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Genome‑wide DNA methylation profiling 
is able to identify prefibrotic PMF cases at risk 
for progression to myelofibrosis
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Abstract 

Background:  Patients suffering from the BCR-ABL1-negative myeloproliferative disease prefibrotic primary myelofi-
brosis (pre-PMF) have a certain risk for progression to myelofibrosis. Accurate risk estimation for this fibrotic progres-
sion is of prognostic importance and clinically relevant. Commonly applied risk scores are based on clinical, cytoge-
netic, and genetic data but do not include epigenetic modifications. Therefore, we evaluated the assessment of 
genome-wide DNA methylation patterns for their ability to predict fibrotic progression in PMF patients.

Results:  For this purpose, the DNA methylation profile was analyzed genome-wide in a training set of 22 bone 
marrow trephines from patients with either fibrotic progression (n = 12) or stable disease over several years (n = 10) 
using the 850 k EPIC array from Illumina. The DNA methylation classifier constructed from this data set was validated 
in an independently measured test set of additional 11 bone marrow trephines (7 with stable disease, 4 with fibrotic 
progress). Hierarchical clustering of methylation β-values and linear discriminant classification yielded very good 
discrimination between both patient groups. By gene ontology analysis, the most differentially methylated CpG sites 
are primarily associated with genes involved in cell–cell and cell–matrix interactions.

Conclusions:  In conclusion, we could show that genome-wide DNA methylation profiling of bone marrow trephines 
is feasible under routine diagnostic conditions and, more importantly, is able to predict fibrotic progression in pre-
fibrotic primary myelofibrosis with high accuracy.
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Introduction
Primary myelofibrosis (PMF) belongs to the BCR/ABL1-
negative myeloproliferative neoplasms and is often char-
acterized by a bi-phasic course of disease. In the initial 
phase, the disease manifests itself with thrombocytosis 
and granulocytosis without bone marrow fibrosis [1, 2]. 
This phase can last for years (stable disease). In a con-
siderable subset of cases, progression takes place leading 
to bone marrow fibrosis, extramedullary hematopoiesis 
with splenomegaly, and frequently thrombocytopenia. 

The duration of stable disease and the risk to fibrotic pro-
gression varies substantially between individual patients 
[3]. Progressive bone marrow fibrosis is a life-threatening 
condition and, hematopoietic stem cell transplantation 
(HSCT) provides the only curative therapy. Consider-
ing the considerable risk connected with HSCT [4, 5], 
the proper identification of patients with higher risk of 
fibrotic progression is of utmost importance.

So far the identification of molecular risk factors with 
overall survival or blastic transformation as endpoints 
has focused on karyotype, gene expression, and genetic 
alterations [6–8]. Recently, we have analyzed the associa-
tion of fibrotic progression in PMF cases with age-related 
clonal hematopoiesis (ARCH) [9]. Another age-related 
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phenomenon in hematopoietic cells is the alteration 
of epigenetic patterns, mainly gene methylation [10]. 
Surprisingly little is known about the role of epigenetic 
aberrations in this context. DNA methylation, the best 
known and best understood epigenetic mechanism 
which is altered in many pathological conditions [11, 12], 
is analyzed only in a few studies about MPNs. Some early 
studies employing in part now outdated methodology 
analyzed the DNA methylation of only single genes [13–
15]. More comprehensive approaches employing Illumi-
na’s 27 k array or 450 k array methodology focused on the 
differences between MPN patients and healthy controls 
or the differences between MPN subtypes [16–18]. None 
of these studies addressed the relationship between epi-
genetic alterations and progression from a pre-fibrotic 
stage to overt myelofibrosis.

Therefore, we analyzed the DNA methylation profile in 
bone marrow trephines from patients with pre-fibrotic 
PMF at diagnosis with no indications for excess of blasts 
or marrow fibrosis (EB0 and MF0) who later developed 
myelofibrosis (MF2 or 3). The results were compared 
with the DNA methylation patterns in bone marrow tre-
phines from prefibrotic PMF patients who showed sta-
ble disease for at least four years after diagnosis. For this 
purpose, the most recent version of the Illumina DNA 
methylation array was employed (850 k EPIC array).

Results
Suitability of routinely processed FFPE bone marrow 
trephines for genome‑wide DNA methylation analyses
In a first step, we analyzed 4 samples using the Illumina 
EPIC array in order to figure out whether the amount 
and quality of genomic DNA extracted from the routinely 
processed, fixed, decalcified, and embedded bone mar-
row trephines in our institution provide a reliable and 
evaluable signal output.

Altogether, 658,746 out of 865,859 CpG sites were eval-
uable (see “Material and Methods” section for details). 
That means, only 14% of the CpG under showed a sig-
nal to noise ratio too low for proper evaluation, demon-
strating the feasibility of EPIC DNA methylation array 
analyses of FFPE bone marrow trephines. This offers 
the unique opportunity to combine molecular stud-
ies with histomorphological examination. Other groups 
could demonstrate this for different tissue types as well 
[19–21].

The amount of genomic DNA used for DNA methyla-
tion analysis and the age of the sample (both are impor-
tant variables under routine conditions and for archival 
specimens) could be excluded as confounding factors in 
our series of altogether 33  samples (using the Singular 
Value Decomposition algorithm in ChAMP and a p-value 
cutoff of 0.05 [22], see Additional file 1: Figure S1).

Genome‑wide DNA methylation profiling identifies 
patients suffering from fibrotic progression
In order to establish a DNA methylation classifier for 
fibrotic progression, a training set of 22 samples (10 dis-
playing stable disease, 12 fibrotic progression) was used 
(for inclusion criteria see Materials and Methods sec-
tion). A test set of additional 11 samples (7 displaying sta-
ble disease, 4 fibrotic progression) was used in a second 
step for independent confirmation of the methylation 
classifier.

Unsupervised hierarchical clustering of the 1000 most 
differentially methylated CpG sites yielded a very good 
separation of both patient groups. Figure  1 shows the 
heatmap for the 25 most differentially methylated CpG 
sites for the combined training and test set. Patients dis-
playing fibrotic progression are clearly separated from 
the patients with stable disease. Since all samples were 
taken from patients in the hypercellular early pre-fibrotic 
phase dominated by granulopoiesis and megakaryopoie-
sis the cellular composition, which is later changing over 
the course of the disease and may influence DNA meth-
ylation patterns, can be excluded as confounding factor. 
Additional file 2: Figure S2 displays the clustering for the 
training and the test set separately and Additional file 3: 
Figure S3 displays the results for the 1000 most differen-
tially methylated regions.

Identification of a minimal set of differentially methylated 
CpG sites
Further analysis of the differentially methylated CpG 
sites revealed that smaller subsets could be used to dis-
criminate samples displaying fibrotic progress from 
patients with stable disease, the minimum being 6 CpG 
sites (Fig.  2a, see also Additional file  4: Figure S4 for 
100% separation of the SD and FP cohort in the train-
ing and test set separately based on only these 6 CpG 
sites). In the next step, linear discriminant analysis (LDA) 
[23] was performed using the above described train-
ing set off 22 samples and the minimal subset of 6 CpG 
sites. The resulting classifier was subsequently validated 
against 11  independently measured samples (7 with sta-
ble disease, 4 with fibrotic progress) and yielded very 
good accuracy against both training and test set. Fig-
ure 2b shows the perfect discrimination between the two 
groups.

Table  1 lists the exact localization and the functional 
annotation of the 6 CpG sites which are required and 
sufficient for discrimination of the two patient groups 
as well as their coefficients for the linear discriminant 
model. Four of the six CpG sites are associated with 
known genes, coding for transcription factors as well as 
proteins involved in cell division and cytokine signaling. 
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A gene set enrichment analysis against the Gene ontology 
(GO) database based on the 25 most differentially meth-
ylated probes yielded no statistically relevant results. 
Therefore, we used differentially methylated regions as 
input instead, which revealed a striking enrichment of 
the biological functions “cell–cell and cell–matrix adhe-
sion” (see Additional file 5: Table S1 and Additional file 6: 
Table S2).

Analysis of suboptimal samples
Initially, 7 samples (out of 40) failed the stringent quality 
metrics evaluation process. Three out of these 7 samples 
missed the thresholds of various parameters only mini-
mally, thereby representing suboptimal samples which 
can be encountered under routine diagnostic conditions.

Additional file  7: Figure S5 demonstrates that these 3 
samples are correctly classified if the LDA classifica-
tion algorithm established with the training and test set 
is applied. These promising results should be confirmed 
with more suboptimal samples for further demonstration 

of the usefulness of our newly developed DNA methyla-
tion classifier for routine diagnostic analyses.

Hypo‑ and hypermethylation in stable disease 
versus fibrotic progression
The heat maps in Figs. 1 and 2a) already indicate by vis-
ual inspection that fibrotic progression is associated with 
hypermethylation (β-values with red color code) rela-
tive to the samples from patients with stable disease. A 
more detailed analysis of the differentially methylated 
CpG sites confirms this visual impression: The mean 
β-value (± standard error) of all 25 methylated CpG 
sites in the fibrotic progression group is 0.64 ± 0.02, ver-
sus 0.52 ± 0.01 in the stable disease group (p = 1.3e−12, 
Mann–Whitney-U test). Additional file  8: Figure S6 
illustrates in a more global view the gain in hypermeth-
ylated loci (β-value > 0.8) in the cohort showing fibrotic 
progression compared to the group with stable disease. 
Additional file 9: Figure S7 and Additional file 10: Figure 
S8 shows this in more detail (Additional file 9: Figure S7) 

Fig. 1  Hierarchical clustering heatmap of differentially methylated probes. Centroid clustering was used as linkage criterion. Shown are all 
significantly differentially methylated probes between samples with fibrotic progression (FP) and those with stable disease (SD) at an FDR threshold 
of 0.1. Additional file 12: Table S3 contains the exact location of all 25 CpG sites. Additional file 3: Figure S3 shows the hierarchical clustering for 
training and test cohort separately.
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and in a more quantitative way (Additional file 10: Figure 
S8). However, hyper- and hypomethylation take place in 
both patient cohorts simultaneously in a complex way.

Copy number alterations and fibrotic progress
In a next step, we investigated whether copy number 
gains or losses are able to identify patients undergo-
ing fibrotic progress and whether a CNA analysis might 

support the DNA methylation classifier. Calculating 
gene copy number alterations from the genome wide 
DNA methylation data obtained with the EPIC array is a 
straightforward well established procedure [24].

In Fig.  3a, the median copy number values for each 
chromosome in the group showing progression to mye-
lofibrosis were calculated using the group with stable 
disease as a reference. No gains or losses of segments 

Fig. 2  a Heatmap of methylation β-values for the 6 differentially methylated CpG sites used for classification analysis. The 6 CpG sites shown are 
required and sufficient for perfect linear discriminant classification of samples with fibrotic progression (FP) and stable disease (SD). The order of 
samples equals their class membership probability and is identical to the order of samples in b. Additional file 4: Figure S4 shows the results of the 
hierarchical clustering based on these 6 CpG sites separately for the training and test cohort. b Linear discriminant classification of samples based 
on 6 differentially methylated CpG sites. Linear discriminant values (LD1) show the predicted class membership of samples with fibrotic progression 
(FP, left) and stable disease (SD, right). Colored background areas indicate regions of high confidence (dark, class probability ≥ 95%) or lower 
confidence (bright, class probability > 50%). The linear discriminant classifier was trained using methylation β-values from 6 CpG sites of 22 samples 
(colored sample labels). Subsequent model validation was performed against 11 independently measured samples (white sample labels).
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(absolute log2 copy ratio ≥ 0.5) capable of distinguish-
ing the two sample sets could be detected.

Mutation profiles and fibrotic progress
In recent years, several groups [7, 8, 25] including our 
own [9] identified mutational signatures associated 
with fibrotic progress. Despite strong statistically sig-
nificant correlations comparing groups of patients the 
predictive power of mutation profiling for individual 
samples can be improved, especially in the absence of 
these alterations.

Mutations in ASXL1, EZH2, IDH1/2, and, SRSF2, called 
“high molecular risk, HMR” [26] or “molecular high risk, 
MHR” [27] mutations, have been associated with worse 
prognosis in PMF patients. There is a clear statistical sig-
nificant association of the presence of one or more muta-
tion of this type with fibrotic progress also in our cohort: 
7 out of 16 (44%) with fibrotic progress versus 1 out of 20 
(5%) with stable disease, Chi2-test, p = 0.0065. However, 
7 out of 16 samples (44%) from patients displaying pro-
gress to myelofibrosis do not have any mutation in one of 
these five genes (Fig. 3b), indicating the limitation of tak-
ing only gene mutations into account.

In contrast to the methylation profile, the presence of 
well-described high molecular risk mutations in ASXL1, 
EZH2, IDH1/2, or SRSF2 is not able to predict progres-
sion to myelofibrosis (p = 0.99 in the multivariate analy-
sis, see below).

Multivariate analysis of clinical data and methylation 
scores
For each patient, all available clinical parameters (patient 
age at diagnosis, patient sex, mutation status, leukocyte 
count, platelet count, and hemoglobin concentration) 
as well as the LDA value calculated from the methyla-
tion β-values of 6 CpG sites were used for an explora-
tive multivariate analysis. The numbers of leukocytes 
and platelets were only available for 18 out of 33 patients 
and the concentration of hemoglobin only for 17 out of 

33 patients. Therefore, these parameters were modeled 
independently from the other parameters using Bayesian 
logistic regression.

All demographic and clinical data including age, sex, 
leukocyte count, platelet count, and hemoglobin con-
centration did not show any statistically significant 
difference between the two cohorts. Only rare CHIP 
mutations (Fig.  3b) were significant for regression 
(p = 0.0346). However, the LD value calculated for each 
sample showed a better level of significance in this analy-
sis (p = 0.0098) and also allows for accurate classification 
of samples with fibrotic progression but without rare 
CHIP mutations (which are frequent but not ubiquitous 
in samples with fibrotic progression).

Epigenetic aging and fibrotic progress
It has already been speculated for a long time that DNA 
methylation aberrations accumulate over the life span of 
an organism due to the intrinsic error rates of the enzy-
matic machinery responsible for proper maintenance of 
these patterns (see [28] and references therein) and that 
these accumulating DNA methylation aberrations con-
tribute to the development of various diseases includ-
ing cancer [11, 12]. Developing this idea further, several 
groups established algorithms based on the quantitative 
assessment of DNA methylation patterns to measure the 
epigenetic age (EA) of a given patient sample in compari-
son with its chronological age (CA) [29]. Discrepancies 
between the epigenetic and the chronological age might 
indicate increased risk for developing certain pathologi-
cal conditions.

Three algorithms have been developed and are widely 
discussed in the literature: the Horvarth [30], Hannum 
[31], and PhenoAge [32] signature. In this study, we are 
not interested in measuring the chronological age of the 
samples (which is known and documented) by analyz-
ing DNA methylation patterns. Instead, discrepancies 
between the (known) chronological age and the calcu-
lated “epigenetic” age are of interest in our context. These 

Table 1  Genomic localization and functional annotation of the 6 CpG sites shown in Fig. 2a

For the definition and nomenclature of CpG islands, shores, open sea, and shelves, see [49, 50]

LDM Linear discriminant model

Chr Name Localization Associated gene Coefficient for LDM

16 cg03983220 OpenSea None  − 7.431161

10 cg11628316 Island NM_001008541 Max-interacting protein 1  − 44.910325

2 cg08880875 N_Shore NM_138804 Meiosis 1 Associated Protein  − 11.469252

13 cg21459486 OpenSea none  − 9.140643

16 cg05972185 OpenSea NM_001164766 Zinc finger homeobox 3 6.017707

19 cg18376352 Island NM_004750 Cytokine Receptor-Like Factor 1 12.946803
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differences might indicate premature aging of patients 
associated with morbidity. Therefore, PhenoAge is in our 
context the most suitable approach [29].

Figure 4a shows that in 9 out of 16 cases with fibrotic 
progress (65.3%), the calculated epigenetic age is higher 
than the chronological age, whereas for the group with 
stable disease, this is the case in only 3 out of 17 cases 
(17.6%, chi2-test, p = 0.021) indicating an association 
between risk of progress to myelofibrosis and an increase 
in epigenetic age. Figure 4b confirms this relationship by 
calculating differences between mean chronological and 
mean epigenetic age of both patient groups (not by evalu-
ating and counting individual cases as in Fig. 4a. The cal-
culated epigenetic age in the cohort without progression 
to fibrosis (SD) is lower than the chronological age in this 
group, whereas in the cohort with fibrotic progression 
both are very similar, meaning that the mean calculated 
epigenetic age is on average higher in the patients who 
later develop myelofibrosis compared to the patients with 
stable disease (p = 0.003 Mann–Whitney-U test).

Discussion
Analyzing histopathologically well characterized bone 
marrow trephines from prefibrotic PMF patients, we 
could show for the first time that the analysis of DNA 
methylation patterns is able to identify those patients 
who will progress to myelofibrosis. For this purpose, we 
employed the EPIC array technology which interrogates 
the methylation status of 850,000 individual CpG sites.

In comparison with other hematological malignan-
cies, surprisingly little is known about DNA methylation 
patterns in MPNs, their dynamics during course of dis-
ease, and their diagnostic and prognostic impact. In two 
recent comprehensive reviews about myeloproliferative 
diseases, aberrations in DNA methylation are not men-
tioned at all [25, 33].

The review by Kim and Abdel-Wahab entitled “Focus 
on the epigenome in the myeloproliferative neoplasms” 
[34] concentrates nearly exclusively on mutations in 
genes encoding proteins involved in DNA and his-
tone modifications and mentions alterations in these 

modifications itself (i.e., alterations in DNA methylation) 
only in passing.

Nischal et  al. [35] demonstrated in their pioneering 
study using HELP assay (HpaII tiny fragment enriched 
by LM-PCR) that comprehensive DNA methylation 
profiling is able to distinguish the three BCR-ABL1-neg-
ative MPN subgroups polycythemia vera (n = 8), essen-
tial thrombocytosis (n = 6), and primary myelofibrosis 
(n = 11). Samples from pre-fibrotic PMF patients later 
showing progression to myelofibrosis were not analyzed 
at that time.

The findings from Nischal et  al. were confirmed by 
Perez et  al. [16] using the 27  k methylation array from 
Illumina. Due to the limited resolution of the technology 
they found mostly differences between (1) MPN samples 
and healthy controls and (2) MPN samples and MPN 
samples transformed into AML. Nielsen et al. [17] using 
the much more comprehensive 450 k array from Illumina 
focused in their interesting DNA methylation profiling 
study on different cellular compartments of the hemat-
opoietic system analyzing flow-sorted cells and the rela-
tionship between DNA methylation on the one hand and 
histone modifications and gene mutations on the other 
hand. The course of disease within individual patients 
(i.e., progression to myelofibrosis) was not under study.

The interesting association between ASXL1 mutations 
and distinct methylation profiles reported by Nielsen 
et  al. [17] could not be confirmed in our study because 
both our groups included only a single ASXL1 mutated 
case each. Also, DNMT3A and TET2 alterations are 
too rare in our cohort for robust meaningful conclu-
sions. Only the previously reported association of muta-
tions rarely affected by age-related clonal hematopoiesis 
(ARCH) with progression to fibrosis [9] could be con-
firmed (see Fig. 4b). However, 6 from 16 patients (37.5%) 
undergoing progression to myelofibrosis did not show 
any mutation commonly found in MDS and only rarely 
in ARCH. Four patients (25%) did not show any mutation 
in the set of 25 genes tested, indicating certain limita-
tions of this approach in analyzing individual cases. The 
multivariate analysis of all parameters under study clearly 
showed that the presence of so-called high risk mutations 

Fig. 3  a Copy number alterations (CNA) in cases with stable disease versus cases showing progression to myelofibrosis. Log2 copy ratios for 
individual CpG sites as well as segments were calculated from the median signal intensity of samples with fibrotic progression compared to 
samples with stable disease as reference set. The x-axis visualizes genomic locations with centromere positions indicated by dashed lines, whereas 
the y-axis indicates individual log2 copy ratios. No gains or losses of segments (absolute log2 copy ratio ≥ 0.5) could be detected between both 
sample sets. b Results of the mutation analysis. The cases showing progress to myelofibrosis are represented in the upper part of the figure, the 
cases with stable disease in the lower part. Each red square indicates the presence of a mutation causing a loss of function or an altered protein 
function. The asterisk on the right side (*) mark the three samples which failed the initial QC procedure, but were classified correctly using the linear 
discriminant classifier (see Additional file 1: Figure S1). Since the case series of this study is a subset of the series described in detail before by us the 
results of the mutation profiling are also contained within Fig. 2 of Bartels et al.

(See figure on next page.)
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in ASXL1, EZH2, IDH1/2, or SRSF2 is not able to predict 
progression to myelofibrosis (p = 0.99).

Also mutations in the tumor suppressor gene TP53, 
incorporated by Grinfeld et al. in their recently published 
“MPN Personal Risk Score”[36], do not contribute to a 
separation of the two patient groups in our study, because 
they are too rare in our prefibrotic PMF cases.

From the fibrotic progression subgroup 7 patients had 
a high molecular risk mutation (Fig.  3), and 9 patients 
had an epigenetic age higher than the chronological age 
(Fig. 4). However, only 3 patients overlap in both groups, 
supporting the hypothesis that DNA methylation profiles 
are independent from the mutation profile and provide 
additional prognostic information.

Fig. 4  a Differences in epigenetic and chronological age per patient. Each line represents an individual patient. The calculated epigenetic age is 
larger than the chronological age in 9 out of 16 cases with fibrotic progress (65,3%), in the group with stable disease this is the case in only 3 out 
of 17 cases (17,6%, Chi2-test, p = 0.021). b Differences in epigenetic and chronological age per disease group. Comparing the mean epigenetic 
age and the mean chronological age between both sample sets it turns out that the mean of the „PhenoAge “ is statistically significantly higher 
in the group showing fibrotic progression (FP) compared to the stable disease (SD) group (p = 0.003 Mann–Whitney-U test), whereas the mean 
chronological age is very similar in both disease groups
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In a more recent genome-wide DNA methylation pro-
filing project (also using Illumina’s 450  K array), Mar-
tinez-Calle et al. [18] identified only differences between 
patients with myelofibrosis and healthy controls, similar 
to the findings reported earlier by Perez et  al. [16]. No 
differences within the group of patients with myelofibro-
sis were reported, and the question of fibrotic progress 
has also not been addressed in this study.

Comparing DNA methylation profiles from healthy 
controls and patients with a certain disease or from 
patients with different diseases always comes with the 
risk of confounding factors distorting the DNA methyla-
tion profiles, the most important being cellular composi-
tion of the blood or the bone marrow, respectively (see 
[37] and references therein). Therefore, we compared 
only DNA methylation profiles from patients with the 
same disease and disease stage, i.e., prefibrotic PMF (MF0 
and EB0). The only difference between the two groups is 
the later course of disease (i.e., with and without progres-
sion to myelofibrosis). This focus on patients diagnosed 
with prefibrotic PMF (EB0, MF0) avoids all confounding 
factors distorting the DNA methylation profiles.

The influence of the epigenetic age on the course of 
disease in the context of myeloproliferative disease has 
also been studied by McPerson et al.[38]. However, they 
analyzed only patients with polycythaemia vera (PV) and 
essential thrombocythaemia (ET), before and after treat-
ment with the histone deacetylase inhibitor vorinostat, 
finding opposite effects in both diseases. They used the 
three-gene aging signature proposed by Weidner et  al.
[39] for analyzing changes in DNA methylation dur-
ing treatment. Therefore, the interesting results of this 
study and the results presented here cannot be compared 
directly.

The gene ontology analysis identified biological pro-
cesses and molecular functions related to cell–cell and 
cell–matrix adhesion as highly enriched in the group 
of differentially methylated genes (see Additional file  5: 
Table S1), indicating that these processes might be more 
important for disease progression than, e.g., prolifera-
tion or cell death (apoptosis). In other organs, like liver 
or lung, the role of adhesion molecules for the develop-
ment of fibrosis is already well studied [40, 41]. Future 
functional studies have to elucidate the role of the differ-
entially methylated regions identified herein for the pro-
gression to myelofibrosis in PMF patients.

A limitation of the present study is the modest sam-
ple size which should be increased in follow-up studies. 
Multi-center collaborations will be necessary to collect 
much larger numbers of appropriate samples with com-
plete clinical and histopathological records.

Conclusions
This study compares, to the best of our knowledge, for 
the first time the DNA methylation profile in pre-fibrotic 
PMF patients who later develop overt myelofibrosis with 
the DNA methylation profile from pre-fibrotic PMF 
patients not progressing to myelofibrosis. This approach 
identifies the prognostic potential of comprehensive 
DNA methylation profiling for patients presenting with 
prefibrotic PMF. In addition, the importance of cell–cell 
and cell–matrix interactions for these processes is high-
lighted by the enrichment in the gene ontology analysis 
and should be followed-up in future studies.

The technique used in this study is already well estab-
lished in other diagnostic settings (see [24, 42–44] as 
examples) and should be implementable with reasonable 
efforts after independent validation in a larger cohort.

Materials and methods
Patient samples
Decalcified formalin-fixed and paraffin-embedded bone 
marrow trephines collected between 2000 and 2018 were 
retrieved retrospectively from the archive of the Institute 
of Pathology, Hannover Medical School. All cases under-
went histopathological routine diagnostic procedures. 
For the cohort displaying progression to fibrosis (FP), 
cases with two consecutive biopsies and a minimum of 
1 year follow-up time (range: 1–12.5 years, mean: 4 years, 
median: 2  years) were selected. The first bone marrow 
biopsy at the time of initial diagnosis had to be classi-
fied as prefibrotic PMF without increase in blasts (EB0) 
according to WHO definition [45] and with no signs of 
myelofibrosis (MF0). The second biopsy showed clear 
progression to myelofibrosis (MF 2 or 3). For the stable 
disease (SD) cohort without development of fibrosis, a 
minimum of 4  years follow-up time (range: 4–14  years, 
mean: 7.3  years, median: 6  years) was required with 

Table 2  Clinical parameters

Progression 
to fibrosis (FP)

Stable disease (SD)

n = 16 n = 20

Females 6 (38%) 11 (55%)

Age (at diagnosis, mean) 62 years 56 years

Total follow-up 75.5 years 154 years

Range 1.0–12.5 years 4.0–14.0 years

Mean follow-up 5 years 7.3 years

Hemoglobin (g/dL, median) 11.7 14.8

Leukocytes (× 106 × L−1) 16.5 9.2

Thrombocytes (× 109 × L−1) 776 912

Spleen size (mean) 13.4 cm 14.3
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clinically and histologically persisting prefibrotic PMF. 
The first and last biopsies in this cohort were MF grade 
0 and EB grade 0. For further details, see Table 2. In this 
cohort without progression to fibrosis, the reasons for 
performing subsequent bone-marrow biopsies were quite 
heterogeneous, e.g., anemia or thrombosis. (for details 
see ref [9]).

The cohort analyzed in this study represents a sub-
group of the cohort described in detail in Bartels et  al. 
2020 [9]. The selection criteria for the training set and 
the validation set were the availability of a sufficient 
amount of DNA (therefore, not all samples from Bartels 
et al. could be included in this study) and a balanced ratio 
between cases with stable disease and progression to 
fibrosis, respectively.

The study design is following the guidelines of the Han-
nover Medical School ethics committee for retrospective 
analyses.

DNA extraction
Extraction of genomic DNA was performed using the 
Maxwell RSC instrument (Promega, Madison, WI, USA) 
and the Maxwell RSC DNA FFPE kit according to the 
manufacturer’s instructions. Three to five sections of 
10 µm thickness each were taken, depending on the size 
of the trephine. After extraction, nucleic acid concen-
trations were quantified using a Qubit 2.0 fluorimeter 
(ThermoFisherScientific, Carlsbad, CA, USA) and the 
Qubit dsDNA high sensitivity kit (ThermoFisherScien-
tific, Carlsbad, CA, USA).

DNA methylation analysis
For genome-wide DNA methylation analyses, the 850  k 
EPIC array platform from Illumina was used [46]. At 
least 250  ng genomic DNA extracted from FFPE bone 
marrow trephines was used. In the majority of cases, 
500  ng genomic DNA were available. Bisulfite conver-
sion, array hybridization, and raw data collection were 
done at Life&Brain (Bonn, Germany) following the 
manufacturer’s protocols. Subsequently, raw data files 
were downloaded from this company’s server for further 
analyses. The 850 K EPIC array data series are deposited 
in the Gene Expression Omnibus (GEO) data base (GEO 
accession number: GSE152519). Array data analysis was 
performed with R (version 3.4.4). The R package Illu-
minaHumanMethylationEPICanno.ilm10b3.hg19 (ver-
sion 0.6.0) was used for chip annotation. The R package 
MethylAid (version 1.12.0) was used for quality control 
(default settings) [47]. The R package ChAMP (version 
2.9.10) was used for data loading, sample exclusion, and 
batch effect correction (all default settings) as well sta-
tistical analyses and intra-sample probe normalization 
via the BMIQ algorithm [48, 49]. The batch variable 

"AMP_Plate" was designated as confounder and the vari-
able "Sample_Class" as predictor for batch correction 
via the ComBat algorithm [50]. No batch correction was 
performed on data used for machine learning and mod-
eling. Differentially methylated probes (DMPs, represent-
ing individual CpG sites) were identified using the limma 
algorithm included in the ChAMP package with a false 
discovery rate (FDR) threshold of ≤ 0.1 [51]. Therefore, 
in this study the definition of “differentially methylated” 
is solely driven by statistical analyses (via the FDR) and 
not by a β-value threshold. Gene set enrichment analysis 
(GSEA) against the Gene Ontology (GO) database was 
performed based on the differentially methylated regions 
(DMR) between both groups, which were identified using 
the Bumphunter algorithm included in the ChAMP pack-
age with an FDR of ≤ 0.05 and the parameters ‘maxGap’ 
and ‘cutoff’ changed from their default values to 250 and 
0.99, respectively. The GSEA itself was performed using 
the gometh algorithm included in the ChAMP package 
and an FDR threshold of 0.1. The R package “conumee” 
in bioconductor was employed for identification of copy 
number variations [52]. For the calculation of the epige-
netic methylation age, the PhenoAge algorithm from the 
R package ENmix (version 1.25.1) was used [32, 53].

Classification of samples
In order to select suitable DMPs for sample classifica-
tion, we utilized an exact leaps and bounds algorithm 
aimed at optimizing the Tau-squared coefficient from 
the R package sub-select (version 0.14 [54]). The result-
ing CpG subsets were used to create data sets from the 
training set of 22 samples as input for the implementa-
tion of linear discriminant analysis (LDA) in the R pack-
age caret (version 6.0-81 [23]). It is important to point 
out that in contrast to the data used for statistical analy-
sis; no batch correction was performed on data used for 
classification of samples. A singular value decomposition 
analysis shows that ComBat batch correction could be 
successfully used to reduce the influence of confounding 
variables (such as AMP_Plate) on the methylation data 
set (see Additional file 11: Figure S9). For resampling and 
estimating preliminary model performance, we used five-
fold repeated cross-validation. Tuning parameters were 
left at default settings. All models were finally evaluated 
concerning their accuracy against a validation set of 11 
independently measured samples. When yielding the 
same accuracy, models were preferred that require less 
input features (i.e., DMPs).
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Multivariate analysis
In order to deal with the moderate sample sizes and occa-
sional separation by chance, we used Bayesian logistic 
regression instead of logistic regression for our analysis 
of demographic and clinical data. Parameters were con-
sidered to be significant if their p-value for the Z-statistic 
was below 0.05.

Mutation profiling
Targeted re-sequencing of 23 genes was performed using 
an amplicon-based NGS panel, and pyrosequencing was 
used for analysis of MPL Codon 515 and for ETNK1 
Codon 244 as described [55].

Analysis of copy number alterations
The analysis of copy number variations based on their 
methylation profiles was performed using the R pack-
age conumee (version 1.12.0) [52]. For this purpose, the 
signal intensities of individual samples with fibrotic pro-
gression as well as the median signal intensity of these 
samples was compared to the set of samples with stable 
disease as a reference (default settings).
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Additional file 1: Figure S1. Singular value decomposition analysis for 
identification and exclusion of confounding factors. Sample age and 
amount of DNA both show a p-value above 0.05 in the SVD analysis, dem-
onstrating that these two variables are clearly not confounding factors.

Additional file 2: Figure S2. Hierarchical clustering based on 25 CpG 
sites from Fig. 1 separately for the training and test cohort.

Additional file 3: Figure S3. Hierarchical clustering based on 1000 
differentially methylated CpG sites and histogram of β-values. This figure 
corresponds to Fig. 1. The lower panel shows the histogram for all β-values 
illustrating the gain in methylation in the fibrotic progression cohort, 
accompanied also by a loss of DNA methylation in a smaller group of CpG 
sites.

Additional file 4: Figure S4. Hierarchical clustering based on 6 CpG sites 
from Fig. 2 separately for the training and test cohort.

Additional file 5: Table S1. Gene set enrichment analysis of differentially 
methylated regions against the Gene Ontology database.

Additional file 6: Table S2. Detailed description of the 40 most differen-
tially methylated regions (DMR).

Additional file 7: Figure S5. Linear discriminant classification of low-
quality samples. Three samples (white background labels) which had been 
excluded from the statistical analysis due to high proportions of probes 
above the detection p-value threshold of 0.1 are classified correctly using 
the linear discriminant model.

Additional file 8: Figure S6. Histogram of all β-values with fixed thresh-
olds for hyper- and hypomethylation. With a β-value threshold of > 0.8 for 
hypermethylation and < 0.1 for hypomethylation the simultaneous gain 
in hyper- and in hypomethylated loci in the fibrotic progression cohort is 
obvious. The number of CpG sites with very high methylation level (i.e., 
above 0.8) is larger in the FP cohort compared to the SD cohort (245,829 
vs 204,494, or 20.2% more highly methylated sites in the FP cohort) and 

this increase in highly methylated sites in the FP cohort is three times 
higher than the increase in CpG sites with very low methylation (i.e., 
below 0.1) in this cohort (relative to the SD cohort the number of CpG 
sites with low methylation level increases by only 7.7%). Therefore, it is 
justified to state that overall the fibrotic progression cohort is character-
ized by hypermethylation relative to the stable disease cohort.

Additional file 9: Figure S7. Boxplots for the β-values of the 25 differen-
tially methylated CpG sites shown in Fig. 1. The display of the individual 
boxplots shows the simultaneous gain and loss of DNA methylation in the 
fibrotic progression cohort relative to the stable disease cohort (as shown 
in a more global view in Additional file 8: Figure S6). 18 from 25 CpG sites 
display a higher methylation level in the FP group compared to the SD 
group.

Additional file 10: Figure S8. Number of differentially methylated CpG 
sites in the FP group versus the SD group. a Number of CpG sites more 
heavily methylated (“hypermethylated”) in the FP or the SD group at a 
given threshold for the difference in the β-value. b Histogram for Δβ > 0.1. 
c Histogram for Δβ > 0.2. The predominance of more heavily methylated 
loci in the FP group is obvious. The SD group shows a distribution cen-
tered around β-values between 0.5 and 0.6, whereas the FP group shows a 
clear skewing of the distribution towards β-values between 0.8 and 0.9.

Additional file 11: Figure S9. Singular value decomposition analysis of 
the batch correction. ComBat batch correction could be successfully used 
to reduce the influence of confounding variables (such as AMP_Plate) on 
the methylation data set, leaving “sample class” as the most important 
discriminator.

Additional file 12: Table S3. Detailed description of the 25 most differen-
tially methylated CpG sites at FDR < 0.1.
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