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Alterations in the methylome of the
stromal tumour microenvironment signal
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Abstract

Background: Prostate cancer changes the phenotype of cells within the stromal microenvironment, including
fibroblasts, which in turn promote tumour progression. Functional changes in prostate cancer-associated fibroblasts
(CAFs) coincide with alterations in DNA methylation levels at loci-specific regulatory regions. Yet, it is not clear how
these methylation changes compare across CAFs from different patients. Therefore, we examined the consistency
and prognostic significance of genome-wide DNA methylation profiles between CAFs from patients with different
grades of primary prostate cancer.

Results: We used Infinium MethylationEPIC BeadChips to evaluate genome-wide DNA methylation profiles from 18
matched CAFs and non-malignant prostate tissue fibroblasts (NPFs) from men with moderate to high grade prostate
cancer, as well as five unmatched benign prostate tissue fibroblasts (BPFs) from men with benign prostatic hyperplasia. We
identified two sets of differentially methylated regions (DMRs) in patient CAFs. One set of DMRs reproducibly differed
between CAFs and fibroblasts from non-malignant tissue (NPFs and BPFs). Indeed, more than 1200 DMRs consistently
changed in CAFs from every patient, regardless of tumour grade. The second set of DMRs varied between CAFs according
to the severity of the tumour. Notably, hypomethylation of the EDARADD promoter occurred specifically in CAFs from high-
grade tumours and correlated with increased transcript abundance and increased EDARADD staining in patient tissue.
Across multiple cohorts, tumours with low EDARADD DNA methylation and high EDARADDmRNA expression were
consistently associated with adverse clinical features and shorter recurrence free survival.
(Continued on next page)
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Conclusions: We identified a large set of DMRs that are commonly shared across CAFs regardless of tumour grade and
outcome, demonstrating highly consistent epigenome changes in the prostate tumour microenvironment. Additionally, we
found that CAFs from aggressive prostate cancers have discrete methylation differences compared to CAFs from moderate
risk prostate cancer. Together, our data demonstrates that the methylome of the tumour microenvironment reflects both
the presence and the severity of the prostate cancer and, therefore, may provide diagnostic and prognostic potential.

Keywords: Prostate cancer, Tumour microenvironment, Cancer-associated fibroblast, Stroma, Methylation, Field effect, EPIC
microarray

Background
In solid cancers, tumour formation changes the compos-
ition and phenotype of surrounding tissue. This creates
the complex tumour microenvironment where different
cell types, including cancer-associated fibroblasts
(CAFs), interact with cancer epithelial cells [1]. CAFs are
a heterogeneous population of cells that regulate the
phenotype of prostate epithelial cells, including their
tumourigenicity, proliferation, migration, invasion, dif-
ferentiation and responsiveness to therapeutics [2–10].
CAFs also shape the tumour microenvironment by de-
positing extracellular matrix, promoting the infiltration
of immune cells and stimulating angiogenesis [9, 11–13].
The functions of CAFs also evolve with cancer progres-

sion [14–17]. Indeed, changes in the histopathological fea-
tures, gene expression profile and length of telomeres in the
stroma have all been associated with poorer relapse-free or
overall survival of men with prostate cancer [14, 15, 17–21].
The phenotype of CAFs is also enduring and does not rely
on continuous interactions with epithelial cancer cells. This
is demonstrated by primary cultures of patient-derived
CAFs, which retain distinctive transcriptomic and proteomic
profiles and ability to promote tumour progression, even
when cultured without tumour epithelium [8, 10, 22, 23].
This stable phenotype is not due to genomic aberrations
[24, 25]. Rather, we recently showed that CAFs harbour
DNA methylation alterations compared to non-malignant
prostate tissue fibroblasts (NPFs), particularly enriched at
regulatory regions of the genome [24]. Other studies have
also identified differential methylation of candidate genes
and an altered repertoire of transcription factor binding sites
in CAFs [6, 26, 27].
Although many epigenetic changes in CAFs have now

been identified, their conservation between patients and
association with prostate cancer aggressiveness is not
clear. Therefore, in this study we compared the genome-
wide methylation profiles of CAFs and NPFs from a lar-
ger cohort of men with primary prostate cancer, some of
whom later developed advanced disease. Our results re-
veal two main sets of differentially methylated regions
(DMRs) in CAFs. One set is CAF-specific, with methyla-
tion alterations that are remarkably consistent between
CAFs and NPFs across all prostate cancers irrespective

of grade. The second group of discrete methylation al-
terations was associated with tumour grade and patient
outcome and may provide a potential source of prognos-
tic biomarkers for prostate cancer.

Results
Profiling DNA methylation of prostate fibroblasts using
EPIC arrays
We used Infinium MethylationEPIC BeadChips (EPIC ar-
rays) to examine the genome-wide DNA methylation pro-
file of early passage CAFs and NPFs from eighteen men (n
= 36 samples) with either moderate or high-grade prostate
cancer (Fig. 1a). The fibroblasts were patient-matched,
with CAFs from tumour tissue and NPFs from distant be-
nign tissue from a contralateral region and/or different
anatomical zone of the same prostate, most often the tran-
sition zone (Additional File 1: Table S1). A pathologist
verified the histology of all patient tissues. Nine patients
had moderate-grade prostate cancer, defined as grade
group ≤ 3 (GG ≤ 3; Gleason score 6–7), and nine patients
had high-grade disease, defined as grade group ≥ 4 (GG ≥
4; Gleason 8–10). The GG ≥ 4 patients had significantly
higher primary tumour volume, shorter relapse-free sur-
vival and greater incidence of distant metastases (Table 1
and Additional File 1: Table S1). For cross-platform valid-
ation, we included three cases with published whole gen-
ome bisulfite sequencing (WGBS) data (Additional File 1:
Table S1) [24]. To enable more thorough comparison of
the methylation profiles of fibroblasts from benign and
malignant tissue, we also included unmatched benign
prostate tissue fibroblasts (BPFs) from patients undergoing
transurethral resection of the prostate for benign prostatic
hyperplasia (n = 5 men). These patients had no evidence
of prostate cancer after at least 5 years follow-up.
The EPIC array methylation data showed technical re-

producibility with WGBS. DNA methylation levels were
highly correlated across the 796,222 CpG sites common
to both platforms for three patient-matched pairs of
CAFs and NPFs (patients 1–3, Pearson correlation 0.84–
0.87) (Additional File 2: Figure S1a) [24]. As we previ-
ously reported, there was no evidence of global hypome-
thylation in CAFs versus NPFs (Additional File 2: Figure
S1a) [24]. Nevertheless, CAFs clearly separated from
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NPFs in the first dimension of multidimensional scaling
(MDS) plots of both datasets (Additional File 2: Figure
S1b-c). Furthermore, there was excellent concordance in
previously identified DMRs in CAFs versus NPFs (CAF-
DMRs) between the two platforms (Additional File 2:
Figure S1d), based on 3384 regions with probes on the
EPIC array. For example, hypermethylated DMRs in the
TBX3 gene were consistently detected in each patient by
both EPIC arrays and WGBS (Additional File 2: Figure
S1e). Altogether, this demonstrates the accuracy of the

EPIC platform for measuring DNA methylation values
and differential methylation in this study.

CAFs have distinct methylation profiles from NPFs and
BPFs
To examine the methylation profile of BPFs, NPFs and
CAFs, we generated an MDS plot of the EPIC methyla-
tion data, excluding the three patients used for technical
validation (i.e., patients 4–18 only) (Fig. 1b). CAFs
formed a separate group from NPFs and BPFs in the first

(See figure on previous page.)
Fig. 1 Prostate cancer-associated fibroblasts have distinctive changes in DNA methylation. a Schematic of the cohort of patient-derived
fibroblasts analysed with EPIC arrays. Asterisks denote that WGBS data was available for three pairs of CAFs and NPFs. b MDS plot of the 1000
most variably methylated CpGs in EPIC array data showing clear separation of CAFs from NPFs and BPFs in patients 4–17; however, CAF18
clustered with NPFs and BPFs. c Volcano plot of differentially methylated positions (DMPs) in CAFs versus NPFs (patients 4–17). DMPs are shown
in orange, while other probes are in blue. For all volcano plots, dotted lines indicate > 10% change in methylation and −log10 adjusted P value >
1 (adjusted p value > 0.1). d Dendrogram and heat map from unsupervised hierarchical clustering of the EPIC CAF-DMRs showing clear
separation of CAFs from NPFs and BPFs. e and f Volcano plots of DMPs in CAFs versus BPFs and NPFs versus BPFs. DMPs from CAFs versus NPFs
(panel c) are shown in orange. g Venn diagram showing the overlap between DMPs in CAFs versus NPFs compared to CAFs versus BPFs

Table 1 Clinical features and follow-up of patients with ≤ GG3 and ≥ GG4 prostate cancer

≤ GG3 ≥ GG4 P value

Patients, no. 9 9

Age, median (range) 68 (53–72.4) 65 (60–74) 0.8249a

Gleason Grade Group, no. (%)

GG2 5 (56%) 0

GG3 4 (44%) 0

GG4 0 1 (11%)

GG5 0 8 (89%)

Clinical features, median (range)

PSA ng/mL 6.7 (4-11) 7 (4.3–22.6) 0.3072a

Tumour volume 4 (0.7-7.1) 19.7 (0.7–30.2) 0.0103a

Clinical features, no. (%)

Pathologic T stage 2 2 (22%) 2 (22%) 1.0b

Pathologic T stage 3 7 (78%) 7 (78%)

Positive margins 6 (67%) 3 (33%) 0.6372c

Extra-prostatic extension 7 (78%) 7 (78%) 1.0c

Seminal vesicle invasion 3 (33%) 7 (78%) 0.1534c

Lymph node metastases at diagnosis 0 4 (44%) 0.0824c

Patient follow-upd, no. (%)

Disease relapsee 2 (25%) 8 (89%) 0.0030e

Metastasis 1 (13%) 7 (78%) 0.0152c

Castration-resistant prostate cancer 0 (0%) 3 (33%) 0.2059c

Death from prostate cancer 0 (0%) 1 (11%) 1.0c

aUnpaired T test with Welch’s correction
bThe Fisher exact test comparing the proportion of patients with T2 versus T3 disease
cThe Fisher exact test comparing the proportion of patients with or without each clinical feature
dFollow-up information was unavailable for one GG ≤ 3 patient, so n = 8
eDisease relapse includes biochemical or clinical recurrence, HR = 6.937 (1.738–27.68), log rank test
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dimension of the analysis, confirming their distinct DNA
methylation profiles across patients. CAFs were also
more dispersed than NPFs and BPFs in the second di-
mension of the plot. The plot suggests some patient-to-
patient epigenetic variation in CAFs, but minimal differ-
ences in methylation among NPFs and BPFs.
Unexpectedly, CAF18 clustered with NPFs and BPFs

rather than CAFs (Fig. 1b). To further analyse CAF18,
we used an in vitro co-culture assay that measures the
ability of fibroblasts to induce morphological changes in
prostate epithelial cells [8, 28]. Unlike other CAFs,
CAF18 did not induce significant phenotypic changes in
prostate epithelial cells compared to its patient-matched
NPF (Additional File 1: Table S1 and Additional File 2:
Figure S2a & b). Given that CAF18 was atypical in both
DNA methylation and the functional assay, we excluded
this patient from further analyses. We speculate that
CAF18 was originally misclassified as a CAF possibly
due to poor sampling of the patient’s tumour tissue.

Identifying novel differentially methylated regions
Since the remaining CAFs formed a separate cluster in
the MDS plot (Fig. 1b), we performed a new genome-
wide analysis to identify specific regions of differential
methylation. We excluded the three patients (patients
1–3) previously analysed with WGBS [21]. This revealed
~ 50,000 significantly differentially methylated positions
(DMPs) between CAFs and NPFs (Fig. 1c, adjusted P
value < 0.1 and absolute methylation difference > 10%).
These DMPs could be further grouped into DMRs: 2369
hypermethylated and 3038 hypomethylated with more
than 10% difference in methylation in CAFs versus NPFs
(Additional File 1: Table S2 & S3). These regions are
herein referred to as EPIC CAF-DMRs. Unsupervised
clustering of samples using the methylation of probes
within the EPIC CAF-DMRs separated all CAFs from
both NPFs and BPFs (Fig. 1d). Notably, 2059 of the
hypermethylated regions (87%) and 2501 of the hypo-
methylated regions (82%) were not previously reported
with WGBS.

NPFs and BPFs have negligible differences in DNA
methylation
Based on the MDS plot and EPIC CAF-DMRs (Fig. 1b,
d), we found that NPFs are more similar to unmatched
BPFs than they are to their patient-matched CAFs. To
further compare each set of prostatic fibroblasts, we per-
formed genome-wide analysis of differential methylation
using limma. Strikingly, we identified 27,285 DMPs in
CAFs versus BPFs (Fig. 1e), but no significant DMPs in
NPFs versus BPFs (Fig. 1f; adjusted P value < 0.1 and ab-
solute methylation difference > 10%). Therefore, we con-
clude that NPFs and BPFs share very similar
methylomes, despite being from different patients with

different prostatic diseases. Furthermore, the DMPs in
CAFs versus BPFs were largely the same as those be-
tween CAFs versus NPFs (Fig. 1e, g).

CAF-DMRs are consistent across patients
To further examine the EPIC CAF-DMRs, we determined
how consistent they were across patients. The majority of
hypermethylated and hypomethylated EPIC CAF-DMRs
were present in most patients (Fig. 2a). Indeed, 80% of
EPIC CAF-DMRs showed concordant methylation differ-
ences in at least 15 of the 17 patients, and all were shared
by at least 10 of the patients (Fig. 2b). Furthermore, 1239
‘consistent EPIC CAF-DMRs’ had concordant methylation
differences in all 17 patients (607/2369 (26%) of hyper-
methylated and 632/3038 (21%) of hypomethylated EPIC
CAF-DMRs; Fig. 2a, b and Additional File 1: Tables S2
and S3). These consistent EPIC CAF-DMRs encompassed
1.6% of the CpG sites assayed by the EPIC array (hyper-
methylated DMRs span 2161 probes, hypomethylated
DMRs span 10,744 probes). The differentially methylated
genes included GATA6, with two hypermethylated DMRs
in all 17 CAFs compared to their matched NPFs (Fig. 2c,
d). Conversely, PITX2 and AKAP2 had hypomethylated
DMRs in all patient’s CAFs (Fig. 2d). We also confirmed
that there were significant correlations between DNA
methylation and mRNA abundance for candidate EPIC
CAF-DMRs (Additional File 2: Figure S3A-B).
To investigate the possible functional importance of

the 1239 consistent EPIC CAF-DMRs, we used the Gen-
omic Regions Enrichment of Annotation Tool (GREAT)
[29]. We observed enrichment of terms related to cell
adhesion (focal adhesion, cell-substrate adherens junc-
tion, stress fibre, actin filament bundle), as well as ligand
activated cell signalling, including TGFβ, insulin and
PDGF signalling pathways (Fig. 2e and Additional File 1:
Table S4). The remarkable concordance of the methyla-
tion changes at this large set of consistent EPIC CAF-
DMRs across patients, coupled with their association
with genes in biologically relevant pathways, suggests
their likely importance in defining the identity and func-
tions of CAFs in prostate cancer.

EDARADD is hypomethylated in grade group ≥ 4 CAFs
In addition to the set of DMRs that distinguish CAFs
from NPFs, we next examined whether there is a set of
DMRs that identify patients with more aggressive tu-
mours. We compared the DNA methylation profiles of
CAFs from GG ≤ 3 (n = 9) versus GG ≥ 4 tumours (n =
8) and used DMRcate to identify regions with absolute
methylation differences greater than 10%, which we
termed Gleason-DMRs. We found 31 Gleason-DMRs;
only four of which were previously identified as CAF-
DMRs [24] (Fig. 3a and Additional File 1: Table S5). To
verify the cell-type specificity of the Gleason-DMRs, we
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used ANOVA models to compare methylation levels at
Gleason-DMRs between the five sets of fibroblasts
(BPFs, GG ≤ 3 NPFs, GG ≥ 4 NPFs, GG ≤ 3 CAFs and
GG ≥ 4 CAFs). Seven of the Gleason-DMRs were signifi-
cantly different between GG ≥ 4 CAFs and all other
fibroblast groups (P < 0.05, Fig. 3a, b). Of these, the
EDARADD Gleason-DMR had the greatest methylation
difference in GG ≥ 4 CAFs versus other fibroblasts
(mean methylation difference of 26%; Additional File 1:
Table S5).
Next, to assess their potential application as prognostic

biomarkers we examined whether the seven Gleason-
DMRs in CAFs could also be detected in whole patient
tumour tissue, which contains heterogeneous cell types.
We analysed the Infinium Methylation450 BeadChip (450
K array) data from 392 prostate cancer samples in TCGA.
We found that only the EDARADD Gleason-DMR was
significantly differentially methylated between GG ≤ 3 (n
= 226) versus GG ≥ 4 tumours (n = 166) (Fig. 3a, c). A se-
quential decrease in DNA methylation of the EDARADD
Gleason-DMR was also apparent from low to high-grade
group samples (Fig. 3c). EDARADD is an adaptor in the
EDAR pathway, which regulates the development of ecto-
dermal tissues [30]. EDARADD is also differentially
expressed in prostate and lung cancer [31, 32], which is
notable since the Gleason-DMR lies in the potential gene
promoter (Fig. 3d). Based on these observations, we exam-
ined the association between EDARADD methylation and
gene expression levels and high risk prostate cancer in
more detail.

EDARADD is differentially expressed in high-grade
prostate cancer
Since the EDARADD Gleason-DMR lies in a potential pro-
moter for this gene, we assessed EDARADD mRNA and
protein levels and their correlation with methylation.
EDARADD mRNA levels were significantly higher in CAFs
from grade group ≥ 4 tumours compared to all other
groups of fibroblasts (BPFs, GG ≤ 3 NPFs, GG ≥ 4 NPFs
and GG ≤ 3 CAFs), as measured using qPCR (Fig. 4a). Ac-
cordingly, there was a significant negative correlation be-
tween EDARADD mRNA abundance and DNA
methylation at the Gleason-DMR across CAFs and NPFs

(Fig. 4b). We observed the same pattern of EDARADD
mRNA levels in patient tissues from TCGA, with sig-
nificantly higher expression in high-grade group tumours
(Fig. 4c) and a significant negative correlation with DNA
methylation of probes in the Gleason-DMR (Fig. 4d).
We also used immunohistochemistry, with appropriate

controls, to examine EDARADD protein levels in the ori-
ginal patient samples from which the CAFs and NPFs
were established (Fig. 4e and Additional File 2: Figure S4a-
c). Stromal EDARADD staining was significantly higher in
grade group ≥ 4 tumours compared to other patient sam-
ples (Fig. 4f) and negatively correlated with EDARADD
methylation in the matching fibroblasts (Fig. 4 g). EDAR-
ADD was also expressed in the epithelium, but with no
significant difference in staining between grade groups
(Additional File 2: Figure S4d). We noted that a subset of
patients have particularly pronounced changes in EDAR-
ADD methylation, expression and stromal staining com-
pared to other patients. This is evident in the frequency
histograms showing wider ranges of values for CAFs
compared to NPFs, and longer tails of values for
tumour compared to benign tissue from the TCGA
cohort (Additional File 2: Figure S5a-e).

EDARADD methylation is associated with age in non-
malignant prostate samples
Intriguingly, the precise region of the EDARADD
Gleason-DMR, specifically EPIC probe cg09809672
(chr1:236,557,682, hg19), is known to be gradually hypo-
methylated with age in human blood and saliva samples
[33, 34]. Indeed, we observed a significant negative cor-
relation between cg09809672 methylation and patient
age in NPFs and normal prostate tissues from TCGA
(Additional File 2: Figure S6a-b), but this trend was
much more subtle in CAFs and tumour tissues from
TCGA (Additional File 2: Figure S6c-d). This concurs
with a previous study showing a weaker association be-
tween DNA methylation and chronological age in cancer
tissues compared with healthy tissues [35].
We also investigated whether the hypomethylation of

EDARADD in the high-grade group samples might sig-
nify an accelerated aging phenotype, based on an estab-
lished DNA methylation signature frequently observed

(See figure on previous page.)
Fig. 2 Consistently differentially methylated regions across patients in CAFs versus NPFs. a Graph showing the number of EPIC CAF-DMRs that
are concordantly differentially methylated in the expected direction in each number of patients. b Graph showing the cumulative percentage of
EPIC CAF-DMRs that are concordantly differentially methylated in the expected direction in each number of patients. Inset pie charts show the
number of concordant EPIC CAF-DMRs in 17/17 patients (22.0% of DMRs) and 10/17 patients (100% of DMRs). c EPIC data for the GATA6 gene for
each NPF (blue) and CAF (red). The average difference in DNA methylation in CAFs compared to NPFs is shown in purple. The height of each
vertical line represents the percentage of DNA methylation at each CpG site. Purple boxes show the site of two EPIC CAF-DMRs. d Graphs
showing DNA methylation levels in each NPF and CAF for representative hypomethylated (AKAP2 and PITX2) and hypermethylated (GATA6)
consistent EPIC CAF-DMRs. Lines connect each patient-matched pair of fibroblasts. For each sample, the percentage of DNA methylation is
averaged across CpG sites within each DMR. e Plots showing −log10 binomial P values of pathways within the cellular content category that were
enriched in GREAT analysis of hypermethylated (green) and hypomethylated (purple) consistent EPIC CAF-DMRs
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in cancer [35]. However, we found no difference in the
DNA methylation aging signature between NPFs and
CAFs or grade group ≤ 3 CAFs and grade group ≥ 4
CAFs (Additional File 2: Figure S6e). Nor was there a re-
lationship between the aging signature and EDARADD
methylation across all fibroblasts (Additional File 2:
Figure S6f). Thus, EDARADD is gradually hypomethy-
lated with age in non-malignant prostate samples, but
the significant decrease in EDARADD methylation in
high-grade CAF samples is not linked to a more general
aging phenotype in these cells. This is consistent with
the known weakness of the relationship between an ac-
celerated aging signature and tumour grade [35].

EDARADD methylation and expression are associated with
poor clinical features and patient outcomes
Since EDARADD methylation and expression are associ-
ated with grade group in CAFs and tumour tissue, we
examined whether there was any association with other
clinical features or patient outcomes in several published
prostate cancer cohorts. In each cohort, to capture the
subset of patients with epigenetic changes in EDARADD,
we compared patients in the bottom quartile of EDAR-
ADD methylation or top quartile of EDARADD expres-
sion to the rest of the cohort. In TCGA, patients in the
lowest quartile of EDARADD methylation or highest
quartile of expression had significantly higher grade
group (Table 2). They also had significantly higher
pathologic tumour stage and incidence of positive lymph
nodes but no difference in age at diagnosis (Table 2).
We also examined differences in relapse-free survival

using Kaplan Meier curves and Cox models of EDARADD
methylation or expression as continuous variables. Low
EDARADD methylation was significantly associated with
shorter relapse-free survival in TCGA patients (Fig. 5a
and Table 2). We observed the same trend in methylation
in the Fraser cohort, even though it is restricted to low-
moderate risk prostate cancer (Fig. 5b) [36]. A meta-
analysis confirmed that the association between EDAR-
ADD hypomethylation and poor relapse-free survival was
significant across both datasets (Fixed effect model, Z =
3.14, P = 0.002, Fig. 5c).

Consistent with the inverse correlation between
EDARADD methylation and expression, high EDARADD
expression was significantly associated with poor
relapse-free survival among patients in TCGA (Fig. 5d).
There was the same trend in four other patient cohorts
(Fig. 5e–h), reaching significance in both datasets from
Ross-Adams and colleagues [37–39]. A meta-analysis of
all five cohorts confirmed that higher EDARADD expres-
sion is significantly associated with shorter relapse-free
survival (Fixed effect model, Z = 5.74, P < 0.00001, Fig. 5i).
Finally, the levels of EDARADD methylation and expres-
sion in CAFs, and stromal staining in matched tumour tis-
sues, were all significantly associated with poor relapse-
free survival in our cohort (Additional File 2: Figure S7),
consistent with the overall difference in survival be-
tween the grade group ≤ 3 and grade group ≥ 4 pa-
tients (Table 1). Therefore, epigenetic changes in
EDARADD are consistently associated with adverse
clinical features and poor relapse-free survival in men
with localised prostate cancer.

Discussion
Tumourigenesis is associated with genome-wide DNA
methylation alterations of cells within the tumour
microenvironment, including CAFs [24]. Yet, how con-
sistent these changes are across individual patients and
whether they vary based on clinical features is unknown.
Therefore, we assessed the DNA methylation profiles of
prostatic fibroblasts from carefully validated patient sam-
ples spanning moderate- to high-grade prostate cancer.
We found that a set of differently methylated regions ac-
curately distinguished CAFs from patient-matched NPFs
and non-matched BPFs, including a newly identified set
of CAF-NPF DMRs with remarkable consistency across
patients. We also identified DMRs associated with higher
grade group disease, including at the promoter of EDAR-
ADD, which was associated with shorter relapse-free
survival of patients.
Differences in the methylomes of CAFs or tumour

stroma have been observed in primary cell cultures, patient
tissue and mouse models of prostate cancer, although often
in small numbers of samples [6, 24, 26, 40, 41]. To further

(See figure on previous page.)
Fig. 3 EDARADD is hypomethylated in CAFs from high-grade group prostate cancer. a Schematic of genes proximal to Gleason-DMRs in CAFs
from GG ≤ 3 versus GG ≥ 4 prostate cancer. Gleason-DMRs that are hypermethylated in GG ≥ 4 CAFs are shown in green, while Gleason-DMRs
that are hypomethylated in GG ≥ 4 CAFs are shown in purple. Seven of these Gleason-DMRs were also differentially methylated in GG ≥ 4 CAFs
versus all other groups of fibroblasts (see panel b). Of these Gleason-DMRs, EDARADD was also significantly differentially methylated in GG ≥ 4
versus GG ≤ 3 tissues from TCGA (see panel c). b Boxplots showing DNA methylation of Gleason-DMRs in different groups of fibroblasts. Each dot
represents a different fibroblast sample (*P < 0.05 One-way ANOVA GG ≥ 4 CAF vs all other groups). c Plot of EDARADD DNA methylation levels
in patient tissue samples from TCGA. Samples are arranged as GG ≤ 3 versus GG ≥ 4 prostate cancer (aP = 8.3 × 10−5, diff = − 5.2%, Mann-
Whitney test) and as individual grade groups. Each dot represents a different patient, with lines indicating median and ± IQR. d Schematic of the
EDARADD Gleason-DMR showing the levels of DNA methylation at each CpG site in each CAF (blue = low methylation; red = high methylation).
The trend lines show the average methylation status of GG ≤ 3 CAFs (light blue) versus GG ≥ 4 CAFs (orange). The location of the Gleason-DMR
is shown in purple
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Fig. 4 EDARADD expression is increased in high-grade prostate cancer and correlated with DNA methylation. a Plot showing the average
expression of EDARADD (± SEM) in each group of NPFs (blue) and CAFs (red). There was significantly higher mRNA abundance in ≥ GG4 CAFs
versus each other fibroblast group (**P < 0.01 One-way ANOVA with Tukey post hoc analysis). b Scatter plot showing the significant negative
correlation between EPIC data for EDARADD DNA methylation and qRT-PCR data for EDARADD mRNA abundance (Spearman correlation, P <
0.0001). Each dot represents a different fibroblast sample. c Plot of RNA-seq data showing higher EDARADD expression in ≥ GG4 versus ≤ GG3
prostate cancer specimens from TCGA (b logFC between GG1-3 vs GG4-5 = 1.57, genome-wide adjusted P = 6.9 × 10−07, generalized linear
model using edgeR). d Scatter plot of matching EDARADD 450K DNA methylation data and RNA-seq data from TCGA showing a significant
negative correlation (Spearman correlation, P = 3.2 × 1017). e Representative images of immunohistochemistry (IHC) for EDARADD in matched
benign and tumour tissues. Scale bars equal 50 μm. f Plot of the average EDARADD stromal IHC score (± SEM) in each group of patient tissues.
There was significantly higher EDARADD staining in ≥ GG4 tumours versus ≤ GG3 tumours and benign samples (*P < 0.05, **P < 0.01 One-way
ANOVA with Tukey post hoc analysis). g Scatter plot showing the significant negative correlation between EDARADD DNA methylation in
fibroblasts and the stromal EDARADD IHC score in matching patient tissues (Spearman correlation, P = 0.0006)
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examine the technical and biological reproducibility of
DMRs, we used EPIC arrays to analyse genome-wide DNA
methylation in a larger cohort of patients. There was strong
cross-platform validation between EPIC arrays and WGBS,
which both separated CAFs from NPFs. Furthermore, we
identified numerous DMRs in CAFs versus NPFs, including

1239 CAF-DMRs that were detected in CAFs from every
patient. This is remarkable given the heterogeneity of CAFs
and the diversity of our cohort, with CAFs isolated from
primary cancers with different grade groups, tumour stages,
treatment outcomes and presumably genomic aberrations.
These DMRs may be useful to validate primary cultures of

Table 2 Clinical features of TCGA patients based on EDARADD expression and methylation

TCGA DNA methylation Bottom 0.25 Top 0.75 P value

Patients, no. 97 290

Age, median (range) 62 (47–75) 62 (44–78) 0.5339a

Gleason Grade Group, no. (%)

GG1 1 (1%) 26 (9%) < 0.0001b

GG2 18 (19%) 96 (33%)

GG3 18 (19%) 63 (21%)

GG4 16 (16%) 36 (12%)

GG5 44 (45%) 69 (24%)

Clinical features, no. (%)

Pathologic T stage 2 24 of 96 (25%) 115 of 286 (40%) 0.0072c

Pathologic T stage 3+ 72 (75%) 171 (60%)

Lymph node involvement 33 of 91 (36%) 36 of 240 (13%) < 0.0001d

Patient follow-up

Relapse, no of events 44 26

Log rank teste 0.0095

Cox modele 0.0167

TCGA RNA levels Top 0.25 Bottom 0.75 P value

Patients, no. 95 285

Age, median (range) 62 (46–78) 62 (44–77) 0.7623a

Gleason Grade Group, no. (%)

GG1 1 (1%) 26 (9%) < 0.0001b

GG2 20 (24%) 94 (33%)

GG3 20 (24%) 61 (21%)

GG4 13 (15%) 36 (13%)

GG5 41 (48%) 68 (24%)

Clinical features, no. (%)

Pathologic T stage 2 16 of 94 (17%) 120 of 281 (43%) < 0.0001c

Pathologic T stage 3+ 78 (83%) 161 (57%)

Lymph node involvement 28 of 90 (31%) 34 of 223 (15%) 0.0026d

Patient follow up

Relapse, no of events 42 27

Log rank testf 0.0054

Cox modelf 0.0005

Sample numbers are based on the availability of clinical, methylation (387 samples) and expression (380 samples) data. Numbers in italics denote sample numbers
where data was not available for some cases
aUnpaired T test with Welch’s correction
bChi-squared test for trend
cThe Fisher exact test comparing the proportion of patients with T2 versus T3 disease
dChi-squared test
eLog rank HR = 0.48 (0.28–0.84), Cox model HR = 0.10 (0.012–0.66)
fLog rank HR 1.96 (1.13–3.39), Cox model HR = 1.41 (1.16–1.72)
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CAFs and NPFs in future studies. Pathway analyses with
the DMRs highlighted the importance of cell adhesion, cell
morphology and the PDGF and TGFβ pathways, in

concordance with previous studies [2, 42]. Thus, the com-
mon functional features of CAFs may include the mecha-
nisms for attaching to the surrounding microenvironment

Fig. 5 EDARADD methylation and expression are associated with poor relapse-free survival in prostate cancer cohorts. a, b Kaplan Meier plots of
relapse free survival for patients in the lowest quartile of EDARADD methylation (bottom 0.25, orange) versus the rest of each cohort (top 0.75,
grey). c Forest plot showing the Cox hazard ratios (± 95% CI) for relapse free survival based on EDARADD methylation and a meta-analysis of
both methylation datasets (Heterogeneity: Chi2 = 0.09, df = 1 (P = 0.76); I2 = 0%; Test for overall effect: Z = 3.14 (P = 0.002)). d–h Kaplan Meier
plots of relapse free survival for patients in the highest quartile of EDARADD expression (top 0.25, orange) versus the rest of each cohort (bottom
0.75, grey) for the TCGA and Fraser datasets. i Forest plot showing the Cox hazard ratios (± 95% CI) for relapse-free survival based on EDARADD
expression and a meta-analysis of all methylation datasets (Heterogeneity: Chi2 = 5.45, df = 4 (P = 0.24); I2 = 27%; Test for overall effect: Z = 5.74
(P < 0.00001))
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and signalling to other cell types. Overall, the consistent
CAF-DMRs imply that key molecular aspects of the identity
of CAFs are preserved across prostate cancer samples.
In addition to comparing matched CAFs and NPFs, we

examined unmatched BPFs to investigate whether NPFs
bear traces of a cancer field effect [43]. The concept of
field cancerisation is of particular interest in prostate
cancer, because many patients have multifocal disease.
Histologically normal tissues adjacent to tumour foci
can also exhibit cytomorphological, transcriptional, gen-
omic and epigenomic alterations close to tumour foci
[16, 17, 44, 45]. Although some DNA methylation alter-
ations have been reported in more distant regions of
non-malignant prostate tissue [41, 46–50], we found
negligible differences in our study between the DNA
methylation profiles of NPFs and BPFs. Further analysis
of CAF-DMRs in samples at varying distances from the
tumour may define how far the cancer field effect ex-
tends and whether it is variable with tumour grade.
Previous studies have reported progressive changes in

the histopathology and transcriptome of tumour stroma
from low- to high-grade prostate cancer, so we hypothe-
sised that there may also be changes in DNA methyla-
tion [17, 19]. Indeed, we identified a limited number of
DNA methylation alterations associated with tumour
grade. Notably EDARADD showed the greatest differ-
ence in methylation in grade group ≥ 4 CAFs. Loss of
methylation at the EDARADD promoter is particularly
interesting from a clinical perspective, since it is correlated
with increased mRNA expression and stromal staining.
EDARADD is an intracellular adaptor protein in the ecto-
dysplasin pathway, activating downstream NFκB signalling
when the EDA ligand binds to the EDAR receptor [30].
The ectodysplasin pathway fine-tunes the development of
ectodermal tissues such as hair, teeth, sweat glands and
mammary glands [51]. Patients with mutations in this
pathway, including of EDARADD, have ectodermal
dysplasias with malformations of ectodermal tissues.
EDARADD is also associated with aging, through hypome-
thylation of cg09809672 [33, 34]. We observed that this
CpG site is indeed hypomethylated with aging in non-
malignant prostate tissue; however, the pronounced hypo-
methylation of EDARADD in high-grade tumour samples
was not associated with a more widespread aging signa-
ture in this tissue. Although the function of EDARADD
and the ectodysplasin pathway in the prostate is unknown,
it is possible that it influences the paracrine interactions
between stroma and epithelium, since it is expressed in
both cell types and regulates the expression of Wnt, FGF
and chemokines in other tissues [30, 51].
Further investigation of the role of EDARADD in

tumour progression is warranted, given its association
with poor patient outcomes across multiple cohorts. In
this study, we observed that DNA methylation and gene

expression levels of EDARADD are associated with
tumour grade, stage, lymph node metastasis and relapse-
free survival. EDARADD has also been linked to tumour
severity in other studies. Shahabi and colleagues showed
that EDARADD expression is upregulated in prostate
cancer tissue from patients who develop clinical recur-
rence [31]. In addition hypomethylation and increased
expression of EDARADD in CAFs and patient tissue is
associated with poor overall survival in non-small cell
lung cancer [32].

Conclusions
This study identified a set of DNA methylation alter-
ations that are specific to CAFs and shared across pa-
tients regardless of tumour grade. These shared
epigenetic changes potentially encode the phenotypic
differences between CAFs and NPFs. We also demon-
strated that EDARADD methylation and expression cor-
relate with clinical features and patient outcomes,
indicating that specific epigenome changes in CAFs re-
flect the features of the adjacent tumour. Importantly,
EDARADD represents a potential prognostic biomarker
to detect the severity of the tumour based on the mo-
lecular features of the surrounding microenvironment.

Methods
Patient tissue
Samples of fresh prostate tissue (n = 41, Additional File 1:
Table S1) were collected from 23 patients undergoing rad-
ical prostatectomy (Table 1) or transurethral resection of
the prostate (TURP) with written informed consent ac-
cording to human ethics approval from Monash Univer-
sity (2004/145), Cabrini Hospital (03-14-04-08) and
Epworth Hospital (53611). To isolate CAFs from radical
prostatectomy specimens, the location of the tumour was
determined using biopsy reports and palpation. The pros-
tate was cut to expose the tumour, and frozen sections
were examined by a board-certified pathologist to confirm
that the area contained approximately 80% prostate can-
cer. Approximately, 200–1000mg of tissue was then dis-
sected from this site. To isolate patient-matched NPFs,
benign tissue was obtained from a distant region of the
same radical prostatectomy specimen, typically from a dif-
ferent side and zone of the prostate. Frozen sections were
used to confirm the lack of tumour cells in the benign tis-
sue. The prostate gland was then reassembled and proc-
essed for routine histopathology. BPFs were isolated from
TURP chips from men with benign prostatic hyperplasia,
but no diagnosis of prostate cancer for at least 5 years after
the specimens were collected. Patient clinical features and
follow-up were collected by the Melbourne Urological Re-
search Alliance (MURAL). Gleason scores were converted
to grade groups (GG) as described [52]. Relapse-free
survival was calculated as the time from radical
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prostatectomy to biochemical relapse (two consecutive
and rising serum PSA measurements > 0.2 ng/mL) [53] or
clinical relapse [54], whichever occurred first.

Cell culture
Primary cultures of prostatic fibroblasts were established
and validated as previously described [8, 43]. Briefly,
fresh patient tissue was chopped into small pieces, ap-
proximately 2 mm3, and two or three pieces were
retained for histology. Fibroblasts were only included in
this study if a pathologist confirmed that these pieces of
fixed tissue had the correct pathology: benign for BPF
and NPF tissues and tumour for CAF tissues. The rest of
each tissue was digested overnight at 37 °C in RPMI con-
taining 10% fetal calf serum (FCS), 25 mM HEPES, 100
U/mL penicillin, 100mg/mL streptomycin, 0.5 mg/mL
Amphotericin B, 100mg/mL gentamicin, 225 U/mL Col-
lagenase Type I and 125 U/mL Hyaluronidase Type II
(Sigma-Aldrich) as previously described [43]. Cells were
then seeded in RPMI containing 5% FCS, penicillin/
streptomycin, 1 nM testosterone (Sigma-Aldrich) and 10
ng/mL bFGF (Millipore), which selects for the growth of
fibroblasts versus other prostatic cell types. Cells were
grown at 37 °C in a humidified incubator with 5% O2

and 5% CO2. Early passage cultures of fibroblasts (me-
dian P4, range P2–7) were used for subsequent
experiments.

Microarray genome-wide DNA methylation analysis
DNA was extracted from fibroblast samples with the
DNeasy kit (Qiagen) with on-column RNase A digestion.
DNA (500 ng) from 18 patient-matched CAF-NPF pairs
and 5 BPF samples was treated with sodium bisulphite
using the EZ-96 DNA methylation kit (Zymo Research,
CA, USA). DNA methylation was quantified using the
Illumina Infinium HumanMethylationEPIC (EPIC) Bead-
Chip (Illumina, CA, USA) run on an Illumina HiScan
System (Illumina, CA, USA) using the manufacturer’s
standard protocol.
Raw intensity data (IDAT) files were imported into the

R environment (version 3.1.1) [55] using the minfi pack-
age (version 1.20.2) [56]. Each sample passed all quality
control steps. The data correctly predicted all patients to
be male and control single nucleotide polymorphism
(SNP) probes correctly paired the patient-matched CAFs
and NPFs. Data was then normalised with background
correction. Poor quality probes with a detection P value
> 0.01 in at least 10% of the samples were removed. At
least 99% of probes passed this step. Poor quality probes
with a detection P value > 0.01 in less than 10% samples
were considered undetected. Next, to reduce the risk of
false discoveries, we removed probes that mapped to
multiple locations or overlapped SNPs, as previously de-
scribed [40]. The resulting dataset comprised 808,100

CpG sites. β values were calculated from unmethylated
(U) and methylated (M) signal [M/(U + M + 100)] and
ranged from 0 to 1 (0 to 100% methylation). The co-
ordinates of all CpG sites were defined using the hg19
human genome assembly.

WGBS data extraction
To compare EPIC and WGBS data, we used in-house
CAF and NPF WGBS sequencing data that was gener-
ated and processed as previously described [24]. All raw
and processed WGBS data is publically available at
NCBI Gene Expression Omnibus (GEO) (www.ncbi.nlm.
nih.gov/geo) under accession number GSE86833. We
used the getMeth function in R package bsseq [57] to ex-
tract CAF-NPF WGBS data for patients 1, 2 and 4 at the
796,222/808,100 CpG sites overlapping the EPIC probes
in our dataset. To compare EPIC and extracted WGBS
methylation data, we used base package functions in R
to produce scatterplots, perform Pearson correlation
analysis, and output bedGraph files of the data for visu-
alisation in the IGV genome browser [58].

EPIC array statistical analysis
For initial visualisation of the EPIC data, multidimen-
sional scaling plots were generated using the ‘mdsPlot’
function in the minfi Bioconductor package (version
1.20.2) [56]. We then performed differential methylation
analysis between novel CAF versus NPF (n = 14 vs n =
14), CAF versus BPF (n = 17 vs n = 5), NPF versus BPF
(n = 17 vs n = 5) and between Gleason grade groups (n
= 8 GG ≤ 3 CAFs vs n = 7 GG ≥ 4 CAFs). In each case,
β values were transformed using logit transformation: M
= log2(β/(1−β)). We used the limma Bioconductor pack-
age [59] to identify DMPs between sample groups with
adjusted p value cut-off of < 0.1. DMPs were visualised
as volcano plots using the ggplot2 R package [60]. The R
package DMRcate [61] was used to identify DMRs, with
DMP p value cut-offs of FDR < 0.05 for CAF versus
NPF and p < 0.0001 for GG ≤ 3 versus GG ≥ 4. DMRs
were defined as regions with a maximum of 1000 nucle-
otides between consecutive probes and a minimum of 2
CpG sites, a methylation change > 10% and we applied
Benjamini-Hochberg correction for multiple testing.
DMRs were annotated for proximity with genetic fea-
tures using the ‘annotateRegions’ function implemented
in the R package aaRon (https://github.com/astatham/
aaRon). DMRs were visualised as heat maps with den-
drograms using the heatmap.2 function in the gplots R
package [62], and bedGraph files of the data were gener-
ated for visualisation in the IGV genome browser [58].
‘Consistent EPIC CAF-DMRs’ were identified by sub-
traction of methylation differences between each
patient-matched CAF and NPF, and GREAT was used
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to analyse the functional significance of these DMRs
[29].
To establish the cell-type specificity of the Gleason-

DMRs, we used base package functions in R to perform
one-way ANOVA and Tukey post hoc tests to compare
Gleason-DMRs in GG ≥ 4 CAFs to all other fibroblast
groups. This analysis was performed on a single methyla-
tion value for each Gleason-DMR per sample, obtained by
calculating the mean methylation across all probes in the
region and plotted using the beeswarm package in R [63].
To determine the DNA methylation age of each fibro-

blast sample, we uploaded β values from EPIC array data
to the DNA Methylation Age Calculator (https://dna-
mage.genetics.ucla.edu/) [35].

Cellularised matrix co-culture model
A cellularised matrix co-culture model was used as pre-
viously described with some modifications [8, 28].
Briefly, CAFs and NPFs were seeded in 24 well plates at
1.5 × 104 cells/well and cultured for 5–8 days to yield a
dense monolayer with extensive extracellular matrix de-
position. RWPE-1 cells (American Type Culture Collec-
tion) [64] were maintained in keratinocyte serum-free
medium supplemented with 5 ng/mL epidermal growth
factor (Gibco), 50 μg/mL bovine pituitary extract
(Gibco), 100 U/mL penicillin and 100 mg/mL strepto-
mycin at 37 °C, 5% CO2. For co-cultures, RWPE-1 cells
were pre-stained with CellTracker Green CMFDA (Invi-
trogen), seeded on top of the fibroblasts at 1.5 × 104

cells per well, and cultured at 37 °C, 5% CO2, 5% O2.
After 24 h, cellularised matrix co-cultures were fixed
with 4% paraformaldehyde for 12 min and then washed
with phosphate-buffered saline.
Cellularised matrix co-cultures were imaged at 488 nm

and with brightfield microscopy using a Nikon C1
Inverted Eclipse 90i confocal microscope with a × 20 ob-
jective lens. 2D quantitative analysis of RWPE-1 cell
morphology was performed using ImageJ (NIH) as previ-
ously described [8]. Briefly, a maximum intensity projec-
tion was obtained of the green-labelled RWPE-1 cells,
then a Gaussian Blur filter (σ: 2) was applied, followed
by thresholding, and the watershed step to obtain the
outlines of the cells. The shape factor, cell area, cell
length and standard deviation of orientation of these
outlines were then calculated in 8 random fields per co-
culture with an average of 58 cells/field (range 20–140).

Quantitative RT-PCR
Total RNA was isolated from prostatic fibroblasts using
the RNeasy Kit (QIAGEN) with an on-column DNaseI
treatment. A mixture of RNA from human prostatic fi-
broblasts, epithelial cells and immune cells was pooled
and used as a universal prostate control. Each sample
(500 ng) was reverse transcribed into cDNA using the

Superscript III First Strand Synthesis System (Invitrogen)
according to the manufacturer’s instructions. Primer se-
quences are listed in Additional File 1: Table S6. Gene
expression was quantified using Power SYBRTM Green
Master Mix (ThermoFisher Scientific) and a Mx3000P
qPCR System with MxPro Software (Stratagene). The
relative mRNA abundance of the candidate genes com-
pared to the universal prostate cancer control was calcu-
lated using the ΔΔCt method and the geometric mean
of the three reference genes (GAPDH, HPRT1, RPLPO).

Immunohistochemistry
Small pieces of tissue were retained from the specimens
used to establish fibroblast cultures. These samples were
formalin-fixed and paraffin embedded. Sections were
stained with a rabbit anti-EDARADD antibody (1 μg/mL,
HPA018836, Sigma) or rabbit IgG control (1 μg/mL,
Dako) using a Leica BOND-MAX-TM autostainer with
BondTM epitope retrieval 1 and the Bond Refine Detec-
tion Kit (Leica). Slides were imaged using a ScanScope
AT Turbo slide scanner (Aperio). Regions of stroma and
epithelium in each tissue were circled separately using
the ImageScope analysis software (Aperio), and staining
was quantified with the positive pixel count v9 algo-
rithm. Positive staining was defined as the percentage of
strong positive pixels (intensity limit 0–100) versus the
total number of pixels analysed per sample.

Analysis of 450K methylation datasets
Prostate adenocarcinoma (PRAD) 450K methylation data
was downloaded from The Cancer Genome Atlas
(TCGA) Data Portal website (http://tcga-data.nci.nih.
gov/tcgafiles) and processed as described in [24], giving
414,133 CpG sites from 437 samples (of which 392 were
tumour tissue). Gleason scores were converted to grade
groups as described [52]. We identified probes that over-
lapped the seven CAF GG ≥ 4 Gleason-DMRs and calcu-
lated the mean methylation of probes within each region
for each sample. The difference in methylation β values
between tissues from n = 226 GG ≤ 3 versus n = 166
GG ≥ 4 prostate cancers was determined with a t test.
The 450K methylation data from the Fraser cohort

was downloaded from the NCBI GEO database with ac-
cession GSE84043 [36, 65]. IDAT files were imported
into the R environment (version 3.1.1) [55] using the
minfi package (version 1.20.2) [56]. Data quality was
checked with plots derived from control probes on the
array. Data was then normalised with background cor-
rection. Poor quality probes with a detection P value >
0.01 in at least 10% samples were removed. Next, to re-
duce the risk of false discoveries we removed probes that
mapped to multiple locations or overlapped SNPs [66].
The resulting dataset comprised 444,775 CpG sites. β
values for the 160 tumour samples were calculated from
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unmethylated (U) and methylated (M) signal [M/(U + M
+ 100)] and ranged from 0 to 1 (0 to 100% methylation).
β values were averaged across technical replicates,
leaving 104 unique patient samples for analysis. Cor-
responding patient clinical data was obtained from
Supplementary Table 1 in [36].

Analysis of TCGA RNAseq data
TCGA PRAD processed RNA-seq V2 data (level 3) was
downloaded from the TCGA Data Portal website (http://
tcga-data.nci.nih.gov/tcgafiles) on 19th April 2016. We
extracted the samples matching the earlier TCGA PRAD
450K methylation data (described above—tumour n =
385/392). Spearman correlation analysis was used to as-
sess the relationship between DNA methylation at
probes within the EDARADD Gleason-DMR and EDAR-
ADD gene expression. Additionally, differential gene ex-
pression between Gleason grade groups (n = 226 GG ≤
3 versus n = 159 GG ≥ 4) was calculated genome-wide
using edgeR [67] and log fold change and Bonferroni ad-
justed P value extracted for EDARADD.

Analysis of patient clinical features in public datasets
Clinical data for the TCGA PRAD samples (correspond-
ing to the methylation and expression data above) were
downloaded from cBioPortal [68, 69] (TCGA—
Provisional) on 13th August 2018. Samples with known
disease-free status were included for further analyses (n
= 387 for 450K methylation, n = 380 for RNAseq). Clin-
ical 450K methylation data for the Fraser cohort [36]
(GSE84043) and Affymetrix array expression data from
the Taylor cohort [39] (GSE21032) were downloaded
from the NCBI GEO database [65]. The Taylor dataset
was processed as previously described [24]. Samples in
the bottom quartile of EDARADD DNA methylation or
top quartile of EDARADD expression were compared to
the rest of the samples in each dataset. Relapse-free sur-
vival was visualised using Kaplan-Meier plots and was
defined as biochemical relapse or disease-free survival as
reported for each dataset. Cox proportional hazards
models were used to calculate hazard ratios and P values
using the R survival 2.39 package [70]. Additional sur-
vival analyses were performed with PROGgene2 [71]
using data from the Gulzar cohort [37] (GSE40272) and
two cohorts from Ross-Adams and colleagues
(GSE70768 and GSE70769) [38].

Meta-analyses
Data from Cox proportional hazard models were used
for meta-analyses of the association between relapse-free
survival and EDARADD methylation and expression.
The O-E and V values for each dataset were calculated
as previously described [72]. The Review Manager ver-
sion 5.3 software was used for meta-analyses [73]. The

statistical model was Exp[(O-E)/Var], the statistical
method was fixed effect and the effect measure was haz-
ard ratios. The resulting Forest plots were ordered by
the effect size of each dataset.
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