057 (JAK inhibitor) increased 
cervical cancer cells apoptotic cell death and cell-cycle 

arrest [186]. Furthermore, MG98 is a second-generation 
20-nucleotide antisense oligonucleotide that binds spe-
cifically to DNMT1 mRNA, decreasing DNMT1 levels 
[187].

Selected repurposed drugs, designed for a specific 
treatment that were found to have other therapeutic 
targets, also showed effect against DNMTs [176, 177]. 
For example, procaine and procainamide, approved as 
anesthetic and anti-arrhythmic drugs, respectively, bind 
to the catalytic center of DNMTs, which translated in a 
decrease in DNA methylation levels [188, 189]. The arte-
rial vasodilator hydralazine also leads to the loss of pro-
moter hypermethylation of TSGs in cancer cell lines and 
primary tumors [190, 191]. In this line, the antibiotic 
nanaomycin A also causes the same effects, being selec-
tive for DNMT3b [192].

HDAC inhibitors can be classified according to chemi-
cal group as hydroxamic acids, short-chain and aromatic 
fatty acids, benzamides and cyclic peptides (Table 2). The 
hydroxamic acids and cycle peptides constitute the most 
potent inhibitors, with IC50 in the low micro- or nanomo-
lar range, while short-chain fatty acids require doses in 
the millimolar range [193].

Hydroxamic acids include belinostat (approved for 
peripheral T-cell lymphoma), givinostat, panobinostat, 
trichostatin A and vorinostat, all pan-HDAC inhibitors. 
Vorinostat or suberanilohydroxamic acid (SAHA) was 
the first HDAC inhibitor to be approved for the treat-
ment of advanced cutaneous T-cell lymphoma, and it 
shows several anti-tumor effects in several hematological 
and solid tumors in  vitro and in  vivo (Table  3) [194]. It 
inhibits class I and II HDACs by binding to the catalytic 
domain of the enzymes [195]. Similar to vorinostat, tri-
chostatin A (TSA), also a class I and II inhibitor, acts as 
a non-competitive inhibitor of HDAC by mimicking the 
lysin substrate as a chelating agent to the zinc atom in the 

Table 2  (continued)

Drug Approved Clinical trial Effects

Valproic acid – Cervical, brain, lung. breast, pan-
creatic, prostate, bladder, thyroid, 
head and neck cancer and hema-
tological malignancies

Short-chain and aromatic fatty acids 
pan-HDAC inhibitor

Abexinostat – Breast cancer, renal cell carcinoma, 
sarcoma, melanoma and hemato-
logic malignancies

Hydroxamic acid pan-HDAC inhibitor

Tazemetostat Tazverik® Advanced epithelioid sarcoma
Follicular lymphoma

Prostate, ovarian, endometrial, head 
and neck cancer, melanoma, 
hematological malignancies, 
urothelial carcinoma and malig-
nant mesothelioma

EZH2 inhibitor

Domatinostat – Melanoma and Merkel cell carci-
noma

Benzamide class I HDAC inhibitor
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Table 3  Major clinical trials comprising epidrugs and immunotherapy for cancer treatment

Clinical trial Phase State Cancer Combination Dates

NCT01928576 II Recruiting Non-small cell lung cancer Nivolumab
Entinostat
Azacitidine

2013-estimated end 2022

NCT02260440 II Completed Metastatic colorectal cancer Pembrolizumab
Azacitidine

2015–2017

NCT02546986 II Active, not recruiting Non-small cell lung carcinoma CC-486
Pembrolizumab

2015-estimated end 2021

NCT02453620 I Active, not recruiting Breast Cancer Ipilimumab
Nivolumab
Entinostat

2015-estimated end 2021

NCT02961101 I/II Recruiting Non-Hodgkin lymphoma, Hodgkin lym-
phoma, gastrointestinal cancers, hepato-
cellular carcinoma, breast cancer, ovarian 
cancer, lung cancer, renal-cell cancer, 
pancreatic cancer and bile duct cancer

Anti-PD-1 antibody
Decitabine
Chemotherapy

2016–2020

NCT02890069 I Recruiting Colorectal cancer
Non-small cell lung adenocarcinoma
Triple-negative breast cancer
Renal cell carcinoma

PDR001 (Anti-PD-1 antibody)
Everolimus
Panobinostat

2016-estimated end 2021

NCT02619253 I/Ib Active, not recruiting Renal cell carcinoma
Urinary bladder neoplasms

Pembrolizumab
Vorinostat

2016-estimated end 2022

NCT02512172 I Active, not recruiting Colorectal cancer CC-486 (Oral 5-Aza)
Romidepsin
MK–3475 (Anti-PD-1 antibody)

2016-estimated end 2022

NCT02811497 II Active, not recruiting Microsatellite stable colorectal carcinoma
Platinum-resistant epithelial ovarian cancer 

type II
Estrogen receptor-positive and HER2-nega-

tive breast cancer

Durvalumab
Azacitidine

2016-estimated end 2022

NCT02957968 II Recruiting Breast cancer Decitabine
Pembrolizumab
Doxorubicin
Cyclophosphamide
Paclitaxel
Carboplatin

2016-estimated end 2023

NCT02638090 I/II Recruiting Lung cancer Vorinostat
Pembrolizumab

2016-estimated end 2023

NCT02959437 I/II Completed Advanced or metastatic solid tumors Azacitidine
Pembrolizumab
Epacadostat
INCB057643 (BET inhibitor)
INCB059872
(LSD1 inhibitor)

2017–2020

NCT03308396 Ib/II Active, not recruiting Advanced kidney cancer
Kidney cancer
Clear cell renal cell carcinoma

Durvalumab
Guadecitabine

2017-estimated end 2021

NCT03206047 I/II Active, not recruiting Platinum-resistant fallopian tube carcinoma
Platinum-resistant ovarian carcinoma
Platinum-resistant primary peritoneal 

carcinoma
Recurrent fallopian tube carcinoma
Recurrent ovarian carcinoma
Recurrent primary peritoneal carcinoma

Atezolizumab
Guadecitabine

2017-estimated end 2021

NCT03264404 II Recruiting Pancreas cancer Pembrolizumab
Azacitidine

2017-estimated end 2021

NCT03179943 II Active, not recruiting Urothelial carcinoma Atezolizumab
Guadecitabine

2017-estimated end 2022

NCT03019003 I/II Recruiting Head and neck cancer Durvalumab
Oral Decitabine

2017-estimated end 2024
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active site [195]. Interestingly, it showed to reverse chem-
oresistance in lung cancer cell lines with high expression 
of IGFBP2, with IGFBP2 being a biomarker of chemore-
sistance poor outcome in lung cancer patients [196]. Pan-
obinostat is approved for patients with recurrent multiple 
myeloma who have received at least two prior treatment 
regiments (Table  3) [193]. Indeed, the progression-
free survival of patients treated with panobinostat was 
10.6 months in comparison with 5.8 months in the con-
trol arm [197]. Belinostat also inhibits HDACs by bind-
ing to the zinc finger in the enzymes’ active catalytic site 
and, recently, showed to be active in testicular germ cell 
tumor cell lines resistant to cisplatin, with IC50 in the low 
nanomolar range for all cell lines [198].

Entinostat belongs to the benzamide group of HDAC 
inhibitors and inhibits class I HDACs [193]. Remark-
ably, entinostat boosted the effects of PD-1 inhibition 
in in vivo models of lung and renal cancers by impair-
ing the immunosuppressive function of polymorpho-
nuclear and monocytic-myeloid derived suppressor cell 

populations [112]. Another inhibitor of class I HDACs 
is romidepsin (FK228) belonging to the cyclic peptide 
family [193]. Romidepsin has been approved by the 
FDA for the treatment of advanced cutaneous T-cell 
lymphoma and peripheral T-cell lymphoma (Table  3) 
[199]. The triple combination of romidepsin, gem-
citabine and cisplatin acted synergically and induced 
death by creating reactive oxygen species in triple-neg-
ative breast cancer cell lines [200].

The short-chain and aromatic fatty acids sodium 
butyrate and valproic acid also were shown to be pan-
HDACs inhibitors [193]. Sodium butyrate is a short-
chain fatty acid produced by fermentation by anaerobic 
bacterial fermentation that inhibits growth, induces 
apoptosis, migration and EMT of colorectal cancer cells 
[201]. Valproic acid, used for the treatment of epilepsy 
and bipolar disorder, in combination with cisplatin and 
cetuximab, showed antiproliferative and pro-apoptotic 
effects in 3D-self-assembled spheroid models of ad and 
neck squamous cell carcinoma cells [202].

Table 3  (continued)

Clinical trial Phase State Cancer Combination Dates

NCT02816021 II Recruiting Melanoma and other malignant neoplasms 
of skin

Metastatic melanoma

Pembrolizumab
Azacitidine

2017-estimated end 2026

NCT03590054 I Recruiting Melanoma
Metastatic head and neck squamous cell 

carcinoma
Urothelial carcinoma
Non-small cell lung carcinoma

Pembrolizumab
Abexinostat

2018-estimated end 2022

NCT03426891 I Recruiting Glioblastoma
Brain tumor

Pembrolizumab
Vorinostat
Temozolomide

2018-estimated end 2022

NCT03233724 I/II Recruiting Non-small cell lung Cancer
Esophageal carcinoma
Malignant pleural mesotheliomas

Pembrolizumab
Decitabine
Tetrahydrouridine (THU)

2018-estimated end 2026

NCT03854474 I/II Recruiting Locally and metastatic urothelial carcinoma Pembrolizumab
Tazemetostat

2019-estimated end 2021

NCT03812796 II Recruiting Gastrointestinal cancer Domatinostat
Avelumab

2019-estimated end 2021

NCT03765229 II Recruiting Melanoma Pembrolizumab
Entinostat

2019-estimated end 2023

NCT03978624 II Recruiting Bladder cancer Pembrolizumab
Entinostat

2020-estimated end 2022

NCT04357873 II Recruiting Squamous cell lung cancer
Vulvar cancer
Penile cancer
Cervix cancer
Head and neck squamous cell carcinoma
Anal cancer

Pembrolizumab
Vorinostat

2020-estimated end 2024

NCT04624113 I/II Not yet recruiting Head and neck squamous cell carcinoma Pembrolizumab
Tazemetostat

2021-estimated end 2024

NCT04190056 II Not yet recruiting Breast cancer Pembrolizumab
Tamoxifen
Vorinostat

2021-estimated end 2029
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Bladder cancer
BC is estimated to be the tenth most frequent cancer 
worldwide and the ninth cause of death by cancer [203]. 
About 70% of the patients are diagnosed as a non-mus-
cle invasive BC (NMIBC), while 30% are diagnosed with 
muscle invasive BC (MIBC) [204]. NMIBC is mostly 
comprised of urothelial papillary neoplasms with varying 
propensity for recurrence and progression, which may 
be predicted based on grading [205]. According to the 
2016 WHO classification, the spectrum of papillary neo-
plasms includes urothelial papilloma, papillary urothe-
lial neoplasm of low malignant potential, low-grade and 
high-grade papillary urothelial carcinoma, in ascending 
order of biological and clinical aggressiveness [206]. On 
the other hand, urothelial carcinoma in situ (CIS) repre-
sents a high-grade form of non-papillary NMIBC, with 
substantial risk of progression to invasive disease [206]. 
Although NMIBC mostly contributes to the overall BC 
5-year survival rate of 77.1%, 80% of high-grade papillary 
carcinomas and CIS recur and 20–50% progress to MIBC 
[207]. In addition to grade, evaluation of disease stage [by 
means of clinical examination, cystoscopy, radiographic 
evaluation and/or pathological examination using tis-
sue collected by transurethral resection of the bladder 
tumor (TURBT)] is mandatory to define the best thera-
peutic strategy [208, 209]. For NMIBC, treatment mostly 
consists of TURBT eventually complemented with mito-
mycin or Bacillus Calmette-Guérin (BCG) instillation, 
whereas radical cystectomy with lymphadenectomy 
remains the gold standard for MIBC, complemented 
with neo-adjuvant or adjuvant cisplatin-based chemo-
therapy, which is also the main option for metastatic BC 
[209]. Recently, immunotherapies targeting PD-1/PD-L1 
immune checkpoint were approved for BC patients that 
are refractory or ineligible to cisplatin-based chemother-
apy [210]. Although chemotherapy and immunotherapy 
have improved the outcome of locally advanced and met-
astatic disease, 5-year survival remains poor (36% and 
5%, respectively) [207].

BCG, which is a weakened strain of Mycobacterium 
bovis, was the first form of immunotherapy approved for 
cancer treatment and, specifically, for BC. Currently, it 
is administrated by intravesical instillation after TURBT 
in NMIBC patients with high risk of recurrence [211]. 
Although the mechanism is not fully known, BCG leads 
to localized innate and adaptative immune responses, 
including CD4 and CD8 lymphocytes, NK cells, mac-
rophages, granulocytes and DCs [212]. About 55–75% 
of the high-risk patients suffering from papillary tumors 
to CIS respond to this therapy. However, 25 to 45% of 
these eventually relapse and progress to invasive dis-
ease. Hypermethylation of CDKN2B and of MUS81a and 
MSH6 involved in DNA repair and THBS1, important 

for cell adhesion, have been associated with response to 
BCG therapy [210, 213]. Likewise, low methylation lev-
els of PMF1 have been associated with disease recur-
rence, poor outcome and lack of response to BCG in BC 
patients (Fig. 3) [214].

The immune landscape of BC is composed by dif-
ferent immune populations, including CD8 + T lym-
phocytes and Th1 CD4 + T lymphocytes. Interestingly, 
tumor-infiltrating CD4 + lymphocytes were found to 
be hypomethylated in four lineage loci compared to 
CD4 + lymphocytes in lymph nodes and blood. Patients 
with complete response to neoadjuvant chemotherapy 
(NACT) showed hypomethylation in CD4 + T cells, 
namely in IFN- γ. Furthermore, shifts in methylation 
patterns of Th1 CD4 + T cells after NACT show a relo-
cation of cells from blood to the tumor (Fig.  3) [215]. 
Tissue-resident memory T cells showed low PRF1 DNA 
methylation levels concomitantly with increased perforin 
expression [216]. The analysis of DNA methylation in 
neutrophils and lymphocytes predicted the outcome of 
BC patients, i.e., high levels of DNA methylation-derived 
neutrophil-to-lymphocyte ratio associated with poor 
outcome [217].

Demethylating agents lead to reactivation of TSGs, 
inhibition of cancer cells’ proliferation and migration, 
increased apoptosis and activation of IFN pathway in BC 
[218]. Ramakrishnan et  al. showed that low concentra-
tions of DAC lead to the activation of NOTCH1, which 
may prevent epithelial-mesenchymal transition of tumor 
cells, thus impairing cancer cell dissemination [219, 220]. 
Moreover, increased IL-6 levels were observed in DAC-
treated cells, and reduction of cytokeratin 5 expres-
sion associated with cell differentiation and impaired 
BC progression [221]. Another epigenetic inhibitor for 
G9a, CM-272, in combination with cisplatin caused an 
increase in expression of genes associated with immune 
response, such as TNF-α, IFN-α and IFN-γ, which cor-
related with an endogenous retrovirus response. Fur-
thermore, an extensive infiltration of CD8 + T cells and 
NK cells was observed in tumors and metastases in an 
in  vivo immunocompetent model of MIBC. This was 
also observed with CM-272 in combination with an anti-
PD-L1 antibody, with immune infiltration by CD3 + , 
CD8 + and NK cells, and the absence of CD4 + and 
CD163 + cells [222].

Conclusions
Epigenetic alterations in cells of the TME play a major 
role in creating an immunosuppressive environment 
ideal for tumor development, which translates in a lack 
of effectiveness of immune checkpoint blockage thera-
pies. The inhibition of epigenetic modulators might 
be an interesting therapeutic option to modify the 
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immunosuppressive TME, and their potential in combi-
nation with immunotherapy has already been discussed. 
Additionally, refining patient selection for immuno-
therapy by exploring new biomarkers with higher sen-
sitivity and specificity might improve the success rate of 
this therapy. Combining these findings, exploring aber-
rant epigenetic marks in both cancer cells and in cells 
of the TME might provide potential biomarkers for this 
purpose.

Thus, further studies are needed to increase our knowl-
edge on the epigenetic mechanisms underlying the acqui-
sition of immunosuppressive immune cell phenotypes 
and how these affect immunotherapy response. Addi-
tionally, a promising strategy to generate an immune-
promoting TME might be the combination of epigenetic 
modulator targeting and immunotherapy.
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signals that lead to the inhibition of the immune response, namely by expressing PD-L1/PD-L2 and B7-1/B7-2, that will bind to PD-1 and CTLA-4 
present in T lymphocytes, respectively. Nevertheless, with the administration of antibodies against PD-1, PD-L1 or CTL4-A, this process is reverted, 
leading to the activation of T cells and the start of an immune response against tumor cells, leading ultimately to their death
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