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Abstract

Background: Machine learning is a sub-field of artificial intelligence, which utilises large data sets to make
predictions for future events. Although most algorithms used in machine learning were developed as far back as
the 1950s, the advent of big data in combination with dramatically increased computing power has spurred
renewed interest in this technology over the last two decades.

Main body: Within the medical field, machine learning is promising in the development of assistive clinical tools
for detection of e.g. cancers and prediction of disease. Recent advances in deep learning technologies, a sub-
discipline of machine learning that requires less user input but more data and processing power, has provided
even greater promise in assisting physicians to achieve accurate diagnoses.
Within the fields of genetics and its sub-field epigenetics, both prime examples of complex data, machine learning
methods are on the rise, as the field of personalised medicine is aiming for treatment of the individual based on
their genetic and epigenetic profiles.

Conclusion: We now have an ever-growing number of reported epigenetic alterations in disease, and this offers a
chance to increase sensitivity and specificity of future diagnostics and therapies. Currently, there are limited studies
using machine learning applied to epigenetics. They pertain to a wide variety of disease states and have used
mostly supervised machine learning methods.

Background
Clinical epigenetics is a promising field of research. There
is evidence that DNA methylation changes at cytosine-
phosphate-guanine (CpG) sites are associated with disease
development [1–3]. Beyond genetic background, DNA
methylation may additionally reflect environmental expo-
sures and could improve diagnostic accuracy and prog-
nostic prediction of certain diseases and be targetable by
personalised therapy in the future [4, 5].
The current medical environment is characterised by

collection of vast amounts of patient, hospital, and

administrative data [6, 7], which makes traditional ap-
proaches to investigating these data individually less ideal.
Machine learning (ML), however, is able to integrate large
and complex data sets [8]. These data sources have the
potential to enhance patient care and outcomes. A perso-
nalised medicine approach is tightly connected to in-
creases in omics-data. For example, DNA sequence
databases double in size twice a year [9]. Indeed, the in-
creases in computer processing coupled with the rapid re-
duction in the cost of genomic sequencing have outpaced
the rate of computing hardware advances [10]. Whilst far
from a panacea, ML may be a tool to assist physicians in
interpreting information-rich clinical data, including those
collected in epigenetic studies [11, 12].
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This review was guided by the question, “What are the
machine learning models that utilize DNA methylation to
classify or diagnose disease states?” This review focused
on three key aspects within the search strategy, namely,
the data science technique, the biomedical technique, and
the outcome of interest. The search strategy involved two
databases, namely, PubMed and Google Scholar. The
search string for the PubMed database was as follows:
(‘machine learning’ OR ‘artificial intelligence’) AND (“epi-
genetic*” OR “DNA methylation”) AND (“classification”
OR “diagnosis”). For Google Scholar, the terms machine
learning, artificial intelligence, epigenetic, DNA methyla-
tion, classification, and diagnosis were utilized. Following
the identification of key articles, references in the identi-
fied articles were checked to further identify relevant lit-
erature (n = 1). Once selected, all literature was evaluated
for the type of ML utilized, the type of DNA methylation
technique used, ML performance measures, validation
technique, and the number of samples and number of
controls in testing sets and validation sets.
This review is written in the context of the concurrent

burgeoning interest for the medical practitioner in po-
tential clinical applications of epigenetics and ML. The
first aim of this review is to provide a brief overview of
epigenetics, followed by its clinical application potentials.
The second aim is to provide a brief summary of the
current state of ML and its application to the field of
epigenetics and personalised medicine. Finally, section
three delves into future directions that may be of value
to scientists and physicians looking to harness the power
of ML in epigenetics. As the field of ML is likely to find
widespread application in clinical practice via diagnostic
tools, this review aims to be a brief guide to the current
state of ML in epigenetics.

Epigenetics and its clinical potential
Epigenetics, sometimes described as the study of heritable
changes in gene expression that occur without a change in
DNA sequence [13], is postulated to be the product of a
complex interaction between an individual’s genotype, age,
and lifestyle factors such as diet, alcohol consumption, and
smoking [14–17]. In 1942, the term “epigenetics” was first
coined by Conrad H Waddington [18]. The word is derived
from the Greek word “epigenesis”, and initially described
the influences of genetic processes on development [18].
Several diseases have been shown to be associated

with differential DNA methylation including various
cancers, obesity, and cardiovascular disease [19–23].
Broadly, four major categories of epigenetic changes
exist: DNA methylation, RNA-centred mechanisms (in-
cluding non-coding RNAs and microRNAs), histone
modifications, and chromatin conformation [24]. Of
these, DNA methylation is the most commonly studied
epigenetic modification in mammals, particularly

methylation of a cytosine molecule adjacent to a guan-
ine molecule [25]. The cytosine-guanine dinucleotide is
referred to as a CpG site and these sites often occur in
clusters termed CpG islands [26].
One of the most popular methods of measuring genome-

wide DNA methylation profiles is through microarrays,
chiefly the Illumina HumanMethylation Infinium BeadArray
[27]. Each generation of the Illumina technology has been as-
sociated with diminishing cost and a larger portion of the
genome measured, with the number of CpG sites measured
from ~ 27,000 [28] to ~ 450 000 [29] and most recently to ~
850,000 with the EPIC array [30]. Other techniques, such as
pyrosequencing and methyl-sensitive endonuclease restric-
tion, are potentially more accurate than the Illumina
HumanMethylation microarray technique, but only suitable
for low-throughput studies, as they are also very time-
consuming [27]. Therefore, whilst the Illumina microarray
has limitations, it is still one of the most widely used DNA
methylation techniques in the epigenetic field [27, 31].
A recent review in Nature Review Genetics gives a

comprehensive overview of the clinical potential of epi-
genetics [32]. Epigenetics is closely linked to environ-
mental influences and hence potentially better suited to
disease diagnosis and treatment than genetics alone [32].
As epigenetics has been shown to play a role in the me-
diation between early life adverse environments and later
life disease onset, it has a potential role for early diagno-
sis [33]. It has been shown that adverse early life, such
as famine [34] or exposure to maternal smoking during
pregnancy [15, 35], can program the development of the
child mediated on an epigenetic level [36].
However, the biggest successes to date in using epi-

genetic information as a biomarker have been achieved
in oncology, where biomarkers have been approved by
the US Food and Drug Administration [37]. One such
example is the mSEPT9 biomarker for colorectal cancer,
which has been discovered in 2003 and is now a com-
mercialized kit that can diagnose colorectal cancer in
blood plasma based on epigenetic markers [37].
To date, ML has yielded limited biomarkers that have

made it into current clinical practice. However, it is
likely that in the upcoming decades the application of
ML to the epigenome [38] will yield many more poten-
tial biomarkers and drug targets, particularly because
ML is optimized to find meaning in large and complex
data sets. In genomics and transcriptomics, ML methods
are already used for example in gene set enrichment
analysis, to find highly overrepresented pathways [39].

Overview of machine learning and systematic
literature review for machine learning in
epigenetics
AI, as part of computer science, uses algorithms to allow
computers to perform traditionally ‘human’ executive
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functions such as problem-solving and decision-making
[40]. AI includes fields such as natural language process-
ing, expert system, robotics, and ML [41]. The various
biomedical applications of AI fields other than ML is be-
yond the scope of the current review, and substantial re-
views are available elsewhere [40, 42–44]. As previously
mentioned, one subdiscipline of AI that shows strong
potential in the field of data-driven medical fields is that
of ML [11, 45].
ML enables computers to learn and make predictions

by finding patterns within the data [40]. With increased
amounts of data available, ML approaches become more
adept at pattern prediction, a factor that makes ML par-
ticularly suited to data-rich medical fields like genomics
and its sub-field epigenetics. ML algorithms are gener-
ally categorised into supervised, unsupervised, and deep
learning. A simplified visual representation of the rela-
tionship between these fields is presented in Fig. 1.
Within the field, there are some essential concepts that

clinicians ought to be familiar with when considering
ML. A simplified approach to steps for developing and
applying an ML algorithm is outlined in Fig. 2. A sug-
gested processing pipeline is to split the available data
into three sub data sets: a training data set, where the se-
lected algorithm is optimised and the parameters are
evaluated, a test data set, where the performance of the
trained algorithm is evaluated, and a validation data set,
which ideally comes from a different source than the
training and test data set. This last step, the validation, is
not always possible due to unavailability of data but

allows for a more robust estimation of the algorithm
performance beyond the training data set. A good alter-
native for this is k-fold cross-validation. This means,
during the training process, the data is randomly split
into k training and test sets, which allows for a good ap-
proximation of the external validity of the model [46].
Common performance measures employed in classifica-
tion tasks that use balanced data sets for training are ac-
curacy, sensitivity, specificity, and precision [47, 48]. For
imbalanced data sets (low number of cases versus con-
trols), more robust performance evaluators that take into
account class distribution are more appropriate, for ex-
ample, F1-score, area under the curve (AUC), and
Cohen’s Kappa [47–49].

Supervised learning
Supervised learning is a subset of ML where labels to a
dataset are known, for example, cancer patients versus
healthy controls, which is subsequently used to train an
algorithm that can make predictions about the health
outcome on unseen data, without knowing the disease
status [11, 40]. This form of ML is reliant on user input
to categorise the different instances in the learning
process. Supervised learning algorithms have been ef-
fectively utilised in classification and prediction tasks
[50]. Commonly used algorithms within this category of
ML include linear or logistic regression, support vector
machine, random forest algorithms, and least absolute
shrinkage and selection operator regression (LASSO)
[40]. Briefly, support vector machine is based on the

Fig. 1 Overview of the field of artificial intelligence and its sub-field machine learning
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idea that by transforming the data, eventually it will be
possible to separate classes by a hyperplane, which in
the two-dimensional space is a simple line [51]. The
points nearest to this hyperplane are called support
vectors and are essential for the classification [51]. A
Random Forest algorithm is a decision tree-based
model, that builds up a multitude of decision trees of
differing depth [52]. Further, for every tree, a random
subset of the data set is utilised and at every split in the
decision tree, a random subset of the features is used.
This makes every decision tree in the forest highly un-
correlated to the next and the final predictor, which is
an average of the whole ensemble of trees, will be
highly unbiased [52]. Finally, LASSO is a logistic regres-
sion based model that also performs feature selection,
meaning the most important variables for prediction
are selected from the data set via a so-called penaliza-
tion model that weighs the features depending on their
effect [40]. For further information and details on the
algorithms, please refer to the original publications
referenced here [40, 51, 52].
Examples of supervised learning using epigenetic data

include classification of metastatic brain tumours, prostate
cancer, coronary heart disease, neurodevelopmental syn-
dromes, and central nervous system tumours [53–57].
This review focuses on supervised learning, as this is
mostly used when trying to develop a diagnostic test to as-
sist clinicians in the diagnostic process (examples: Tabl 1).
Whilst supervised learning provides a robust method

by which to classify diseases versus healthy individuals,
there are inherent limitations. Firstly, supervised learning
usually requires user input in order to define training

classes (or classify the disease and healthy patients) to
develop a model [40]. Secondly, since ML algorithms are
sensitive to the quality of the data, it is essential that
they be correctly labelled [40]. If the training data has
examples that are incorrectly labelled, the supervised
learning classifier will make incorrect predictions [40].
Finally, supervised learning is susceptible to ‘over-fit-
ting’—the tendency to work very well on the training
data but having limited performance on other external
data sets [58]. Despite these limitations, supervised
learning is one of the most widely used ML techniques
in classification and prediction in epigenetics (Table 1).
Another class type of algorithm that can be used in su-

pervised ML is deep learning. Deep learning algorithms
are capable of processing high volume, high-
dimensionality data—data with a high number of vari-
able input sources—and identifying complex patterns
[59]. For epigenetics, deep learning provides an enticing
avenue to explore. Common deep learning techniques
include artificial neural networks and convolutional
neural networks [59, 60]. Historically, deep learning is
considered one of the more computationally expensive
types of AI, requiring large amounts of computing
power in order to be effective [59]. The advances of
computing power and high-speed internet in the last half
a decade has led to efficient and effective use of deep
learning, particularly through web-based (super-)com-
puting services such as Amazon Web Services, Google’s
Cloud service, and Microsoft Azure.
Perhaps the most problematic issue with deep learning

is the inability to identify precisely how the algorithm
has determined the outcome, known colloquially as

Fig. 2 Workflow for applying a machine learning algorithm
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‘black-boxing’ [61]. Black-boxing is an especially signifi-
cant limitation in the medical context due to the impli-
cations on patient safety and ability to prove clinical
reasoning [61, 62].

Unsupervised learning
In contrast to supervised learning, unsupervised learning
does not require labels in order to work [40, 63]. How-
ever, whilst unsupervised algorithms provide strength of
correlation between individual variables within a data
set, they are unable to assign the potential biological
relevance and/or plausibility of these patterns of correl-
ation [40, 63]. Therefore, human input is required to as-
sess the biological plausibility and the salience of any

associated clusters identified by the algorithm [40, 63].
Common problems that unsupervised learning has been
used for include clustering and association tasks [40].
Clustering, as the name suggests, clusters data points ac-
cording to inherent groupings in the data. Common
methods used in unsupervised learning include k-means
clustering and hierarchical clustering, principle compo-
nent analysis, and partial least squares discriminant ana-
lysis [64, 65]. The latter two methods are often utilised in
dimensionality reduction, or the removal of random input
variables to increase the performance of a model [66].
Within an epigenetic context, unsupervised learning

can be used to detect DNA methylation patterns be-
tween diseased and non-diseased individuals, for

Table 1 Brief overview of some of the most frequently used performance measures for machine learning models

Performance metric Interpretation

Accuracy Brief definition:
Accuracy is a classifier that works best on balanced data sets. It is a measure that informs about the correct
classifications out of all classifications. It can have values from 0 - 100 %
Example:
If we are dealing with a binary classification, e.g. cancer versus healthy, and we have 20 patients with cancer
and 80 healthy controls, a model accuracy of 80% would mean that the model classified every subject into the
majority class (healthy) and is completely unable to classify cancer patients, although the accuracy indicates a
good performance.

Sensitivity Brief definition:
The sensitivity is the true positive rate of a test. This means, how many subjects with a disease are actually
identified as having the disease by the test. The values range from 0 to 100%.
Example:
Let us say we have a epigenetic test, that claims to identify the presence of a specific type of cancer. When
evaluating the test, it was able to identify 30 out of 60 cancer patients correctly. The sensitivity of this test
would then be 50% (30/60)

Specificity Brief definition:
The specificity is the true negative rate of a test. In other words, it represents the proportion of people without
the disease, that will have a negative result. Just like for sensitivity, the values range from 0- 100%
Example:
We assume we are dealing with the same diagnostic test for cancer as in the explanation of sensitivity. Out of
90 healthy subjects, 70 had a negative diagnosis. This means the specificity of the test is 78% (70/90)

Precision Brief definition:
Precision is a measure that tells us out of all predicted cases, how many are actual cases. Possible values range
from 0 to 1.
Example:
In the cancer example, how many predicted cancer cases are actual cancer cases.

Recall Brief definition:
Recall is a measure that informs us how many cases we were able to identify as cases. The value range is 0 to
1.
Example:
Out of all the cancer patients, how many was the predictive model able to identify as cancer patients?

F1-Score Brief definition:
The F1-score is the harmonic mean between precision and recall. In this case, we aim for both high recall and
high precision, meaning we want to be able to identify a large amount of cases and we also want to be sure
that the majority of predicted cases are actual cases. The F1-score ranges from 0 to 1, where 0 is the worst
performance.
Example:
If we have a near-perfect precision and recall, meaning we ate able to classify a large amount of the cancer pa-
tients as cancer patients (recall) and we are sure that our prediction is correct (precision), the harmonic mean
between the two of them for a good model would be ~ 0.9.

Area under the receiver operator
curve (ROC AUC)

Brief definition:
The area under the receiver operator curve is a measure of how sensitive and specific a test performs. In a
graphical representation, the x-axis depicts the negative predictions and the y-axis the positive predictions. If a
test performs bad in terms of sensitivity and specificity, the area under the curve would be 0.5, which means it
is not better than tossing a coin.
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example, between breast cancer brain metastases sub-
types [38, 57]. Unsupervised learning algorithms are es-
pecially useful to detect patterns in data sets that have
large amounts of data points, such as those in micro-
array and omics data sets [66, 67].
The main limitation of unsupervised learning is that

the algorithms do not provide insight into the import-
ance or relevance of clustering and/or associations [68].
The concept of ‘correlation does not mean causation’ is
especially relevant to unsupervised ML. Due to the in-
ability of unsupervised ML algorithms to prescribe
meaning to associations, caution should be exercised
when interpreting any associations identified by an un-
supervised ML algorithm, as they may be data artefacts
as opposed to true biological effects. Furthermore, un-
supervised learning is sensitive to noise within the data
[40]. If there is a large amount of irrelevant data within
a data set, an unsupervised learning algorithm may clus-
ter points erroneously. Therefore, data used for unsuper-
vised learning must be carefully pre-processed to ensure
it is of high quality prior to analysis. Deep learning ap-
proaches can also be used for unsupervised tasks. An ex-
ample of a clinical application is a deep learning model
that was trained on unlabelled mammography images to
identify breast density scores which showed a very
strong positive relationship with manual scores, predict-
ive of breast cancer [69].

Epigenetics and machine learning: existing literature
Overall, 16 studies were identified that utilised ML to
diagnose or classify diseases [39, 54–58, 71–80).
There was extensive heterogeneity in the disease out-

comes, types of algorithms, performance measures, val-
idation methods, and sample sizes between studies.
Table 1 summarises the studies that have investigated
the use of ML for diagnosis or classification in various
cancers (n = 10), cerebral palsy (n = 1), neurodevelop-
mental syndromes (n = 1), coronary artery disease (n =
1), and BAFopathies (n = 1; disruption of the BRG1/
BRM-associated factor (BAF) complex has been linked
to several neurodevelopmental syndromes, commonly
referred to as BAFopathies). A special case where the
two identified deep learning approaches, DeepCpG and
DeepMethyl, as they both predicted methylation status
in the genome rather than a disease status [70, 71]
(Table 2).
The types of algorithms used have all been supervised

learning, including support vector machines (n = 7), ran-
dom forest (n = 7), LASSO regression (n = 1), non-
metric multidimensional scaling (n = 1), logistic regres-
sion (n = 1), convolutional neural network (n = 1), and
stacked denoising autoencoder (n = 1). Of note, some
research used multiple models.

The types of epigenetic data include microarray tech-
niques (n = 11), bisulphite sequencing (n = 3), and
methyl-sensitive restricted endonuclease (n =1). Of these
collection methods, most studies used one type of DNA
methylation technique only (n = 9), whilst others com-
bined measurement techniques, meaning Infinium
HumanMethylation 450K and EPIC or CHIP-Seq from
The Encyclopedia of DNA Elements (ENCODE) (n = 5).
From the selected publication, it appears that the two

most popular methods were support vector machine and
random forest. Based on the approaches identified, it
seems the most successful combination is 10-fold cross-
validation with either a random forest or support vector
machine for array-based methods and deep learning-
based models for prediction of the methylation status of
the DNA.
Epigenetic data have traits that make it amenable to

ML. Firstly, DNA methylation is usually both chemically
and biologically stable over time [5]. Consequently, the
measurement of DNA methylation allows for a reliable
measure of the chemical composition of the epigenome
at any given point in time. Secondly, large-scale, data-
rich repositories such as The Cancer Genome Atlas
(TCGA), ENCODE, and the BLUEPRINT consortium
provide large amounts of samples to employ comprehen-
sive, high-throughput statistical analyses of differentially
methylated regions with biological relevance [80–82].
These repositories may provide for the training data for
a ML algorithm, or an independent test set in order to
determine the ML algorithm’s external validity and sub-
sequent clinical utility [81, 83]. Since ML algorithms re-
quire large amounts of data to make accurate
predictions, the establishment of these databanks is a
significant milestone in the utility of AI in epigenetics.
Finally, most datasets consist of DNA methylation pro-
files derived from peripheral blood, meaning that pa-
tients will only be required to provide a small blood
sample. It should be noted that DNA methylation pro-
files are tissue-specific, and that the use of peripheral
blood as a measure of DNA methylation may be less
useful in diseases such as certain cancers [84], with more
clinical utility in diseases like obesity [85, 86].

Challenges and future perspectives
Whilst there are advantages to combining epigenetics
with ML to assist clinicians in the diagnostic process,
there are significant challenges that must be addressed.
First, very large datasets, requiring cross-jurisdiction col-
laboration are needed, especially if the diseases that need
prediction are rare. This problem occurs 2-fold in epi-
genetic data: initially with the patient to healthy control
ratio (with many datasets containing many more con-
trols as compared to disease cases) and secondly within
the individual methylomes, where there is a higher
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proportion of sections in the DNA that are densely
methylated, referred to as differentially methylated re-
gions (DMR), compared to the number of non-DMR
sites [12, 87]. Second, most epigenetic data sets have
more variables than samples, making it difficult for many
ML algorithms to function effectively [88]. A potential
solution is to collect more data, something that collab-
orative data repositories are providing. Concurrent, care-
ful consideration of the type of algorithm and suitable
performance measures of the prediction should be made
to prevent erroneous data interpretations.
Third, not all associations in a DNA methylation data-

set are linear. Several CpGs may be linked to the same
gene which may influence other portions of the methy-
lome and transcriptome, which has particularly been
identified as an issue in gene set enrichment analysis
[89, 90]. Additionally, the Illumina HumanMethyla-
tion450 array only covers 2% of all CpG sites in the
methylome [27]. These challenges must be recognised
before the full clinical potential of epigenetics is realised.
Fourth, for proper development, improvement and

testing of novel machine learning approaches, it will be
crucial to increase efforts to make large epigenetic data-
sets publicly available. This should include the raw data
of different platforms, so research can be conducted into
the effect of different normalisation methods on ML
model performance and assessing which models work
best for array-based and bisulphite sequencing-based
data formats. One of the largest efforts in providing ac-
cess to sequencing data is provided by The National
Center for Biotechnology Information (NCBI). This in-
cludes databases such as the sequencing read archive
(SRA) that are invaluable for research into new compu-
tational methods [91]. The SRA is operated by the Inter-
national Nucleotide Sequence Database Collaboration
(INSDC) and was initially started to publicly deposit se-
quencing reads [91]. Currently, more and more funding
bodies and scientific journals request a deposition of ex-
periment data in the SRA, which is not only beneficial for
reproducibility of research, but also for efforts into the de-
velopment of new analytical tools. Resources such as SRA
made it possible to develop sequencing analysis tools such
as Magic-BLAST (Basic Local Alignment Search Tool),
which allows to align sequencing reads to a reference gen-
ome based on a sequencing database [92].
In an epigenetic context, deep learning has been used

to classify genetic mutations in gliomas and prediction
of single-cell DNA methylation status [71, 93]. Whilst
still in its infancy, applications of deep learning to classi-
fication tasks using DNA methylation data may have
benefits over traditional ML.
Another challenge for the field of ML is prediction

bias. Several cases in facial recognition, especially rele-
vant to deep learning because of their black box

character, have shown that the predictive models are
biased towards populations of European ancestry [94].
Therefore, the challenge of getting representative data-
sets that do not exacerbate existing health differences
for disadvantaged populations is one of the biggest chal-
lenges that the ML community needs to address [95].

Conclusion
As an in-depth introduction to epigenetics and ML was
out of the scope of this review, we aimed to give an
overview of epigenetics and the potential of ML in clin-
ical applications. The interested reader may refer to the
cited literature on the different topics of epigenetics and
machine learning.
ML is starting to find patterns in ever-growing genetic

and epigenetic data sets that relate to the development
of diseases. Although very accurate, deep learning
methods will need to undergo further research to define
what is going on within the “black box”, before clinicians
can confidently make informed decisions whilst utilising
such tools. In the meantime, interpretable ML algo-
rithms are likely to be on the horizon with the potential
to assist in more confident diagnoses. Whilst ML is
sometimes depicted in the media and literature as a
threat to the clinician’s profession and autonomy, clini-
cians should perhaps view its application as an assistive
tool. ML can be used, just like evolving technologies
across the ages (from the stethoscope, to X-Rays, to
MRIs) as providing adjunctive information; it is a matter
of being properly informed about limitations of the
method of algorithm development and understanding
where and to whom it is appropriate to apply.
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