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Abstract

Background: Risk stratification for lung cancer (LC) screening is so far mostly based on smoking history. This study
aimed to assess if and to what extent such risk stratification could be enhanced by additional consideration of
genetic risk scores (GRSs) and epigenetic risk scores defined by DNA methylation.

Methods: We conducted a nested case-control study of 143 incident LC cases and 1460 LC-free controls within a
prospective cohort of 9949 participants aged 50–75 years with 14-year follow-up. Lifetime smoking history was
obtained in detail at recruitment. We built a GRS based on 31 previously identified LC-associated single-nucleotide
polymorphisms (SNPs) and a DNA methylation score (MRS) based on methylation of 151 previously identified
smoking-associated cytosine-phosphate-guanine (CpG) loci. We evaluated associations of GRS and MRS with LC
incidence by logistic regression models, controlling for age, sex, smoking status, and pack-years. We compared the
predictive performance of models based on pack-years alone with models additionally including GRS and/or MRS
using the area under the receiver operating characteristic curve (AUC), net reclassification improvement (NRI), and
integrated discrimination improvement (IDI).

Results: GRS and MRS showed moderate and strong associations with LC risk even after comprehensive
adjustment for smoking history (adjusted odds ratio [95% CI] comparing highest with lowest quartile 1.93 [1.05–
3.71] and 5.64 [2.13–17.03], respectively). Similar associations were also observed within the risk groups of ever and
heavy smokers. Addition of GRS and MRS furthermore strongly enhanced LC prediction beyond prediction by pack-
years (increase of optimism-corrected AUC among heavy smokers from 0.605 to 0.654, NRI 26.7%, p = 0.0106, IDI
3.35%, p = 0.0036), the increase being mostly attributable to the inclusion of MRS.

Conclusions: Consideration of MRS, by itself or in combination with GRS, may strongly enhance LC risk stratification.
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Background
Lung cancer (LC) is the leading cause of cancer-related
death worldwide, accounting for more than 1,761,000
deaths in 2018 [1]. Prognosis of LC is generally poor,
with 5-year survival ranging from 10 to 20% in different
countries [2]. Poor survival is due to the majority of
tumors being detected at an advanced stage, at which
options for curative treatment are limited [3–5].
Survival and prognosis may be much better when LC is
detected at an early stage through the use of screening
[6]. Randomized trials have demonstrated that the
potential of reducing LC mortality by screening the
high-risk group of heavy smokers with low-dose com-
puted tomography (LDCT) [6, 7].
Risk stratification for LC screening is so far mostly

based on smoking history [7]. Although smoking is a
major risk factor for LC, less than 20% of lifelong
smokers develop LC, and a non-negligible proportion of
LCs also occur in people not meeting the definitions of
heavy smoking [8]. Therefore, additional markers for
pre-selecting those at highest risk for LC screening are
highly desirable. In the past decade, dozens of single-
nucleotide polymorphisms (SNPs) associated with LC
risk have been identified through genome-wide associ-
ation studies (GWAS) [9]. Genetic risk scores (GRS)
based on SNPs identified from GWAS studies were
found to enhance performance of risk prediction models
for several common illnesses, such as cardiovascular
disease [10], diabetes [11, 12], breast cancer [13, 14],
colorectal cancer [15], and prostate cancer [16, 17].
However, few studies have evaluated the contributions
of GRS to risk stratification of LC.
Studies have shown that changes in DNA methylation

in blood prior to lung cancer diagnosis mainly occur at
smoking-associated genes [18, 19]. In recent years,
epigenome-wide association studies (EWAS) have identi-
fied a large number of CpG sites in whole blood DNA
whose methylation levels were strongly related to smok-
ing history and were also found to be related to LC risk
[20, 21]. In this study, we aimed to assess the individual
and joint potential of a GRS and a methylation risk score
(MRS) based on smoking-related CpGs for enhancing
LC risk stratification in a cohort of older adults who
were followed for 14 years.

Results
Participant characteristics
The characteristics of the 143 LC cases and 1460 con-
trols at baseline are presented in Table 1. The mean age
was 63.7 years in cases and 61.8 years in controls. The
proportion of males, current smokers, and especially
heavy smokers was much higher among cases than
among controls. The median GRS was 28 (range 18 to
42) and 27 (range 12 to 41) in cases and controls,

respectively, and the median MRS was 0.78 (range −
0.35 to + 2.48) and 0.15 (range − 0.84 to + 3.47) in cases
and controls, respectively. A large proportion of cases
had a GRS and a MRS in the highest quartile (37.1% and
68.5%, respectively).

Individual associations of GRS and MRS with LC incidence
Table 2 shows the individual associations of GRS and
MRS with LC incidence in the entire study population
and in the subpopulations including ever or heavy
smokers only. Having a score in the top quartile of
either score was associated with a significantly increased
risk of LC, but associations were much stronger for the
MRS. In the analyses among all participants, odds ratios
(ORs) (95% confidence interval (CI)) for participants in
the top quartile compared to the lowest quartile were
2.18 (1.30–3.81) for the GRS and 20.00 (8.92–53.79) for
the MRS in model 1. Additional adjusting for age and

Table 1 Characteristics of the study population at baseline

Characteristics Cases (n = 143) Controls (n = 1460) p valuea

Age (years) 63.7 (6.2) 61.8 (6.5) 0.0011

Sex

Male 90 (62.9) 643 (44.0) < 0.0001

Smoking statusb

Never smoker 17 (12.1) 704 (49.7)

Former smoker 53 (37.9) 473 (33.4)

Current smoker 70 (50.0) 239 (16.9) < 0.0001

Heavy smokersc 69 (48.3) 205 (14.0) < 0.0001

Pack-yearsd 34.8 (24.8) 12.1 (17.5) < 0.0001

GRSe

Q1 (< 24) 20 (14.0) 319 (21.8)

Q2 (24, 27) 29 (20.3) 379 (26.0)

Q3 (27, 30) 41 (28.7) 375 (25.7)

Q4 (≥ 30) 53 (37.1) 387 (26.5) 0.0110

MRSe

Q1 (< − 0.10) 6 (4.2) 365 (25.0)

Q2 (− 0.10, + 0.15) 11 (7.7) 365 (25.0)

Q3 (+ 0.15, + 0.53) 28 (19.6) 365 (25.0)

Q4 (≥ + 0.53) 98 (68.5) 365 (25.0) < 0.0001

Means (standard deviation) for continuous variables and n (%) for
categorical variables
GRS genetic risk score, MRS methylation risk score, Q quartile
aFisher’s exact test for categorical variables and Wilcoxon test for
continuous variables
bData missing for 3 cases and 44 controls; never smoker was defined as an
adult who has never smoked, or who has smoked less than 100 cigarettes in
his or her lifetime; former smoker was defined as an adult who has smoked at
least 100 cigarettes in his or her lifetime but who had quit smoking at the
time of interview; current smoker was defined as an adult who has smoked
100 cigarettes in his or her lifetime and who currently smokes cigarettes
cHeavy smokers were defined as participants with ≥ 30 pack-years of smoking
who were either current smokers or had quit smoking ≤ 15 years ago
dData missing for 15 cases and 137 controls
eClassified according to quartiles of GRS (MRS) among controls
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sex only in model 2 or for smoking status and pack-
years in model 3 reduced the corresponding ORs for
MRS to some extent. Nevertheless, with an OR (95% CI)
of 5.64 (2.13–17.03), the MRS remained a much stronger
and highly significant predictor even after full adjust-
ment for smoking status and pack-years.
Analyses among ever smokers and heavy smokers

showed similar results as those for all participants, although
associations for the MRS were somewhat less pronounced
compared to those in the entire study population, and asso-
ciations for the GRS did no longer reach statistical

significance in the restricted sample of heavy smokers. In
all models and all study populations, the MRS showed sub-
stantially stronger associations with LC risk than the GRS.

Joint associations of GRS and MRS with LC incidence
Table 3 shows the joint associations of GRS and MRS
with LC incidence in the entire study population and in
the subpopulations (ever or heavy smokers). The joint
risk categories were based on two risk groups of GRS
and MRS each (low/high risk defined by the median
GRS/MRS). The low MRS and low GRS group was

Table 2 Individual associations of GRS and MRS with LC incidence

Group Risk
score

Quartilea Cases Controls OR (95% CI)

Model 1b Model 2c Model 3d

All participants GRS Q1 (< 24) 20 319 Ref. Ref. Ref.

(Ncase/control = 143/1460) Q2 (24, 27) 29 379 1.22 (0.68–2.23) 1.23 (0.69–2.26) 1.28 (0.66–2.57)

Q3 (27, 30) 41 375 1.74 (1.01–3.09) 1.60 (0.93–2.86) 1.62 (0.87–3.15)

Q4 (≥ 30) 53 387 2.18 (1.30–3.81) 2.08 (1.23–3.64) 1.93 (1.05–3.71)

p trend 0.0010 0.0030 0.0251

MRS Q1 (< − 0.10) 6 365 Ref. Ref. Ref.

Q2 (− 0.10, + 0.15) 11 365 1.91 (0.70–5.75) 1.84 (0.67–5.55) 1.31 (0.43–4.18)

Q3 (+ 0.15, + 0.53) 28 365 4.96 (2.09–13.79) 4.49 (1.87–12.57) 2.85 (1.09–8.48)

Q4 (≥ + 0.53) 98 365 20.00 (8.92–53.79) 18.40 (8.08–50.00) 5.64 (2.13–17.03)

p trend < 0.0001 < 0.0001 < 0.0001

Ever smokers GRS Q1 (< 24) 16 155 Ref. Ref. Ref.

(Ncase/control = 123/712) Q2 (24, 27) 23 171 1.30 (0.67–2.60) 1.30 (0.66–2.61) 1.19 (0.56–2.61)

Q3 (27, 30) 36 194 1.80 (0.98–3.44) 1.70 (0.92–3.27) 1.70 (0.85–3.58)

Q4 (≥ 30) 48 192 2.42 (1.35–4.55) 2.43 (1.35–4.60) 2.23 (1.13–4.63)

p trend 0.0013 0.0016 0.0086

MRS Q1 (< + 0.12) 9 178 Ref. Ref. Ref.

Q2 (+ 0.12, + 0.46) 18 178 2.17 (0.90–5.53) 1.97 (0.81–5.08) 1.75 (0.64–5.13)

Q3 (+ 0.46, + 0.89) 33 178 4.80 (2.13–11.79) 4.32 (1.89–10.72) 2.48 (0.92–7.21)

Q4 (≥ + 0.89) 63 178 9.77 (4.49–23.53) 9.58 (4.37–23.28) 3.91 (1.46–11.40)

p trend < 0.0001 < 0.0001 0.0051

Heavy smokers GRS Q1 (< 24) 8 32 Ref. Ref. Ref.

(Ncase/control = 69/205) Q2 (24, 27) 12 57 0.84 (0.31–2.35) 0.73 (0.26–2.07) 0.75 (0.26–2.19)

Q3 (27, 30) 24 59 1.63 (0.68–4.24) 1.25 (0.50–3.35) 1.52 (0.59–4.16)

Q4 (≥ 30) 25 57 1.75 (0.73–4.57) 1.60 (0.65–4.24) 1.62 (0.64–4.38)

p trend 0.0642 0.0982 0.0998

MRS Q1 (< + 0.47) 6 51 Ref. Ref. Ref.

Q2 (+ 0.47, + 0.86) 15 51 3.25 (1.01–11.66) 3.19 (0.96–11.92) 2.38 (0.67–9.30)

Q3 (+ 0.86, + 1.32) 20 51 3.31 (1.06–11.51) 3.80 (1.18–13.70) 2.85 (0.84–10.70)

Q4 (≥ + 1.32) 28 51 4.70 (1.55–16.24) 6.07 (1.92–21.96) 4.26 (1.22–16.52)

p trend 0.0158 0.0042 0.0324

Q quartile, GRS genetic risk score, MRS methylation risk score, LC lung cancer, OR odds ratio, CI confidence interval, Ref. reference category
aQuartiles of risk score among controls
bModel 1: without adjustment for any covariates for GRS and adjusted for batch (3 subsets) and leukocyte composition for MRS
cModel 2: like model 1, additionally adjusted for age and sex
dModel 3: like model 2, additionally adjusted for smoking status and pack-years
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assigned as the reference category. In the analyses
among all participants, OR (95% CI) for participants in
the joint highest group compared to the reference group
was 9.08 (4.40–21.35) in model 1. Additional adjusting
for age and sex only in model 2 slightly reduced the cor-
responding OR to some extent. After full adjustment for
smoking status and pack-years in model 3, the corre-
sponding OR was 3.50 (1.44–9.50).
Subgroup analyses for ever smokers showed similar

results as those for all participants. For heavy smokers, as-
sociations were somewhat less distinct compared to those
in the entire study population in models 1 and 2. However,
similar risk estimates were observed in heavy smokers as
those for all participants and ever smokers after full adjust-
ment for smoking status and pack-years in model 3. Within
each MRS group, risk of LC was generally higher for partic-
ipants with high GRS, compared to low GRS, and the high-
est risk was seen in the joint highest risk group (high MRS
and high GRS) in all study populations and models.

Individual and joint predictive performance of pack-years,
GRS, and MRS for LC risk
Table 4 and Fig. 1 display the individual and joint
predictive performance of pack-years, GRS, and MRS
for LC risk. In the entire study population as well as
within the subgroups of ever and heavy smokers,
AUCs were generally the lowest for GRS alone,
whereas pack-years, MRS, and combination of MRS

and GRS generally provided similar predictive per-
formance. Prediction performance was substantially
improved when adding MRS to models based on
pack-years alone. Optimism-corrected AUCs for joint
inclusion of pack-years and MRS compared to
models including pack-years only increased from
0.781 to 0.812, from 0.701 to 0.728, and from 0.605
to 0.652 in the entire study population and within
the subpopulations of ever smokers and heavy
smokers, respectively. Additional inclusion of GRS
led to at best modest further improvement of AUCs.
However, compared to models including pack-years
only, NRIs for models including pack-years, GRS,
and MRS were 13.9% (p = 0.02), 16.6% (p = 0.02),
and 26.7% (p = 0.01), and IDIs were 2.6%, 3.0%, and
3.4% (all p values < 0.01) among all study partici-
pants, ever smokers, and heavy smokers, respectively.
Corresponding confusion matrix and precision-recall
curves showed consistent performance, where the
best predictive performance was achieved by the
joint inclusion of pack-years, MRS, and GRS, espe-
cially for heavy smokers (Table S3 and Figure S1).

Discussion
We have evaluated the individual and joint potential of a
GRS based on 31 SNPs and a MRS based on 151
smoking-associated CpGs for enhancing risk stratifica-
tion in LC prevention. We found moderate associations

Table 3 Joint associations of GRS and MRS with LC incidence

Group MRS risk
groupa

GaRS risk
groupa

Cases Controls OR (95%CI)

Model 1b Model 2c Model 3d

All participants Low Low 8 368 Ref. Ref. Ref.

(Ncase/control = 143/1460) High 9 362 0.91 (0.33–2.51) 0.86 (0.31–2.38) 0.77 (0.25–2.40)

High Low 41 330 5.61 (2.62–13.51) 5.11 (2.36–12.37) 2.29 (0.92–6.32)

High 85 400 9.08 (4.40–21.35) 7.88 (3.75–18.73) 3.50 (1.44–9.50)

p trend < 0.0001 < 0.0001 0.0005

Ever smokers Low Low 10 164 Ref. Ref. Ref.

(Ncase/control = 123/712) High 17 192 1.48 (0.62–3.67) 1.47 (0.61–3.70) 1.38 (0.51–3.95)

High Low 29 162 3.99 (1.78–9.61) 4.06 (1.80–9.87) 1.83 (0.68–5.25)

High 67 194 7.19 ( 3.39-16.69 7.03 (3.26-16.57) 3.35 (1.32-9.30)

p trend < 0.0001 < 0.0001 0.0038

Heavy smokers Low Low 6 46 Ref. Ref. Ref.

(Ncase/control = 69/205) High 15 56 2.48 (0.76–9.01) 2.12 (0.62–8.02) 1.78 (0.50–6.89)

High Low 14 43 2.81 (0.82–10.77) 3.13 (0.88–12.52) 1.96 (0.53–8.03)

High 34 60 4.01 (1.33–13.92) 4.44 (1.42–16.06) 3.58 (1.10–13.25)

p trend 0.0225 0.0097 0.0319

GRS genetic risk score, MRS methylation risk score, LC lung cancer, OR odds ratio, CI confidence interval, Ref. reference category
aThe GRS/MRS median value was used as cut-point for low-/high-risk groups
bModel 1: adjusted for batch (3 subsets) and leukocyte composition
cModel 2: like model 1, additionally adjusted for age and sex
dModel 3: like model 2, additionally adjusted for smoking status and pack-years
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of the GRS and strong associations of the MRS with the
risk of LC even after comprehensive adjustment for
smoking history in a case-control study that was nested
in a general population-based cohort study. Further-
more, we demonstrated that the addition of MRS and
GRS strongly enhanced the risk prediction compared to
the standard risk stratification by pack-years both within
the entire study population as well as within the high-
risk groups of ever smokers and heavy smokers, the im-
provement being mostly attributable to the inclusion of
the MRS. Our results provide support for including
MRS, potentially along with GRS, into LC risk assess-
ment models to more accurately stratify individuals and
select those at highest risk for inclusion in screening
programs.
LDCT is an effective screening tool for early detection

of LC and is recommended by the United States

Preventive Services Task Force to screen for LC among
high-risk heavy smokers (aged 55–80 years, with ≥ 30
pack-years of smoking who are either current smokers
or have quit smoking ≤ 15 years ago) [7]. However, false
positive results, high costs, and potential radiation
exposure remain major concerns for LDCT-based
screening [7, 22]. This underlines the importance of
identifying individuals at highest risk to maximize the
benefits and minimize the harms of screening. To facili-
tate this, multiple risk prediction models using trad-
itional factors like age, sex, family history, smoking
history, occupational exposure, etc. have been proposed
[23–25]. Traditional smoking-based risk models have
mostly used self-reported smoking exposure informa-
tion, which may not accurately represent the actual
exposure [26, 27]. Biomarkers, reflecting biologically
relevant smoking exposure, such as smoking-associated

Table 4 Individual and joint predictive performance of pack-years, GRS, and MRS for LC risk

Predictor AUC (95% CI) NRIa IDIa

Apparent .632+ % p value % p value

All participantsb

GRS 0.587 (0.536–0.638) 0.586 (0.535–0.637)

MRS 0.777 (0.731–0.823) 0.777 (0.731–0.823)

GRS + MRS 0.784 (0.738–0.830) 0.783 (0.738–0.829)

Pack-years 0.782 (0.733–0.830) 0.781 (0.733–0.830)

Pack-years + GRS 0.779 (0.730–0.827) 0.777 (0.728–0.826) 7.5 0.0146 0.86 0.0082

Pack-years + MRS 0.813 (0.767–0.859) 0.812 (0.766–0.858) 12.3 0.0355 1.99 0.0157

Pack-years + GRS + MRS 0.813 (0.767–0.859) 0.810 (0.764–0.857) 13.9 0.0198 2.59 0.0012

Ever smokersc

GRS 0.593 (0.536–0.649) 0.592 (0.536–0.649)

MRS 0.696 (0.642–0.751) 0.696 (0.641–0.751)

GRS + MRS 0.721 (0.667–0.775) 0.717 (0.663–0.770)

Pack-years 0.702 (0.644–0.759) 0.701 (0.644–0.759)

Pack-years + GRS 0.708 (0.651–0.765) 0.705 (0.647–0.762) 12.7 0.0097 1.39 0.0059

Pack-years + MRS 0.731 (0.675–0.787) 0.728 (0.672–0.784) 16.6 0.0100 1.89 0.0104

Pack-years + GRS + MRS 0.743 (0.687–0.798) 0.737 (0.681–0.792) 16.6 0.0163 2.96 0.0002

Heavy smokersd

GRS 0.574 (0.494–0.654) 0.571 (0.491–0.650)

MRS 0.629 (0.550–0.707) 0.628 (0.549–0.707)

GRS + MRS 0.649 (0.570–0.727) 0.635 (0.556–0.714)

Pack-years 0.605 (0.525–0.684) 0.605 (0.525–0.684)

Pack-years + GRS 0.619 (0.540–0.698) 0.610 (0.531–0.690) 14.5 0.0598 1.52 0.0456

Pack-years + MRS 0.662 (0.584–0.740) 0.652 (0.574–0.730) 19.4 0.0357 2.13 0.0322

Pack-years + GRS + MRS 0.672 (0.595–0.749) 0.654 (0.576–0.732) 26.7 0.0106 3.35 0.0036

GRS genetic risk score, MRS methylation risk score, LC lung cancer, AUC area under the curve, CI confidence interval, NRI net reclassification improvement, IDI
integrated discrimination improvement
aNRI and IDI were estimated between combined models including pack-years and risk scores and the pack-years only model
bCase/control number 143/1460 in all participants
cCase/control number 123/712 in ever smokers
dCase/control number 69/205 in heavy smokers
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DNA methylation markers, might therefore be most use-
ful to improve current LC risk stratification based on
self-reported smoking history. In addition, studies have
demonstrated that methylation changes at smoking-
associated genes rather than at the LC-related genes
were involved in the initiation of LC [18, 19, 28]. There-
fore, smoking-associated CpGs might be more suitable
for LC screening than LC-related CpGs. Unlike DNA
methylation, SNPs do not vary over time and are not af-
fected by exposures and disease status [29]. The SNPs
identified by GWAS may be associated with either the
initiation or progression of LC (or both), regardless of
their location at smoking-associated genes or elsewhere.
By incorporating all LC-associated SNPs into GRS and
smoking-associated CpGs into MRS, this study compre-
hensively evaluated the genetic and epigenetic effects in
LC risk stratification.
During the last decade, large-scale GWAS [9, 30, 31]

have identified numerous LC susceptibility loci. Prior
studies have explored the value of genetic variants in LC
risk prediction [32–34]. Cheng et al. [34] developed a
risk model that included both a risk score based on 38
genetic variants (selected from 241 genetic variants iden-
tified in large-scale studies of ethnically diverse popula-
tions) and self-reported smoking information, which was
evaluated in a training and testing set. In the testing set,
a modest improvement in AUC for a model that in-
cluded both a GRS and smoking information (AUC =
0.647), compared with a model that included smoking
information only (AUC = 0.625), was reported. In a
study by Qian et al. [33], inclusion of 301 GWAS

detected SNPs barely improved prediction performance
of a model that included epidemiologic factors (age, sex,
and pack-years) only (AUC 0.617 vs. 0.607 in the test
set). In our study, adding a GRS based on 31 GWAS-
identified SNPs to a model based on pack-years likewise
yielded at best only a very limited increase in AUCs.
However, relevant increases were achieved by including
the MRS, with models adding either MRS alone or both
GRS and MRS yielding substantial discrimination im-
provement as indicated by NRI and IDI.
Over the past several years, a number of studies have

highlighted the value of smoking-associated DNA
methylation biomarkers assessed in blood for LC predic-
tion [21, 35–38]. Few studies have investigated the
degree of improvement of prediction models based on
smoking-associated DNA methylation markers beyond
self-reported smoking exposure. Baglietto et al. [38] esti-
mated the gain in prediction accuracy of a model add-
itionally including 6 smoking-associated CpGs to a
model only including self-reported smoking information
(smoking status, pack-years) in two cohorts and reported
increases in AUCs of 0.026 and 0.055, respectively, in
the discovery studies from which the MRS was derived.
In previous analyses of the ESTHER study which had fo-
cused on one or three DNA methylation markers only,
substantially lower improvements of prediction accuracy
had been observed [21, 36]. The results of the current
study suggest that using more comprehensive MRS may
substantially improve risk prediction.
Our current study differs from prior studies by evalu-

ating not only the predictive value of genetic or

Fig. 1 ROC curves for GRS, MRS, pack-years, and their combination in prediction of LC incidence. a ROC curves for all participants. b ROC curves
for heavy smokers
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methylation information individually but also by com-
paring their predictive value and evaluating their com-
bined predictive value for LC prediction beyond
prediction by pack-years alone. While GRS showed
modest predictive value for LC risk, the predictive value
of MRS was much higher, and addition of GRS to
models including MRS did not improve the predictive
value in the entire study population. Nevertheless,
among the risk groups of ever and heavy smokers, the
combination of pack-years with both GRS and MRS re-
sulted in the highest predictive performance.
Our results may have important clinical implications for

LC screening and preventive strategies. Our results sug-
gested that epigenetic signatures may have the potential to
better select patients at highest risk for LC screening.
Future research should explore possibilities to further
enhance prediction by more refined MRS and possible
combinations with other potentially promising epigenetic
signatures, such as microRNA signatures [39, 40]. Future
studies should also address the acceptance, feasibility, and
cost-effectiveness of such risk stratification in LC screen-
ing programs.
To our knowledge, this is the first study to compre-

hensively evaluate the individual and joint performance
of GRS and MRS for predicting LC risk in a prospective
cohort with 14-year follow-up. Additionally, detailed in-
formation on smoking was available which enabled
evaluation of the predictive value beyond the currently
recommended, exclusively smoking-based criteria for
selecting people for LC screening. However, our study
also has some important limitations. In particular, des-
pite the large size of the cohort, this study was based on
the limited number of LC cases hindered more detailed
analyses by important factors, such as age and sex of the
study population, time between blood sampling and LC
occurrence, or different LC subtypes. Potential variation
of predictive performance by such factors should be
evaluated in even larger studies. Furthermore, although
our estimates of prediction performance of combinations
of predefined MRS, GRS, and smoking history were in-
ternally corrected for potential over-optimism by boot-
strapping, further validation in independent cohorts is
warranted. Future, ideally much larger studies should
also address the performance of GRS and MRS in pre-
dicting risk of specific genetic variants of lung cancer.

Conclusion
In summary, despite its limitations, this study provides
evidence for the potential of GRS and particularly MRS,
by themselves and in combination, for enhancing LC
risk stratification. To our knowledge, this is the first pro-
spective cohort study evaluating both types of scores in
direct comparison and combination. We showed that, al-
though both GRS and MRS predicted LC risk, predictive

value, especially predictive value beyond smoking history
was much stronger for MRS than for GRS. The predict-
ive value of MRS based on a large number of established
smoking-related CpGs investigated in this study also
outperformed the previously demonstrated predictive
value of a few single CpGs. Consideration of MRS, by it-
self or in combination with GRS, may therefore have the
potential to enhance risk stratification for LC screening.
Further research is warranted to replicate and expand
our results in larger and ethnically diverse populations
and include screening cohorts in order to more compre-
hensively evaluate the potential of the risk scores for
identifying high-risk individuals for LC screening. Future
studies should also aim for identification of additional
genetic or epigenetic markers and integration of additional
environmental or life-style factors into the risk-prediction
models in order to further enhance risk stratification for
LC and pave the way for better targeting LC screening
offers to those at highest risk.

Methods
Study population and data collection
We selected study subjects from the ESTHER study, an
ongoing population-based cohort study conducted in
Saarland, Germany. Details of the ESTHER study design
have been described previously [41]. Briefly, 9949 partic-
ipants aged 50–75 years were recruited between July
2000 and December 2002 by their general practitioners
in the context of a general health screening examination,
and they have been regularly followed-up thereafter.
Information on socio-demographic characteristics, life-
style factors, and health status at baseline was obtained
by standardized self-administered questionnaires. De-
tailed smoking history was obtained at recruitment, in-
cluding smoking status, years of initiation and cessation
(if applicable), and average number of cigarettes smoked
per day. In addition, biological samples (blood, stool,
and urine) were collected and stored at – 80 °C until
analysis. Prevalent and incident cancer was determined
by record linkage with data from the Saarland Cancer
Registry. The study was approved by the ethics commit-
tees of the University of Heidelberg and of the state
medical board of Saarland, Germany. All participants
provided written informed consent. The analysis is based
on a case-control study nested within the ESTHER co-
hort using data and biospecimen collected at baseline.
We included 143 participants with incident LC (ICD10:
C34) and 1460 participants without diagnosis of LC until
the end of 2017, for whom both GWAS and EWAS data
was available (Fig. 2).

Genotyping
DNA was extracted from whole blood samples using a
salting out procedure [42] and genotyped using the
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Illumina Infinium OncoArray BeadChip (Illumina, San
Diego, CA). General genotyping quality control assess-
ment was performed as previously described [43].
Genotypes for common variants were imputed using as
reference Dataset the 1000 Genomes Project (GP) (phase
3, Oct. 2014) for chromosomes 1 to 22 with IMPUTE
v2.3.2 after pre-phasing with SHAPEIT v2.12. Thresh-
olds were set for imputation quality to retain both com-
mon and rare variants for validation. In detail, poorly
imputed SNPs defined by an information metric I <
0.70 were excluded for the subsequent analysis. All gen-
omic locations are given in GRCh37 (hg19) coordinates.
All SNPs having a minor allele frequency (MAF) < 1%
were excluded. After imputation, the SNP set consisted
of 9,198,808 successfully genotyped and imputed SNPs.
PLINK v1.90b6.9 was then used to extract SNPs for the
required regions of interest [44].

Methylation assessment
Methylation of DNA extracted from whole blood was
quantified using the Infinium HumanMethylation 450K
BeadChip Assay (Illumina, San Diego, CA) as previously
described [28]. Briefly, 1.5 μg DNA was bisulfite converted,
and 200 ng bisulfite-treated DNA was applied with the
450K BeadChips following the manufacturer’s instruction.
Illumina’s GenomeStudio® (version 2011.1; Illumina Inc.)

was used to extract DNA methylation signals from the
scanned arrays (module version 1.9.0; Illumina Inc.) and to
calculate methylation β-values. Data were normalized to in-
ternal controls provided by the manufacturer. In addition,
probes with detection p values > 0.05, with missing values >
10%, or targeting the sex chromosomes were excluded from
analysis.

Statistical analysis
Genetic risk score (GRS)
We built a GRS using a set of 51 SNPs from published
GWAS on LC in European populations, summarized by
Bosse et al. [9] (Table S1). SNPs were excluded from fur-
ther analyses if their imputation resulted in missing
values in > 10% of our samples, or with a MAF < 0.5%
in European populations. If SNPs were in high linkage
disequilibrium (LD; D′ ≥ 0.95 and r2 ≥ 0.80) with each
other in 200 kb, we only selected the most significant
one in our sample for GRS building. Twenty SNPs were
hence ruled out, which left 31 SNPs for the further cal-
culation. The GRS values for each participant were cal-
culated as the sum of the risk alleles across the 31 SNPs.

Methylation risk score (MRS)
A set of 151 smoking-associated CpGs that had been
identified ≥ 2 times in previous smoking EWAS [20] was

Fig. 2 Flow diagram of study participants
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used to build the MRS (Table S2). The MRS for each
participant was calculated according to an algorithm
proposed by Teschendorff et al. [45]:

MRS ¼ 1
n

Xn

c
Wc

βcs−μc
σc

;

where n is the number of CpGs included in score
calculation, i.e. 151, and μc and σc are the mean methy-
lation β-value and the standard deviation of each of the
151 CpGs among never smokers (the reference), respect-
ively. βcs is the methylation β-value of each CpG site, c,
for each participant. Wc is + 1 (− 1) if the CpG, c, is
hypermethylated (hypomethylated) in smokers. In subse-
quent analyses, Wc was derived from Joehanes et al.’s
study (Table S2) [46].

Associations of GRS and MRS with LC risk
The associations of the risk scores with LC incidence
were assessed by logistic regression models, first without
adjusting for any confounders for GRS and adjusting for
batch (3 subsets) and leukocyte composition only [47]
for MRS (model 1), additionally adjusting for age and
sex only (model 2), and further additionally adjusting for
smoking status (never/former smoker, current smoker)
and lifetime cumulative smoking intensity (pack-years)
(model 3). GRS or MRS was included in the models as
categorical variables (participants classified according to
quartiles of risk score among controls). In order to as-
sess the potential of risk prediction within the risk group
of ever smokers or within the high-risk group of heavy
smokers who are commonly recommended to undergo
LC screening [7], associations of risk scores with inci-
dent LC were furthermore examined separately among
ever smokers (current or former smokers) and heavy
smokers (participants with ≥ 30 pack-years of smoking
who were either current smokers or ever smokers who
had quit smoking ≤ 15 years ago [7]).

Predictive performance of pack-years, GRS, and MRS for LC
incidence
The individual and joint performance of pack-years,
GRS, and MRS in predicting LC incidence was assessed
by areas under the receiver operating characteristic
curve (AUCs). In these analyses, GRS and MRS were en-
tered as quantitative variables. Potential over-optimism
was corrected by the 0.632+ bootstrapping method [48]
with 1000 replications using the R package “Model-
Good.” To evaluate the predicted probability changes for
subjects in the correct direction between two models,
continuous net reclassification improvement (NRI) [49]
with threshold of probability changes by at least 5% was
estimated using the R package “nricens.” To assess how
the discriminating ability improved between two models,

integrated discrimination improvement (IDI) [50] was
estimated using the R package “PredictABEL.”
All statistical analyses were conducted by the R soft-

ware, version 3.5.3 (R Foundation, Vienna, Austria).
Two-sided p values of < 0.05 were considered statisti-
cally significant.

Supplementary information
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1186/s13148-020-00872-y.
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