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Abstract

Background: Prenatal inflammation has been proposed as an important mediating factor in several adverse pregnancy
outcomes. C-reactive protein (CRP) is an inflammatory cytokine easily measured in blood. It has clinical value due to its
reliability as a biomarker for systemic inflammation and can indicate cellular injury and disease severity. Elevated levels of
CRP in adulthood are associated with alterations in DNA methylation. However, no studies have prospectively
investigated the relationship between maternal CRP levels and newborn DNA methylation measured by microarray in
cord blood with reasonable epigenome-wide coverage. Importantly, the timing of inflammation exposure during
pregnancy may also result in different effects. Thus, our objective was to evaluate this prospective association of CRP
levels measured during multiple periods of pregnancy and in cord blood at delivery which was available in one cohort
(i.e., Effects of Aspirin in Gestation and Reproduction trial), and also to conduct a meta-analysis with available data at one
point in pregnancy from three other cohorts from the Pregnancy And Childhood Epigenetics consortium (PACE).
Secondarily, the impact of maternal randomization to low dose aspirin prior to pregnancy on methylation was assessed.

Results: Maternal CRP levels were not associated with newborn DNA methylation regardless of gestational age of
measurement (i.e., CRP at approximately 8, 20, and 36weeks among 358 newborns in EAGeR). There also was no
association in the meta-analyses (all p > 0.5) with a larger sample size (n = 1603) from all participating PACE cohorts with
available CRP data from first trimester (< 18 weeks gestation). Randomization to aspirin was not associated with DNA
methylation. On the other hand, newborn CRP levels were significantly associated with DNA methylation in the EAGeR
trial, with 33 CpGs identified (FDR corrected p < 0.05) when both CRP and methylation were measured at the same time
point in cord blood. The top 7 CpGs most strongly associated with CRP resided in inflammation and vascular-related
genes.
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Conclusions: Maternal CRP levels measured during each trimester were not associated with cord blood DNA
methylation. Rather, DNA methylation was associated with CRP levels measured in cord blood, particularly in gene
regions predominately associated with angiogenic and inflammatory pathways.

Trial registration: Clinicaltrials.gov, NCT00467363, Registered April 30, 2007, http://www.clinicaltrials.gov/ct2/show/
NCT00467363
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Background
Inflammation is a non-specific response to insults to the
body. A five-fold increase in inflammation, as measured
by CRP levels, occurs over the course of normal preg-
nancy [1], and the fetal impact is unknown. Elevated in-
flammation beyond the physiological increase during
pregnancy has been implicated as a mediator in the as-
sociations of a myriad of prenatal exposures (e.g., infec-
tious disease [2], maternal obesity [3, 4], maternal stress
[5], and air pollution [6]) with offspring health. More-
over, maternal inflammation is linked with preterm birth
[7, 8], preeclampsia [9, 10], and childhood asthma/aller-
gies [11–14]. Also, women with chronic inflammatory
diseases such as rheumatoid arthritis have lower weight
babies [15]. Developmental programming studies suggest
that prenatal exposures could alter long-term offspring
health through epigenetic changes, often effected via
DNA methylation. DNA methylation is one epigenetic
modification that has become frequently studied due to
the availability of reliable and affordable technologies.
C-reactive protein (CRP) is a cytokine routinely used

to measure inflammation. CRP is an acute phase react-
ant produced by the liver, and serum levels can increase
3000-fold within a short amount of time as part of in-
nate immunity [16]. Its plasma half-life is about 18 h but
in the acute phase may only be 75min [16]. Rapid in-
crease in CRP is associated with infections rather than
prenatal exposures or systemic inflammation. While
many cytokines including interleukins and interferons
are part of the inflammatory response, CRP is most
often studied due to reliable assay and clinical use as a
global marker of systemic chronic inflammation. In
adults, circulating CRP has been cross-sectionally associ-
ated with altered DNA methylation patterns in white
blood cells in a meta-analysis of epigenome-wide studies
with data from 8863 Europeans and 4111 African Amer-
icans [17]. Moreover, evidence from a longitudinal study
of over 100 adults shows DNA methylation changes spe-
cific to CRP levels measured 10 years prior, suggesting
lasting influence of inflammation on DNA methylation
[18]. However, it is unclear whether CRP throughout
pregnancy has similar effects on newborn methylation,
and whether the timing of the exposure at different ges-
tational ages, including at delivery, matters. Longitudinal

analyses of CRP during pregnancy, therefore, could be
informative in understanding the role of inflammation
on newborn methylation. Decreasing maternal inflam-
mation could also be another way to demonstrate a
causal role, and low dose aspirin use may decrease ma-
ternal CRP [19], which may in turn alter newborn
methylation.
We aimed to comprehensively identify newborn DNA

methylation differences associated with prenatal CRP ex-
posure. In the Effects of Aspirin in Gestation and
Reproduction (EAGeR) study, high-sensitivity CRP levels
were measured longitudinally in maternal serum at three
time points during pregnancy and in cord blood at deliv-
ery. Newborn DNA methylation was assessed in cord
blood obtained at delivery. In addition, as part of the
Pregnancy And Childhood Epigenetic (PACE) consor-
tium [20], maternal CRP levels measured in the first tri-
mester and DNA methylation in cord blood were
available from three international pregnancy cohorts.

Results
Women in EAGeR had an average pre-pregnancy BMI
of 25.2 kg/m2, predominantly did not smoke, and 43%
had household income levels above $100,000 (Table 1).
Levels of maternal and cord blood CRP are provided in
Table 2. No significant associations between maternal
CRP concentrations during pregnancy were found re-
gardless of gestational age at measure in EAGeR (i.e., in
first, second, or third trimester) in crude models ad-
justed for covariates (i.e., Model 1: maternal age, smok-
ing, income, pre-pregnancy BMI, plate) or in two
models additionally adjusting for cell type distribution
using two different cord blood reference panels (i.e.,
Model 2, Bakulski [21]; Model 3, Gervin [22] (Supple-
mental Tables A–C in the online repository, Figshare)).
In sensitivity analysis, we repeated all analyses without
exclusion of CRP >10 mg/dl so as to not exclude
acute infections but found no associations aside from
one CpG with third trimester CRP levels which was
not in a known gene region (cg14503868; beta = −
0.02, FDR p = 0.01; located in Chr 9, position
128504605, closest to PBX3) (See Supplemental Ta-
bles A4, B4, C4 on Figshare).
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Similarly, in the meta-analysis with three PACE co-
horts for first trimester CRP measures, no significant as-
sociations were found. Table 3 lists the top 5
associations (all FDR p > 0.05) in the meta-analysis and
the direction of association from each cohort. Supple-
mental Table 1 provides characteristics of the partici-
pants in the other cohorts, and Supplemental Table 2
provides information on the genomic inflation of the
various models run from each study.
One association with newborn methylation was identi-

fied in additional analyses performed in EAGeR to evalu-
ate whether cumulative inflammation over pregnancy (as
estimated by the area under the curve of CRP measured
in gestational weeks 8–36) was associated with DNA
methylation in offspring (Supplemental Tables D1-3 on
Figshare). The CpG (cg09180262) was significant only
for Model 3 with small effect size (− 0.0002 per log unit
CRP). We also assessed “the extremes” by comparing
newborn methylation in infants born to women consist-
ently in the highest tertile of CRP (n = 64) for all 3 tri-
mesters of pregnancy compared to newborns of women
consistently at the lowest tertile (n = 62). In this analysis,
DNA methylation levels at 5 CpGs were associated with

CRP, the most highly associated CpG being in the intron
of the major histocompatibility complex, class II, DQ
beta 1 (HLA-DQB1). See Supplemental Table 3 for an-
notated results of the top 6 CpGs and Supplemental Ta-
bles D–E on Figshare for full results.
In the analysis comparing newborn CRP measured in

cord blood at the same time as DNA methylation, 108
significant associations were observed in crude models
(Model 1) without cell-type adjustment initially in
EAGeR. After Model 2 adjustment using the Bakulski
reference [21] to estimate cell type distribution, 71 sig-
nificant associations were found. This number was fur-
ther reduced in Model 3 after adjustment for cell type as
estimated by Gervin et al. [22], and 33 significant
associations were identified (Table 4). Supplemental
Figure 2 shows the overlap in the associations found
between the 3 models. Of all the CpGs identified, 20
were FDR-significant in all three models regardless of
cell type adjustment, whereas 6 associations (as
marked by asterisks in Table 4) were significant only
in Model 3. Effect sizes of Model 3 associations
ranged from 2 to 15% differences in methylation per
log unit change in CRP at delivery, and the top 8

Table 1 EAGeR maternal and infant characteristics

Placebo Low-dose aspirin

n = 358 n/mean %/SD n/mean %/SD n/mean %/SD p value

Maternal age (years) 28.2 4.4 28.2 4.6 28.2 4.3 0.91

High school or more 320 89% 157 91% 163 88% 0.27

Randomized to aspirin 185 52% 0 0 185 100% n/a

Smoking 10 2.8 4 2.3 6 3.2 0.30

≥ $100,000 income 152 43% 68 39% 84 45% 0.65

Married 346 97% 163 94% 183 99% 0.03

BMI (kg/m2) 25.2 5.6 25.8 6.0 24.6 5.1 0.05

Female baby 179 50% 93 54% 86 46% 0.20

Gestational age (wk) 38.9 1.6 38.9 1.73 38.9 1.37 0.98

Birth weight (g) 3347.0 475.0 3358.3 514.5 3336.6 436.2 0.67

Missing (n), BMI (3), smoking (2)

Table 2 Distribution of CRP concentrations

Study Timing of measure n GA (week) of measure Mean CRP SD CRP Median CRP CRP range (min–max)

EAGeR Preconception 350 n/a 1.7 1.8 0.9 0.11–9.96

EAGeR 1st trimester 322 8.8 3.0 2.4 2.3 0.15–9.86

EAGeR 2nd trimester 304 20.9 4.2 2.4 3.7 0.15–10

EAGeR 3rd trimester 320 36.5 3.8 2.2 3.4 0.17–9.94

EAGeR AUC log (CRP) 359 n/a 46.2 14.4 43.8 13.98–97.83

EAGeR Delivery CRP 358 Delivery 0.2 0.4 0.1 0–5.67

INMA 1st trimester 266 13.5 4.4 2.1 4.0 2.00–9.38

PREDO 1st trimester 242 13.0 3.7 2.4 3.1 0.23–9.78

Generation R 1st trimester 773 13.1 3.9 2.5 3.3 0.3–10.0
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CpGs were Bonferroni significant (p < 6 × 10−8).
There were almost equal numbers of CpGs that had
higher methylation (18 CpGs) as lower methylation
(15 CpGs) in relation to increasing concentrations of
CRP at delivery. The top CpG (cg13138089, p = 2 ×
10−14) is in the CpG island for the gene ECEL1P2
(Endothelin Converting Enzyme Like 1 Pseudogene
2), which is relevant for endothelial function. Apart
from the 3 CpGs on the X chromosome, 3 associated
with non-coding RNAs, and 4 with no known genes
within 5 kb, the gene locations and functions of the
remaining 23 CpGs were reviewed (Supplemental
Text). Among the 33 significant CpGs, no significant
cell type specific signals were identified by eFORGE.
However, enrichment for transcription factors related
to immune cell lineages preserved across evolutionary
lines was noted from several databases (Supplemental
Figure 3 and Supplemental Table 4).
Lastly, approximately half of the EAGeR participants were

randomized to low-dose aspirin as expected (Table 1).
Randomization to low dose aspirin was not associated with
differences in newborn methylation (Supplemental
Figure 1), except for DNA methylation at one CpG
(cg2002882, chromosome 13, position 79169823, beta
= 0.009, FDR-p = 0.04).

Discussion
We report, to our knowledge, the first study to examine
the longitudinal association between prenatal inflamma-
tion as repeatedly measured by CRP and newborn DNA
methylation at delivery (Supplemental Figure 4). Associ-
ations relevant to inflammation/angiogenesis were iden-
tified in newborns at delivery suggesting that CRP, as an
acute phase reactant, associates with methylation of cir-
culating cells when measured at the same time point, re-
iterating CRP’s role in inflammatory and angiogenic
pathways although the temporality of these associations
remains unclear. Few associations in genes related to
histocompatibility proteins/antigens were identified with
persistent high CRP.

CRP during pregnancy
The general lack of association between circulating ma-
ternal CRP levels during pregnancy and newborn DNA
methylation may be related to several reasons. First, due
to its short half-life, CRP may represent transient acute
inflammation rather than chronic inflammation. How-
ever, few associations emerged even when we modeled
longitudinal CRP levels in two different ways to capture
women with relatively and chronically higher levels
throughout pregnancy. These analyses were done by
modeling cumulative CRP using an area under the curve
model with repeated measures and by categorizing
women consistently in the top tertile of CRP from first
through third trimester. For the latter, we observed a
few differences in DNA methylation located at genes re-
lated to immune function after cell type adjustment.
HLA-DQB1 codes for a class II major histocompatibility
complex protein, PUM3 codes for a minor histocompati-
bility antigen, and MYO1G codes for a minor histocom-
patibility antigen precursor. In other studies evaluating
prenatal exposures on offspring methylation, HLA-DQB1
methylation differed between siblings at 4–6 years of age
before and after maternal weight loss from bariatric sur-
gery [24], and MYO1G methylation was associated with
environmental chemical exposure [25]. However, these
findings require replication given the selectiveness of the
sample.
As CRP does not cross the placental barrier [26], its

indirect influence on neonatal health may be modified
by downstream factors including immune responses.
And while the majority of previous studies have found
maternal CRP to be associated with smaller newborn
size [27, 28], it is inconsistently associated with other
conditions [2, 29]. Studies linking maternal CRP with
childhood asthma/allergies [12, 14] have also been in-
consistent. These observations, in combination with the
natural rise of CRP during pregnancy [30], make it diffi-
cult to evaluate normative rather than “elevated” CRP in
the context of pregnancy. We modeled linear associa-
tions with the understanding that higher inflammation is
indicative of cellular damage, but in the context of

Table 3 Meta-analysis of first trimester CRP and newborn methylation in four cohorts

CpG Site Effect SE p value* Direction** Het. p value Chr: position

cg19858671 0.0041 8.00E−04 1.21E-06 ++?+ 0.83 8: 130951373

cg06320401 − 0.0092 0.0019 1.50E-06 ---- 0.74 1: 48176755

cg22649187 − 0.0069 0.0015 3.56E-06 ---- 0.88 11: 48176755

cg04747517 − 0.0022 5.00E−04 3.89E-06 ---- 0.73 3: 169755595

cg05986933 − 0.0042 9.00E−04 4.11E-06 ---- 0.84 2: 43020457

SE standard error, Het heterogeneity, chr chromosome
*All FDR p values < 0.5 (non-significant) and were adjusted for maternal age, race (as applicable), socioeconomic income (by education, income, or other cohort
specific factors), maternal BMI and smoking, and cell type distribution [21] (Model 2)
**Direction of associations for each cohort in the following order: GenR, PREDO, INMA, EAGeR; the “?” is due this CpG being excluded from analysis in INMA after
data cleaning steps
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pregnancy, it is possible that some non-linear relation-
ships exist for the lowest and the highest CRP levels.
Second, CRP levels have been shown not to correlate
with other cytokines measured early in pregnancy [31].
Thus, other biomarkers that may provide a fuller picture
of prenatal inflammation may be needed to further in-
vestigate the role of inflammation. Third, cord blood
CRP levels were 10- to 20-fold lower than maternal CRP
levels (Table 2), despite evidence that maternal CRP in-
creases dramatically during labor and delivery [32].

Placental production of CRP is largely directed into ma-
ternal circulation [33]. Thus, natural protective mecha-
nisms may cause maternal CRP to not reflect local
inflammation in the developing fetus and explains why it
is not associated with newborn methylation. Last, the
sample size of EAGeR (n = 391) has limited power to
detect differences. Nevertheless, a meta-analysis of over
1600 newborns and the findings for CRP at delivery in
EAGeR suggest otherwise. Taken together, maternal
CRP levels during pregnancy are generally not associated

Table 4 Delivery CRP and newborn DNA methylation in EAGeR

CpG Beta SE p value FDR p value chr pos Gene name Relation to island**

cg13138089 0.152 0.01988 2.11E−14 1.73E−08 2 233251770 ECEL1P2 Island

cg23289135 − 0.1253 0.01731 4.63E−13 1.90E−07 17 6182962 OpenSea

cg02323356 0.05283 0.008898 2.89E−09 0.00065 2 220313153 SPEG Island

cg18875674 − 0.07196 0.01215 3.19E−09 0.00065 11 73026651 ARHGEF17 OpenSea

cg13558754 0.09236 0.01572 4.22E−09 0.00069 19 36247867 HSPB6; PROSER3 Island

cg16426346 − 0.09836 0.01706 8.14E−09 0.0011 6 1377047 N_Shore

cg20789824 − 0.02913 0.005279 3.42E−08 0.004 9 127562861 OLFML2A OpenSea

cg17990365 − 0.04933 0.009036 4.79E−08 0.0049 11 319718 IFITM3 S_Shore

cg10884341 0.02292 0.004233 6.16E−08 0.0056 2 198365065 HSPE1 Island

cg20264732 0.02438 0.004544 8.05E−08 0.0066 16 68269763 ESRP2 Island

cg19013417 − 0.02286 0.004313 1.17E−07 0.0087 X 6146809 NLGN4X S_Shore

cg19922333 − 0.04085 0.007806 1.66E−07 0.011 2 218253142 DIRC3 OpenSea

cg24340661 − 0.02255 0.004367 2.43E−07 0.012 1 166944531 MAEL; ILDR2 N_Shore

cg17238334 − 0.03159 0.00611 2.33E−07 0.012 5 71920983 LINC02056 OpenSea

cg23200634 − 0.09106 0.01763 2.39E−07 0.012 11 68709832 IGHMBP2 OpenSea

cg04415152* 0.03967 0.00764 2.08E−07 0.012 11 119383197 USP2-AS1 OpenSea

cg12615852 − 0.06756 0.01297 1.92E−07 0.0126 14 106330121 N_Shelf

cg12499872 0.06191 0.0121 3.09E−07 0.014 16 58019893 TEPP Island

cg02660803 − 0.09608 0.01885 3.44E−07 0.015 X 91033070 PCDH11X N_Shore

cg23133011 0.03135 0.006176 3.84E−07 0.016 11 122847242 BSX N_Shore

cg25460807 0.04084 0.008097 4.55E−07 0.018 8 21908022 DMTN S_Shelf

cg18449964 0.03482 0.006925 4.94E−07 0.018 18 72917101 ZADH2 Island

cg25389127 − 0.01482 0.002998 7.62E−07 0.027 X 8700496 ANOS1 Island

cg22876643 0.03535 0.007197 9.06E−07 0.03 1 68962318 DEPDC1 Island

cg04136921 − 0.05492 0.01121 9.67E−07 0.03 11 5626314 TRIM6; TRIM6-TRIM34 OpenSea

cg26354128 0.0325 0.006636 9.72E−07 0.03 14 93897195 UNC79 Island

cg19766763* 0.0307 0.006247 8.93E−07 0.03 18 61604237 SERPINB10 Island

cg19561181* − 0.05247 0.0108 1.17E−06 0.03 20 56794558 ANKRD60 OpenSea

cg10235275* 0.03552 0.007398 1.58E−06 0.04 10 65225544 JMJD1C Island

cg09689461* 0.0601 0.0126 1.84E−06 0.048 1 163130728 LOC101928404; RGS5 OpenSea

cg03305585 0.0339 0.007105 1.83E−06 0.048 7 37805796 OpenSea

cg21542650* 0.03161 0.00663 1.87E−06 0.048 12 2903593 FKBP4 Island

cg18973939 0.03444 0.007235 1.94E−06 0.048204347 1 16164122 FLJ37453 Island

Model 3 adjusted for maternal age, smoking status, income, pre-pregnancy BMI, plate, and cell count distribution (as estimated in Gervin et al. [22])
Asterisk (*) indicates CpG not previously identified in previous crude models or model 1 adjusting for cell type using Balkulski et al. [21]
Double asterisks (**) as defined by Illumina [23]
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with alterations in DNA methylation patterns to the off-
spring as measured at delivery in cord blood.
Randomization to low-dose aspirin was also largely

not associated with differences in newborn methylation.
The single association identified on chromosome 13
(cg20028827) after accounting for multiple testing (FDR
p = 0.04) was located ~ 3.5 kb upstream of the promoter
of POU4F1 (chr13:79173227-79177695). It is in a DNase
hypersensitive site (chr13:79169325-79170815) with
peaks for transcription factors EZH2 and SUZ12, among
others. The levels of H2K4Me1 are slightly higher but
with no apparent enhancer overlap. However, the CpG
is within the intron of several ncRNA variants of the
OBI1-AS1 (previously known as the PUF1-AS1 or
RNF219-AS1). A log unit increase in CRP levels was as-
sociated with a < 1% increase in methylation levels (ad-
justed beta = 0.009). POU4F1 codes for neural
transcriptors, particular to ganglions, by playing a role in
development of calcium channels [34]. However, its
methylation has only been examined with regard to
breast tissue tumors (where it was found to be hyper-
methylated and its expression silenced) [35].

CRP at delivery
While no associations with maternal CRP were identi-
fied, newborn CRP levels were associated with differ-
ences in cord blood methylation. Interestingly, 13 of the
CpGs were located in or near genes associated with in-
flammatory or angiogenic pathways (ECEL1P2, SPEG,
ARHGEF17, OLFML2A, HSPB6, HSPE1, IFITM3,
ZADH2, DEPDC1, TRIM6, SERPINB10, JMJD1C, and
RGS5). Of note, the top 7 genes, 5 of which exceeded
Bonferroni significance, are among these genes. eFORGE
results also confirm these methylation changes corre-
sponded to transcription factors involved in develop-
ment of immune cell lineages. These observations
further support their biological relevance in relation to
CRP. Previous studies that have measured inflammation
and methylation in adults have been systematically
reviewed [36]. We compared the cross-sectional associa-
tions found in the current analysis at birth with those of
previous epigenome-wide association studies among
adults but were unable to find overlap between statisti-
cally significant CpGs identified by other studies and our
results [17, 18]. All but one study used the 450K panel,
such that most of the identified CpGs in the current
analysis are unique. We add to the list of CpGs identi-
fied, which include sites that are novel to the EPIC
microarray. Myte et al. also used the EPIC microarray
but had a limited sample size of < 200 adults [18]. Cord
blood samples unlike those from older children or adults
normally contain nucleated red blood cells, which may
also explain differences among studies [37]. Moreover,
immune system development continues after delivery as

the newborn comes into contact with microbes,
whereas adult immune systems have matured with re-
spect to a range of environmental exposures and their
own microbiome [38].

Limitations
EAGeR included women with 1–2 previous pregnancy
losses. We cannot exclude that genetic causes of preg-
nancy loss [39], including a role for CRP [40], may play
a role. This may limit the generalizability of the EAGeR
results. However, the PACE birth cohorts contributing
to the first trimester analysis were recruited from the
general population and echoed the same findings with
regards to maternal CRP. The small sample size of
EAGeR and the meta-analysis may have limited power
to detect weaker associations. Given that inflammation
plays an integral role in recruitment of white blood cells,
using a mix of cells as in buffy coat or any blood sample
without prior selection of cell type for DNA methylation
measurement requires estimation of cell type based on
previous reference panels [21, 22]. Remaining estimation
errors cannot be excluded. Also, the specificity of the as-
sociations identified to CRP is unclear. Our results are
based on cord blood derived methylation and unclear if
generalizable to other tissues. CRP is just one acute
phase protein (APP), and various cytokines/chemokines
either leading to APP production are increased by APPs
(e.g., interleukins, TNF-a) in turn recruits immune cells.
Thus, associations might have been due to correlated
cytokine production and upstream factors. Lastly, the
Illumina platform covers a large number of CpG sites
but only a small fraction of the genome. It might not
provide sufficient coverage to evaluate differences in glo-
bal methylation as other techniques [41]. Nevertheless,
site specific differences identified in this approach re-
vealed specific genes and biological pathways related to
inflammation.

Conclusion
In conclusion, DNA methylation levels as measured in
cord blood do not correlate with prenatal levels of CRP
over pregnancy. Rather, methylation levels are consist-
ent with concurrently measured CRP. The differen-
tially methylated CpG sites suggest pathways that are
modulated by inflammatory cytokines. Future research
in larger studies and using different biomarkers of in-
flammation apart from CRP are needed for under-
standing the role of prenatal inflammation in fetal
and neonatal developmental programming. Other epi-
genetic mechanisms such as histone acetylation and
non-coding RNAs may also provide insights into the
role of prenatal inflammation.
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Methods
Study design
The Effects of Aspirin in Gestation and Reproduction
(EAGeR) trial (2007–2011; NCT00467363) randomized
women prior to conception who previously experienced
1–2 prior pregnancy losses to 81mg low-dose aspirin
and 400 μg folic acid, or placebo plus 400 μg folic acid
[42]. Randomization to low-dose aspirin did not signifi-
cantly alter live birth rates [42]. Its design and results
are detailed elsewhere [42]. The current analysis was
nested among 391 newborns with DNA methylation
data available from the Utah site [43]. The University of
Utah IRB approved the study (Salt Lake City, Utah IRB
#1002521), and all participants provided written in-
formed consent prior to enrollment. Among the 391
newborns with methylation data, we excluded 12 new-
borns of non-white self-reported ethnicity (to avoid
population stratification in meta-analysis across cohorts)
and 9 for missing CRP measures.

Laboratory methods
Women in EAGeR underwent multiple blood draws;
first at baseline prior to pregnancy and at approximately
8, 20, and 36 weeks gestation during pregnancy. In
addition, among 428 deliveries from the Utah site, 10
mL cord blood was collected in a plasma collection tube
with ethylenediaminetetraacetic acid (EDTA) [43]. CRP
was quantified from maternal serum samples and cord
blood plasma by means of an immunoturbidimetric
assay (Roche COBAS 6000, Roche Diagnostics, IN) with
a limit of detection (LOD) of 0.15 mg/L. Cord blood
DNA underwent bisulphite conversion with standardized
kits (e.g. Zymo EZ DNA MethylationTM kit, Zymo, Ir-
vine, CA), followed by measurements of DNA methyla-
tion using the Infinium MethylationEPIC BeadChip
microarray [43].

Statistical analysis
Data cleaning for EAGeR
Methylation data were processed using the minfi pack-
age in R [44], including the identification of failed probes
and scaling with Illumina control probes to determine
methylation values. The beta value (β) was determined
for each of the CpG sites by the fluorescent signals (β =
Max (M, 0) / [Max (M, 0) + Max (U, 0) + 100), where M
and U are the intensity of methylated and unmethylated
allele [45]. β values approaching 1 are completely meth-
ylated, and those close to 0 are unmethylated. Back-
ground and dye-bias corrections were applied. Quantile
normalization was used to normalize beta values be-
tween two types of probes [46]. The purpose of this step
is to eliminate potential probe type bias (type I vs II
probes). Cell type mixture was then estimated on the full
set of normalized data (FlowSorted.CordBlood.450K

package) [21]. Principal component analysis (PCA) was
performed to further detect outliers and samples mis-
matched in sex compared against information from elec-
tronic medical records. Five samples with sex mismatch
were further excluded. We extracted the detection p
value for each methylation measure (per site per sample)
and filtered data that failed detection p value (p > 0.01).
Beta values were replaced as missing if either detection p
value > 0.01 or bead counts < 3. We removed samples
and CpG sites with low passing rate (< 97%) based on
detection p value and bead counts. After probe removal,
821,665 CpG probes remained.

Modeling exposure for EAGeR
To exclude acute inflammation from infection, mater-
nal and cord plasma samples with CRP above 10 mg/
L were excluded from analysis (15 at preconception,
39 at 8 weeks, 54 at 20 weeks, 28 at 36 weeks, 1 at de-
livery from EAGeR). Among the 391 neonates with
DNA methylation data, 358 remained for analyses
with CRP measured at any time during pregnancy.
CRP was natural log transformed for normality. Lon-
gitudinal measures were also used in combination to
examine inflammation in two ways. First, the cumula-
tive concentration of CRP (log transformed) across
the first, second, and third trimesters was approxi-
mated using linear mixed models. The linear mixed
model was fitted with a random intercept and ran-
dom centered week of CRP measurements. The model
estimates also incorporated fixed effects including an
intercept and a linear and quadratic term of centered
week of CRP measurements, based on the regression
curve of the original CRP concentrations. For each
subject, parameters from the model were used to de-
fine the predicted CRP curves. The area below the
curves was divided into 1000 parts. The area of each
part was then calculated as a rectangle, since they are
very small, and summed to obtain the cumulative
CRP concentrations over pregnancy [47]. In addition,
methylation was also examined by comparing two ex-
treme groups of women that is women in the top ter-
tile of CRP across all trimesters were compared with
women in the bottom tertile across all trimesters. Cu-
mulative and tertile analyses did not exclude maternal
CRP levels above 10 mg/L to better characterize in-
flammation across the whole of pregnancy for the
same woman. While the primary analysis excluded
CRP levels above 10 to rule out outliers that would
have strong influence on estimates based on linear re-
gression models, it would have excluded too many
women for cumulative or tertile analyses who just
had one of the 3 with an “elevated” measure. The cu-
mulative and tertile analyses were more robust to
outlying CRP.
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Modeling outcomes for EAGeR
Trimming of the outlying methylation values at IQR ± 3
× IQR (IQR = inter-quartile range) was performed after
values were normalized. Complete case analyses were
performed without imputation. Linear mixed effects
models were used to test associations between methyla-
tion beta values at each CpG site and measured CRP at
each time point and as cumulative or by extreme tertiles
with adjustment for covariates. Batch effects (as covari-
ates of chip and row) were accounted for through ran-
dom effects. FDR-correction was applied to account for
multiple testing.

Covariates for EAGeR
Covariates included maternal age (continuous, by self-
report), smoking (yes/no by self-report), income (5 cat-
egories from ≥ $100,000, $75,000–99,999, $40,000–69,
999, $20,000–19,999, ≤ $19,999 by self-report), pre-
pregnancy BMI (continuous, by direct measure prior to
pregnancy), plate (for batch effects), and with or without
cell count distribution (in separate models). Rather than
adjustment for self-reported ethnicity, 12 non-white par-
ticipants were excluded from EAGeR analyses. Three
models were run; Model 1 adjusting for covariates and
two models additionally adjusting for cell type distribu-
tion using two separate reference panels. Model 2 ad-
justed for covariates and cell counts based on a cord
blood reference using minfi in R [21], including B-cell,
CD-4+ T cells, CD-8+ T cells, granulocytes, monocytes,
NK-cells, and nucleated RBCs. A major difference previ-
ously identified between adult and cord blood cell count
distribution in terms of DNA contribution from buffy
coat samples is the proportion of nucleated red blood
cells [21]. Model 3 used a more recent cord blood refer-
ence pooling together larger number of samples with
available cell distribution information [22].

Meta-analysis
As part of the PACE consortium [20], three pregnancy
cohorts (INMA [48], Generation R [49], PREDO [50])
provided results for the associations between CRP mea-
sured in first trimester samples and DNA methylation
measured in cord blood at delivery adjusting for the co-
variates mentioned above including with and without
adjustment for cell type using two different references as
described above [21, 22]. A meta-analysis of results was
conducted with EAGeR as the fourth cohort. Inverse-
variance weighted fixed effects meta-analysis was per-
formed among a total of 1603 newborns using the soft-
ware METAL [51]. Specific analytical and laboratory
methods are included in Supplemental materials for each
of the cohorts.

Bioinformatics
All FDR-significant CpGs were searched in the UCSC
Genome Browser for genes within 5 kb of the location
provided by Illumina. Information on distance to the
TSS or which region within a gene body the CpG is lo-
cated was ascertained. Gene names were further updated
using the NCBI Gene Database. To further understand
functional enrichment, eFORGE (v2.0) was utilized [52].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13148-020-00852-2.
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