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Abstract

Background: Major depressive disorder (MDD) represents a serious global health concern. The urge for efficient
MDD treatment strategies is presently hindered by the incomplete knowledge of its underlying pathomechanism.
Despite recent progress (highlighting both genetics and the environment, and thus DNA methylation, to be
relevant for its development), 30–50% of MDD patients still fail to reach remission with standard treatment
approaches. Electroconvulsive therapy (ECT) is one of the most powerful options for the treatment of
pharmacoresistant depression; nevertheless, ECT remission rates barely reach 50% in large-scale naturalistic
population-based studies. To optimize MDD treatment strategies and enable personalized medicine in the long-
term, prospective indicators of ECT response are thus in great need. Because recent target-driven analyses revealed
DNA methylation baseline differences between ECT responder groups, we analyzed the DNA methylome of
depressed ECT patients using next-generation sequencing. In this pilot study, we did not only aim to find novel
targets for ECT response prediction but also to get a deeper insight into its possible mechanism of action.
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Results: Longitudinal DNA methylation analysis of peripheral blood mononuclear cells isolated from a cohort of
treatment-resistant MDD patients (n = 12; time points: before and after 1st and last ECT, respectively) using a TruSeq-
Methyl Capture EPIC Kit for library preparation, led to the following results: (1) The global DNA methylation differed
neither between the four measured time points nor between ECT responders (n = 8) and non-responders (n = 4). (2)
Analyzing the DNA methylation variance for every probe (=1476812 single CpG sites) revealed eight novel candidate
genes to be implicated in ECT response (protein-coding genes: RNF175, RNF213, TBC1D14, TMC5, WSCD1; genes encoding
for putative long non-coding RNA transcripts: AC018685.2, AC098617.1, CLCN3P1). (3) In addition, DNA methylation of two
CpG sites (located within AQP10 and TRERF1) was found to change during the treatment course.

Conclusions: We suggest ten novel candidate genes to be implicated in either ECT response or its possible mechanism.
Because of the small sample size of our pilot study, our findings must be regarded as preliminary.

Keywords: Depression, DNA methylation, Electroconvulsive therapy, EWAS, Personalized medicine, Response prediction,
Single-nucleotide polymorphism, RNF213, Ubiquitin, Autophagy

Background
The World Health Organization [1] states major depressive
disorder (MDD) to be one of the most prevalent mental
diseases worldwide. Due to the high number of affected in-
dividuals (> 322 million), efficient treatment strategies are
required. This need is being challenged by the insufficient
knowledge of MDD’s underlying pathophysiology.
Research from recent decades reports nature and nur-

ture to both be relevant for disease development: One’s in-
dividual genetic constitution provides a baseline for the
vulnerability to certain diseases, but additional environ-
mental factors are often mandatory to provoke their onset
[2, 3]. This phenomenon is mediated by epigenetics, i.e.,
molecular mechanisms (such as DNA methylation
(DNAm) and histone modifications) that modulate gene
transcription without interfering with the DNA sequence
itself [4–7]. In the case of MDD, animal experiments
found the stress reactivity of rodent pups to be associated
with their mother’s postnatal grooming behavior. In this
context, hippocampal brain cells of neglected animals (in
comparison with the pups being intensively cared for)
showed a higher DNAm in gene regions encoding the
glucocorticoid receptor [8, 9]. As a part of the
hypothalamic-pituitary-adrenal (HPA) axis (our central
stress response system) disturbances of the latter protein
(together with other irregularities) have been suggested to
be a cause for the lowered stress resilience found in de-
pressed patients [10–12]. The importance of epigenetics
for MDD is further underlined by Fuchikami et al., who
distinguished depressed subjects from healthy controls
simply by analyzing the DNAm of brain-derived neuro-
trophic factor (BDNF) [13]. BDNF is a neurotrophin
shown to be implicated in various neuropsychiatric disor-
ders, including MDD [14–16].
Despite this growing body of knowledge, treatment ap-

proaches for depression leave much to be desired: The pro-
portion of MDD patients that fail to achieve full remission
upon standard medication (30–50%) is still unsatisfyingly

high [17]. Electroconvulsive therapy (ECT) has proven su-
perior efficacy and is, therefore, considered to be one of the
most powerful options for the treatment of pharmacoresis-
tant depression [18, 19]. However, in naturalistic
population-based community-setting studies, ECT remis-
sion rates barely reach 50% [20, 21]. To prevent medication
failure at baseline and ensure patient-tailored treatment in
the long-term, biomarkers predicting ECT response are
thus of compelling need. Merely a few clinical characteris-
tics (like age or psychotic symptoms, for instance [21–24])
serve as a guide for treatment-decision making, but due to
MDD’s heterogeneity (compromising various subgroups
and a broad spectrum of symptoms), a whole set of bio-
markers will be required [25]. In this context, a few bio-
logical markers have been recently proposed, as the
catechol-O-methyltransferase (COMT) Val158Met (rs4680)
[26–28] or the dopamine receptor D2 (DRD2) C957T
(rs6277) polymorphisms [29, 30]. In the field of epigenetics,
our group recently found the DNAm of p11’s promoter (a
protein implicated in BDNF production [31]) to reliably
predict ECT response in two cohorts of MDD patients [32].
However, none of these targets is likely to reach sufficient
sensitivity and specificity to act as an accurate predictor of
ECT response alone and other studies on DNAm and ECT
are missing [25, 33].
To find further indicators for ECT response predic-

tion, we investigated the methylome of peripheral blood
mononuclear cells (PBMCs) isolated from depressed pa-
tients undergoing a course of ECT. Most studies con-
duct their experiments in a target-driven manner and
only investigate processes already known to be impli-
cated in MDD. These hypothesis-based analyses provide
an essential contribution to the field of biomarker re-
search, though more data-driven approaches are still re-
quired so as to not overlook substantial ECT-related
information. To address this issue, we used an Illumina
EPIC Kit for our study, allowing an analysis of > 3.3 mil-
lion CpGs located within regions known to be generally
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implicated in epigenetic mechanisms (such as CpG
islands, promoter regions, and open chromatin). We
thereby aimed (1) to identify novel targets for the predic-
tion of ECT response and (2) to get a deeper insight into
ECT’s general mechanisms.

Results
Patients’ clinical baseline characteristics
Patients’ clinical baseline characteristics are depicted in
Table 1. After treatment completion, 10 patients (out of
17) responded to ECT. Four patients had minimally
heightened levels of leukocytes (11.2–12.4 × 103/μl), but
no signs of infection (i.e., elevated C-reactive protein
measures (CRP)). Patients were under medication while
receiving ECT, but none were treated with immunomodu-
latory drugs. During ECT, patients were anesthetized with
methohexital (mean = 128.2(± 53.3) mg, minimum = 90
mg, maximum = 250mg) and remifentanil (89.7(± 49.8)
mg, 30mg, 200mg) and received succinylcholine for
muscle relaxation (114.1(± 45.0) mg, 60mg, 200mg).
Responders (R) and non-responders (NR) differed only in
their body mass index (BMI) (t test, p = 0.015, T = − 2.736,
R = 28.4 ± 4.8, NR = 22.4 ± 4.8).

As described in the methods section, patients were ex-
cluded from the analysis if the DNAm values of at least
one time point were missing (respectively). The clinical
baseline characteristics of these patients (n = 12) are re-
ported in Supplementary Table S1. In this subgroup,
ECT responders and non-responders differed in their
number of total leukocytes (t test, p = 0.048, T = − 2.249,
R = 8.4 ± 2.2, NR = 5.7 ± 1.2) and their current
episode duration (t test, p = 0.026, T = 2.948, R = 24.8 ±
15.2, NR = 60.0 ± 11.3).

ECT and DNA methylation
Analysis of the global DNAm considering ECT response
showed no significant effects for time (F(3, 30) = 2.37,
p = 0.09), response (F(1, 10) = 0.05, p > 0.1) and the
interaction between time and response (F(3, 30) = 0.14,
p > 0.1). The analysis of variance for DNAm with respect
to response/non-response for every probe (DMP) showed
13 significant probes located in ten different genes (seven
protein-coding and three non-protein-coding (pseudo)
genes (which encode for putative long non-coding RNA
transcripts instead)) that met the previously established
criteria of significance. A detailed presentation of the

Table 1 Patients’ clinical baseline characteristics (n = 17)

Whole cohort (n = 17) Responders (n = 10) Non-responders (n = 7)

Demographics

Age in years, mean (±SD; range) 53.9 (± 16.7; 20–76) 57.1 (± 9.7; 43–70) 49.3 (± 23.7; 20–76)

Gender, n (%) Female 10 (58.5%) 6 (60.0%) 4 (57.1%)

Male 7 (41.2%) 4 (40.0%) 3 (42.9%)

Body mass index, mean (±SD; range) 25.9 (± 5.2; 17–39) 28.4 (± 4.8; 23–39)* 22.4 (± 4.5; 17–30)*

Smokers, n (%) Yes 7 (43.8%) 6 (60.0%) 1 (14.3%)

Psychometric characteristics

Age at diagnosis in years, mean (±SD; range) 33.6 (± 17.1; 14–74) 31.3 (± 14.0; 14–53) 36.8 (± 21.5; 18–74)

Current episode in weeks, mean (±SD; range) 36.3 (± 33.6; 3–124) 35.0 (± 38.7; 3–124) 39.0 (± 25.2; 16–68)

BDI, mean (±SD; range) 36.4 (± 10.9; 16–56) 35.3 (± 12.1; 16–56) 38.3 (± 9.2; 24–52)

MADRS, mean (±SD; range) 32.8 (± 10.3; 12–45) 33.8 (± 12.5; 12–45) 31.5 (± 7.4; 24–45)

MMSE, mean (±SD; range) 28.5 (± 2.6; 21–30) 28.0 (± 3.3; 21–30) 29.2 (± 1.3; 27–30)

Psychotic symptoms, n (%) Yes 5 (29.4%) 3 (30.0%) 2 (28.6%)

Suicidality, n (%) Yes 3 (17.6%) 0 (0.0%) 3 (42.9%)

Medication

Antidepressant drugs, n (%) Yes 17 (100.0%) 10 (100.0%) 7 (100.0%)

Benzodiazepines, n (%) Yes 11 (64.7%) 7 (70.0%) 4 (57.1%)

Antipsychotic drugs, n (%) Yes 11 (64.7%) 8 (80.0%) 3 (42.9%)

Lithium, n (%) Yes 3 (17.6%) 1 (10.0%) 2 (28.6%)

Clinical parameters

Leukocytes in × 103/μl, mean (±SD; range) 7.6 (± 2.8; 3.5–12.4) 8.6 (± 2.4; 6.4–12.4) 6.2 (± 2.8; 3.5–12.1)

Clinical baseline characteristics of treatment-resistant depressed patients receiving a course of ECT (whole cohort vs. responders/non-responders), presented as
mean (±standard deviation (SD); range (= minimum–maximum)) or quantity (absolute and percentual, n (%))
BDI beck depression inventory, MADRS Montgomery-Åsberg depression rating scale, MMSE mini-mental state examination
*p < 0.05
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results regarding the 13 significant probes is shown in
Table 2 and depicted in Figs. 1, 2, 3 and 4. Information re-
garding the genetic loci of our significant probes (and the
genetic variants possibly affecting our CpGs of interest) was
investigated using Ensembl [34], an internal JBrowse [35],
GeneCards® [36], and the NHGRI-EBI GWAS Catalog [37].
As the duration of the current depressive episode differed

between ECT responders (n = 8) and non-responders (n =
4) in the subgroup of patients analyzed (with ECT non-
responders suffering from episodes more than twice as
long), we conducted an additional correlation analysis by
using a Spearman rank-order correlation test. None of our
CpG sites reached statistical significance, though a ten-
dency at the gene locus chr16:19488803 (TMC5) was
present (rho = − 0.53, S = 437.53, p = 0.076); Figure S1).

Discussion
DNAm analysis of 1476812 single CpG sites revealed five
novel (protein-coding) candidate genes to be implicated in
ECT response (RNF175, RNF213, TBC1D14, TMC5, and
WSCD1). Further differences between ECT responder
groups were found within gene regions encoding for long
non-coding RNA transcripts (AC018685.2, AC098617.1,
and CLCN3P1). In all cases (except one: AC098617.1),
DNAm differed already at baseline and remained stable
throughout the time course. Analyzing ECT’s effect irre-
spective of clinical outcome, DNAm of merely two CpG
sites (located within AQP10 and TRERF1) was found to
change during the treatment. Intriguingly, all significant
CpGs, but one (chr6:42344977, TRERF1), are known to
overlap with a single-nucleotide polymorphism (SNP) dir-
ectly located within these particular dinucleotides, gener-
ating or removing these CpGs and thus DNAm as a
consequence. Due to the small group size of the current
study, the results must be interpreted with caution, par-
ticularly due to the differences between ECT responder
and non-responder groups. Nevertheless, the identified
genes could be important candidates for therapeutic
outcome prediction in future studies.
In this regard, the most striking difference in DNAm

between ECT responder groups was present at four CpG
sites located within the RNF213 gene. Importantly,
RNF213’s DNAm has previously been reported to differ
between MDD subjects and healthy controls, though in
a much lower magnitude than in our cohort and without
being comprehensibly corrected for multiple testing [38,
39]. The gene encodes for a homonymous 591-kDa pro-
tein (ring finger protein 213) that contains a RING fin-
ger domain mediating protein-protein interaction [40,
41]. Together with its postulated AAA+ ATPase and E3
ligase activity, RNF213 is enabled to unfold and link pro-
teins to ubiquitin [41], a small 8.6-kDa protein whose
linkage can lead to diverse outcomes depending on the
particular amino acid it is bound to. Among ubiquitin’s

various roles, its implication in the proteasome protein
degradation system is one of the most pronounced [42–
44]. By these means, RNF213 contributes to the clear-
ance of two proteins involved in vascular remodeling via
the Wnt signaling pathway [45]. Its striking role in vas-
cular development is further supported by clinical stud-
ies revealing a particular RNF213 mutant (p.R4859K,
caused by a SNP of c.14576G>A) to be strongly associ-
ated with Moyamoya disease (MMD)—an occlusive cere-
brovascular disorder that is marked by progressive
stenosis, a concomitant formation of collateral vessels,
and transient seizures [46, 47]. Intriguingly, ample evi-
dence links angiogenesis to either MDD or its treatment.
In this context, elevated vascular endothelial growth fac-
tor (VEGF) mRNA has been found in depressed subjects
[48]. Further support for this notion stems from animal
experiments, showing hippocampal angiogenesis to be
boosted following electroconvulsive stimulation (ECS)
[49]. Moreover, clinical neuroimaging studies report a
particular SNP (rs699947, 2578C/A; located within the
promoter region of VEGF) to be associated with hippo-
campal volume changes after ECT treatment [50].
As ECT has been demonstrated to have immunomod-

ulatory properties [51–54] and to (partially) reverse the
immunological irregularities found in MDD patients (or
at least in a subgroup thereof) [55, 56], the immune sys-
tem seems to serve as another link between the strong
implication of RNF213’s DNAm and the clinical re-
sponse to ECT. In this context, RNF213 mRNA was
found to be predominantly expressed in immunological
tissue [46], and its expression to be enhanced upon pro-
inflammatory stimulation [57]. In addition, RNF213 has
been reported to affect the number of T regulatory cells
[58], an immune cell population shown to be reduced in
depressed subjects [59]. Finally, another connection be-
tween RNF213 and depression is formed by the let-7
family of miRNAs, i.e., short RNA sequences that were
found to suppress the common variant of the RNF213
gene. Within this context, particularly let-7c was shown
to be either increased or diminished in MMD and MDD
patients [60, 61].
According to our analysis, another ring finger protein

(RNF175) has been linked to ECT response, though its
function is less well characterized. Current studies sug-
gest a SNP located within RNF175 (rs981844) to be asso-
ciated with the response to statins [62], i.e., a group of
pharmaceuticals with suggested antidepressant proper-
ties [63]. However, despite this sparsity of literature, one
thing is clear: RNF213 and RNF175 share their E3
ubiquitin-ligase activity [64], moving ubiquitin again into
the spotlight of ECT responsiveness. Its outstanding role
is further supported by several studies suggesting the
DNAm of other ring finger proteins (as RNF138,
RNF130 [65], and RNF2 [66]) to differ between the
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postmortem brain samples of depressed subjects and
healthy controls, although these results do not reach
statistical significance after type 1 error correction. How-
ever, besides its involvement in the proteasome degrad-
ation system, ubiquitin further leads to the removal of
cellular structures by mediating selective autophagy [67].
Similarly, DNAm of the TBC1 domain family member

14 (TBC1D14) gene, a negative regulator of starvation-
induced autophagy [68], was also found to differ in rela-
tion to clinical outcome, indicating ECT responsiveness
to not be dependent on the selective type of autophagy
alone. Intriguingly, a profound body of evidence illus-
trates autophagy to be crucially involved in depression
[69]. Alcocer-Gómez et al., for instance, reported the ex-
pression of autophagy proteins to be upregulated in
MDD patients [70]. Moreover, expression of autophagy
proteins (i.e., Beclin-1 and light chain 3-II/I (LC3-II/I))
was shown to be elevated in the rat hippocampus follow-
ing ECS treatment [71], leading Gassen and Rein to
hypothesize that autophagic mechanisms (although
already heightened at baseline) might still be insufficient

in some disease cases [69]. In the context of ECT,
boosted autophagic turnover—ensuring efficient recyc-
ling of amino and fatty acids and thus the production of
urgently needed proteins [72, 73]—would fit well into
the picture as an increase in glucose metabolism has
been observed in several brain regions (like the hippo-
campus, for instance) following ECS treatment [74], in-
dicating enhanced metabolic activity thus a higher
demand for nutrients. However, the role of autophagy in
MDD is still controversial, but the involvement of
RNF213, RNF175, and TBC1D14 in cellular degradation
hints at a role for these processes in ECT responsive-
ness, nevertheless.
The connection of the other genes found in our study

(being differentially methylated in ECT responder
groups) is less clear, yet no less interesting: An inter-
genic polymorphism (rs75213074) near the WSC do-
main containing 1 (WSCD1) gene has been previously
associated with migraine [75], a neurological disorder
sharing several biological abnormalities with depression
[76]. Regarding transmembrane channel-like 5 (TMC5),

Fig. 1 Comparison of DNA methylation values between ECT responder groups. ECT responders (blue, n = 8) and non-responders (red, n = 4)
differed in their baseline DNA methylation at four single CpG sites (indicated by arrows) located within the ring finger protein 213 gene (RNF213).
The horizontal rows represent distinct time points from each patient. Their DNA methylation values were clustered based on their similarity. T1:
before the 1st ECT, T2: after the 1st ECT, T3: before the last ECT, T4: after the last ECT
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Fig. 2 (See legend on next page.)

Moschny et al. Clinical Epigenetics          (2020) 12:114 Page 8 of 16



a SNP (rs4780805) located − 17 kbp upstream of its
gene was reported to correlate with sleeping duration
[77], forming a link to MDD as sleeping patterns are
often disturbed in depressed subjects [78].
With respect to ECT’s general effects (whether directly

induced, a coincidence, or merely of secondary origin),
DNAm of two CpG sites (located within aquaporin 10
(AQP10) and transcriptional regulating factor 1
(TRERF1)) were altered during the treatment course yet
had no effect on clinical outcome. The former gene en-
codes for a water-permeable channel [79] that has not
yet to our knowledge been linked to neuropsychiatric
disorders. The same holds true for TRERF1, which regu-
lates the expression of a mitochondrial enzyme (cyto-
chrome p450 11A1–CYP11A1) that catalyzes the
synthesis of pregnenolone, i.e., the substrate for all
known steroids [80, 81]. Irregularities in glucocorticoids
(a subtype of steroids) have been repeatedly reported in
MDD patients [82], being modulated by ECT as robust
rises in cortisol have been found following a single ECT
session [83–85].
Despite this extensive body of evidence linking the latter

mentioned genes to either MDD or ECT, several ques-
tions remain. In fact, the role of these particular genes
within immune cells (the sample type, we obtained our
measures from) is largely unclear: Regarding TRERF1, glu-
cocorticoids are well known for their immunoregulatory
properties, mediating diverse effects depending on their
concentration [86, 87]. Ubiquitin and autophagy affect im-
munological processes at multiple points: Ubiquitin
regulates signaling cascades involved in the activation of
NF-кB, and thus, the subsequent production of pro-
inflammatory cytokines [88], whereas autophagy has been
reported to mediate anti-inflammatory functions by clear-
ing accumulating proteins, apoptotic bodies, and patho-
gens [73]. Nevertheless, despite being generally involved
in ubiquitin-linkage (RNF213 and RNF175) and the nega-
tive regulation of autophagy (TBC1D14), it is largely un-
certain whether these particular genes directly contribute
to the latter mechanisms in immune cells as well, although
indicated by some sources [89, 90].
A clear interpretation of the data is further hindered

by the insufficient knowledge of the genetic regulation
of the proposed candidate genes. In fact, the conse-
quence of the DNAm differences or changes in the ex-
pression of the proposed genes is unknown and can only
be assumed on the basis of the current literature. In this
context, most of the significant CpG sites are located

within introns, i.e., regions which were found to be gen-
erally low in CpGs. If prevalent, DNAm of these CpGs
was suggested to modulate alternative splicing [91, 92],
to suppress transposable elements [93], or to regulate
the usage of alternative promoters [91, 94]. Hence,
DNAm of these specific loci does not ultimately indicate
the inhibition of gene expression (as it has been sug-
gested for promoter regions [91]) but might exert vari-
ous roles. Some significant CpG sites were also found
outside gene bodies, i.e., within promoter flanking re-
gions, but the effect on gene expression is also rather
unpredictable at these loci.
We furthermore cannot estimate the contribution of

the SNPs located at our candidate loci that are either
generating or removing the CpGs and thus DNAm as a
consequence. Importantly, recent studies propose
DNAm to interact with its underlying genotype (even if
the respective CpG sites and SNPs are far apart) [95, 96]
and the interaction of genetic and environmental factors
to be particularly relevant for disease risk [3, 33, 95]. In
the case of our SNPs, their minor allele frequency
(MAF) values (see Table 2), indicating the second most
common variant at a defined locus, are generally rela-
tively small and the removal of CpGs at these particular
sites therefore rather unlikely, but not entirely out of
question.
The interpretation of the biological significance of our

results is further restricted by the sparsity of studies
using the TruSeq Methyl Capture EPIC Library Kit for
DNAm analyses. Instead, most researchers use either the
Illumina Infinium Human Methylation 450 K or the Infi-
nium MethylationEPIC 850 K BeadChip for their experi-
ments. Because both microarrays do not cover our
proposed candidate CpG sites, a comparison to the
DNAm of other MDD cohorts or healthy subjects is, un-
fortunately, unfeasible at these particular loci. Conse-
quently, we are also unable to assess the influence of the
patients’ clinical characteristics on DNAm other than in
our cohort. In this regard, we found a tendency for the
DNAm of chr16:19488803 (TMC5) to be influenced by
the patient’s respective current episode duration. Since
smoking behavior has also differed greatly between ECT
responders (five smokers) and non-responders (one
smoker), evaluating its influence on DNAm levels would
have been of interest but was not feasible due to the
small sample size. Studying the literature regarding its
general influence on DNAm (not looking at our particu-
lar loci of interest only), we found TRERF1’s DNAm

(See figure on previous page.)
Fig. 2 DNA methylation differences between ECT responder groups: protein-coding genes. DNA methylation of ECT responders (n = 8) and non-
responders (n = 4) differed at eight CpG sites located within five different protein-coding genes: TBC1D14 (=TBC1 domain family member 14),
RNF175 (=ring finger protein 175), TMC5 (=transmembrane channel-like 5), WSCD1 (=WSC domain containing 1), and RNF213 (=ring finger protein
213). Time point 1: before the 1st ECT, 2: after the 1st ECT, 3: before the last ECT, 4: after the last ECT; error bars: ± SD
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Fig. 4 DNA methylation changes during the time course of ECT.
DNA methylation of two CpG dinucleotides was found to change
during the treatment course. These CpGs were located within the
following genes: AQP10 (=aquaporin 10) and TRERF1 (=
transcriptional regulating factor 1). Time point 1: before the 1st ECT,
2: after the 1st ECT, 3: before the last ECT, 4: after the last ECT; error
bars: ± SD

Fig. 3 DNA methylation differences between ECT responder groups:
long non-coding RNA transcripts. DNA methylation of three CpGs
located within gene regions encoding for long non-coding RNA
transcripts differed between ECT responders (n = 8) and non-
responders (n = 4): AC018685.2, AC098617.1, and CLCN3P1 (=chloride
channel voltage-sensitive 3 pseudogene 1). Time point 1: before the
1st ECT, 2: after the 1st ECT, 3: before the last ECT, 4: after the last
ECT; error bars: ± SD
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(chr6:42219847) to be affected by tobacco intake [97].
Altogether, we thus cannot entirely rule out a possible
impact of the patients’ clinical characteristics on our
DNAm analysis.
Further, as MDD is primarily thought to be caused by

a malfunctioning of neuronal processes, analyzing the
correlation between the DNAm in the brain and the per-
iphery would have been of great value. Unfortunately,
the web tools frequently used for this investigation (as
BECon [98] or BloodBrain [99]) are based on data ob-
tained from the Illumina 450 K array and are thus not
applicable to our results. However, as all of our candi-
date CpGs (except one) do overlap with a known SNP,
the observed DNAm difference between ECT responders
and non-responders might be a result of their genotype
rather than being a pure epigenetic difference. The ex-
tent of their DNAm difference and the stability of its
pattern during the treatment course supports this idea.
In this case, a high correlation between blood and brain
DNAm would be rather likely.
Despite these limitations—with the small group size

being the most restricting one—our study might be of
great value for future approaches, as data generated by
the TruSeq Methyl Capture EPIC Kit is still a rarity, es-
pecially in the context of MDD.

Conclusions
DNAm of 13 single CpG sites (located within ten genes
encoding for either a protein or a long-coding RNA
transcript) was found to differ between ECT responder
groups or to alter within the treatment course of ECT.
The data of the current work thus provides a deeper
insight into ECT-associated effects and suggests novel
candidate genes for ECT response prediction. Due to a
small sample size, the findings must be regarded as pre-
liminary; a replication in larger cohorts is required.

Methods
Study design
Our cohort of depressed ECT patients (n = 17) was ac-
quired at the Department of Psychiatry, Social Psychiatry
and Psychotherapy at the Hannover Medical School
(Germany). The study complies with the ethical princi-
ples of the Declaration of Helsinki (1964, including its
later amendments) and was approved by the Ethics
Committee of the Hannover Medical School (NEKTOR-
Registry: 2842-2015). Written informed consent was
signed by all participants prior to study inclusion. As
this is a naturalistic long-term observational study of
one patient cohort, participants were grouped according
to their clinical course (to either ECT responder or non-
responder) after treatment completion.

Patients
MDD diagnosis was established using the International
Statistical Classification of Diseases and Related Health
Problems 10th Revision (ICD-10) and depression sever-
ity assessed via two psychometric questionnaires, namely
the Beck Depression Inventory (BDI-II) and the Mont-
gomery-Åsberg Depression Rating Scale (MADRS).
However, only the latter test served for the assignment
of patients to clinical outcome groups. In this context, a
decrease of ≥ 50% in MADRS scores was interpreted as
a treatment response. The Mini-Mental State Examin-
ation (MMSE) was conducted at the same time points
(i.e., at baseline and after the first and last ECT). Patients
who had an autoimmune, infectious, or schizophrenic
disorder were excluded from our study. Heightened
levels of CRP, a prominent leukocytosis, or medication
with immunomodulatory drugs were additional exclu-
sion criteria.

Application of ECT and sample collection
During the actual treatment course, ECT was applied
three times weekly for up to 4 weeks, followed by main-
tenance ECTs applied only once a week. Right unilateral
electrical stimulation was performed using an ultra-brief
impulse device (Thymatron® System IV, Somatics, LLC).
The seizure threshold was assessed at the first ECT ses-
sion (based on an age-dependent method), and the
stimulus intensity adjusted according to the recorded
motoric and electroencephalographic (EEG) seizure
duration. If the patient did not show any improvement
of symptoms after two following weeks of treatment, bi-
lateral electrode placement was considered. During ECT,
patients were anesthetized with methohexital and remi-
fentanil while muscle relaxation was achieved with suc-
cinylcholine. Fasting blood samples were taken at four
different time points, namely directly before (i.e., 8 a.m.–
10 a.m.) and 15 min after the first and the last ECT
session, respectively. Samples were stored at 4 °C until
further processing (3 hours maximum).

Sample processing
PBMCs—isolation and thawing
PBMCs were isolated by gradient centrifugation as
described elsewhere [100]. Based on the recommenda-
tions of Mallone et al. [101], changes have been ap-
plied to the latter procedure. After isolation, PBMCs
were kept at − 196 °C until thawing. Thawing was
performed according to a protocol published by the
Helmholtz Institute in Munich [102], though (as in
the previous case) adaptions were made to meet our
requirements. A detailed description of all steps per-
formed to isolate, freeze, and thaw PBMCs is pro-
vided in the supplements.
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HeLa—thawing and splitting
HeLa cells (immortal cervical cancer cells) were required
as a quality control for sequencing. For this purpose,
early passage cells were thawed and split according to a
protocol published elsewhere [103].

DNA isolation
Genomic DNA (gDNA) of PBMCs and HeLa cells was
isolated using the AllPrep DNA/RNA 96 kit (#80311;
QIAGEN N.V.). Minor changes have been made to the
recommended procedure; a detailed description is to be
found in the supplements. After isolation, gDNA of pa-
tients was kept at − 80 °C and gDNA of HeLa cells at −
4 °C (being supplemented with 0.5 mM UltraPureTM

EDTA (#11568896; Invitrogen AG) in the latter case;
storage duration: maximum 3weeks).

Library generation, quality control, and quantification
Five hundred nanograms of total gDNA per sample
was pipetted into microTUBE AFA Fiber Pre-Slit
Snap-Cap 6x16mm tubes (#520045; Covaris, Inc.) and
subsequently sheared using a Covaris S220 Ultrasoni-
cator. The sheared gDNA was utilized as input for
preparing targeted methylseq libraries with the
TruSeq-Methyl Capture EPIC Library Kit (#FC-151-
1003; Illumina, Inc.), allowing a preparation of up to
48 libraries at four-plex within less than 2 days. All
steps were performed as recommended in the Illu-
mina user document 1000000001643 v01 May 2017,
though one additional purification step was intro-
duced at the end of the standard procedure, using 1×
Agencourt® AMPure® XP Beads (#A63881; Beckman
Coulter, Inc.). Four-plex DNA samples were barcoded
by a single indexing (6 bp) approach using 12 differ-
ent DNA indexes. All generated DNA libraries were
amplified with 11–13 cycles of PCR using a KAPA
HiFi HotStart Uracil+ Ready Mix (2X) enzyme
(#KK2801; Kapa Biosystems), which was not included
in the kit. Fragment length distribution of individual
libraries was monitored using the Bioanalyzer High
Sensitivity DNA Assay (#5067-4626; Agilent Tech-
nologies). Quantification of libraries was performed by
the use of the Qubit® dsDNA HS Assay Kit
(#Q32854; ThermoFisher Scientific). Importantly,
gDNA of HeLa cells served as a quality control and
was thus added to each run of library preparation
and subsequent sequencing (1–2 aliquots per run).

Library denaturation and sequencing run
Equimolar amounts of twelve individually barcoded li-
braries were pooled. Each analyzed library relevant to
this project constitutes 8.7% of an overall flow cell cap-
acity. The library pool was denatured with sodium chlor-
ide (NaOH, #72082-100 ml; SIGMA-ALDRICH Co.) and

was finally diluted to 1.8 pM according to the Denature
and Dilute Libraries Guide (Document #15048776 v02;
Illumina, Inc.). 1.3 ml of the denatured pool was loaded
on an Illumina NextSeq 550 Sequencer using a High
Output Flow Cell for paired-end reads (Document
#20024907; Illumina, Inc.). Paired-end sequencing was
performed with 76 cycles, a 6-base barcode index, and
25% calibration control v3 PhiX library (#FC-110-3001;
Illumina, Inc.). This level of PhiX was required as the
samples were relatively GC rich. In total, 8 NextSeq runs
were performed.

Data processing
Sequence data analysis
Illumina 75 bp paired-end datasets were demultiplexed
using bcl2fastq version 2.17.1.14 (Illumina, Inc.). Fastq
files were then subjected to quality control with
FASTQC and MultiQC [104] and analyzed using the nf-
core methylseq pipeline with the Bismark software (ver-
sion 1.5dev) [105, 106]. The genome reference hg38
from Ensembl was used without decoy sequences. The
pipeline was modified to only make methylation calls for
sites covered by at least 5 reads, instead of the default 1
read. Coverage and methylation calls were converted
into bigwig format and visualized in the JBrowse web ap-
plication [35]. All data were analyzed on the MHH
HPC-seq SLURM research cluster. Where several runs
were necessary to achieve sufficient coverage, FASTQ
files were combined before analysis.

Quality control
In order to control for technical variability (which
was necessary as our experiment included several
runs of library preparation and sequencing), a detailed
quality control of the measurement was carried out.
In this context, isolated gDNA from HeLa cells was
added to each sequencing run. The resulting average
HeLa-cell-probe correlation (whose calculation in-
cluded all CpG sites of all measurements with a pre-
viously defined minimum coverage of least 5 reads)
was Mr = 0.97 and based on 14 measured samples
and 2016707 observed CpG probes each, indicating a
sufficiently good accuracy of our measurements. Fur-
thermore, the measured samples were examined with
density plots and dendrograms. One patient sample
showed a conspicuous value distribution pattern and
was different from all other samples in the cluster
analysis. Therefore, a faulty measurement was as-
sumed, leading to the subsequent exclusion of this
sample from further analyses. In order to avoid gen-
der bias, chromosome X and Y were additionally ex-
cluded. After all quality control measures, 1476812
CpG probes (per sample) were examined for final
statistics.
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Statistical analyses
Demographics of patients were normally distributed. T
tests and Fisher’s exact tests were used for the analysis
of demographic, psychometric, and other clinical base-
line differences between ECT responders and non-
responders. Regarding the methylation analysis of our
cohort, we first checked for ECT-associated changes
considering the overall DNAm levels (=mean of all mea-
sured CpG sites), being investigated with repeated mea-
sures ANOVA modeling approach implemented in the
lmer package [107] and separated for “response” as an
outcome definition. Second, we performed a detailed
analysis for the differences in methylation with respect
to response/non-response for every probe (DMP) with a
series of repeated measures ANOVA. As a correction for
multiple testing, a false discovery rate (FDR) of < 5% in
combination with a minimum variance of 0.1 was de-
fined as significant. Only samples with complete data at
all four time points (n = 12) were included in the ana-
lyses. Statistical analyses of the patients’ clinical baseline
characteristics were performed using IBM SPSS Statistics
25.0 for Windows (IBM Corp.), the methylation analyses
were conducted within the R (3.6.1) environment on
Windows 10.0.18362.
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