Wang et al. Clinical Epigenetics (2019) 11:184
https://doi.org/10.1186/513148-019-0785-z

Clinical Epigenetics

RESEARCH Open Access

ZMYND10, an epigenetically regulated
tumor suppressor, exerts tumor-suppressive

Check for
updates

functions via miR145-5p/NEDD9 axis in

breast cancer

Yan Wang'", Liangying Dan'“", Qiangian Li", Lili Li*, Lan Zhong®, Bianfei Shao', Fang Yu', Sanxiu He',
Shaorong Tian', Jin He', Qian Xiao', Thomas C. Putti®, Xiaogian He', Yixiao Feng', Yong Lin® and Tingxiu Xiang'"

Abstract

Keywords: ZMYND10, Breast cancer, NEDD9, miR145-5p

Background: Recent studies suggested that ZMYNDI0 is a potential tumor suppressor gene in multiple tumor
types. However, the mechanism by which ZMYND10 inhibits breast cancer remains unclear. Here, we investigated
the role and mechanism of ZMYND10 in breast cancer inhibition.

Results: ZMYND10 was dramatically reduced in multiple breast cancer cell lines and tissues, which was associated
with promoter hypermethylation. Ectopic expression of ZMYND10 in silenced breast cancer cells induced cell
apoptosis while suppressed cell growth, cell migration and invasion in vitro, and xenograft tumor growth in vivo.
Furthermore, molecular mechanism studies indicated that ZMYND10 enhances expression of miR145-5p, which
suppresses the expression of NEDD9 protein through directly targeting the 3'-untranslated region of NEDD9 mRNA.

Conclusions: Results from this study show that ZMYND10 suppresses breast cancer tumorigenicity by inhibiting the
miR145-5p/NEDD9 signaling pathway. This novel discovered signaling pathway may be a valid target for small
molecules that might help to develop new therapies to better inhibit the breast cancer metastasis.

Background

Breast cancer (BC) is the most frequently diagnosed can-
cer and the leading cause of cancer death among females
worldwide, with an estimated 1,762,450 cases and 606,
880 deaths in 2019. Breast cancer alone accounts for
30% of all cancer cases and 15% of all cancer deaths
among females [1]. In recent years, female breast cancer
mortality rates have decreased or remained stable in the
western countries, while in China the mortality rates are
on the rise [2]. Breast cancer is an extremely heteroge-
neous disease with varying clinical manifestations and
treatment responses [3]. Hence, clinical challenges in the
treatment of breast cancer patients remain and it is
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inevitable that new biomarkers will have to be identified
on an individual basis.

ZMYNDI0, also known as BLU (zinc finger, MYND-
type containing 10), encodes a 50-kD protein containing
an MYND-type zinc finger DNA-binding domain in the
C-terminus that is commonly found in transcription re-
pressors [4]. ZMYNDIO is located to the 3p21.3 region,
and is frequently inactivated or downregulated via gen-
etic or epigenetic changes in many solid tumors, such as
lung cancer [5, 6], glioma tumors [7], ovarian cancer [8],
liver cancer [9], esophageal squamous cell carcinomas
[10], neuroblastoma [11], myelodysplastic syndrome
[12], gastric cancer [13], and nasopharyngeal cancer [14].
In recent decades, documented studies have confirmed
that ZMYNDI0 is a tumor suppressor that can induce
apoptosis [8, 15], arrest cell cycle [16], and inhibit prolif-
eration and angiogenesis [17] in different tumors. Some
reports have shown that ZMYNDIO can sensitize
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anticancer activities of chemotherapeutic agents such as
gemcitabine [18] and paclitaxel [19]. Although it has
been suggested that ZMYNDI0 downregulation or silen-
cing is closely correlated to its promoter CpG methyla-
tion, its biological functions and molecular mechanisms
in breast cancer remain unknown.

NEDD9 (also known as HEFI and CasL) is a pro-
metastatic gene that is upregulated in different meta-
static cancers [20]. It is a cytoplasmic multi-domain scaf-
folding protein required for mesenchymal invasion and
migration driven by extracellular matrix proteolysis.
NEDDY downregulation has been shown to dramatically
reduce cell invasion and metastasis in multiple tumors
including breast cancer [21].

In this study, we found that ZMYNDIO suppresses
breast cancer tumorigenicity through upregulating miR-
145-5p to inhibit the expression of oncogene NEDDY,
which results in suppression of cell invasion and migra-
tion and breast cancer progression.

Results

ZMYND10 downregulation in breast cancer is associated
with poor patient survival

To investigate whether ZMYNDI10 is downregulated in
breast cancer, we first used immunohistochemistry assay
to examine its expression in tumor-adjacent (1 = 16)
and tumor tissues (n = 27). ZMYNDIO expression was
significantly lower in breast tumor samples(22/27) than
in breast tumor-adjacent tissues (Table 1, Fig. 1a). Fur-
thermore, the ZMYNDI10 mRNA expression level was
detected by qPCR in paired breast tumor and adjacent
non-tumor tissues with different ER/PR/HER2 statuses.
ZMYND10 mRNA levels were much lower in breast
cancer tissues than that in normal breast tissue in basal-
like (ER-/PR-/HER2-) tumors (14/16). There were no
statistical differences in luminal (ER+/PR+/ HER2-or
ER+/PR+/ HER2+) tumors (1 = 36, Fig. 1b). Gene
Expression-Based Outcome for Breast Cancer Online
(GOBO) (http://co.bmc.lu.se/gobo) database showed
consistent results, in which the expression of ZMYNDI10
was lower in tri-negative (ER-/PR-/HER2-) tumors
compared to that in other molecular type tumors, and
was closely related to tumor grade (Fig. 1c—e). Signifi-
cantly, the prognostic analysis indicated that higher ex-
pression of ZMYNDIO was related to better patient
survival, which was detected in an integrated database
with 3951 cases from the Kaplan-Meier Plotter and in

Table 1 ZMYNDI0 protein expression in breast cancer and
adjacent tissues

Tissue Samples  Positive  Negative  p value
Breast cancer tissues 27 5 22 0.0181
BC surgical margin tissues 16 9 7

Note: BC, breast cancer
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1379 samples from GOBO (Fig. 1f). Together, these data
demonstrated a reduction in ZMYNDIO expression in
breast cancer, which may be an indicator of breast can-
cer prognosis.

Promoter methylation of ZMYND10 contributes to its
downregulation in breast cancer

DNA methylation is a key mechanism that represses the
expression of tumor suppressor genes in cancer. Thus, a
possible link between promoter methylation and downreg-
ulation of ZMYNDI0 expression in breast cancer was in-
vestigated. ZMYNDIO was significantly reduced in
multiple breast cancer cell lines (7/10), but broadly
expressed in all normal breast tissue. MSP analysis showed
that ZMYND10 CpG island was methylated in 80% (8/10)
of breast cancer cell lines (Fig. 2a). To further determine
whether promoter methylation directly —mediates
ZMYNDIO silencing, we tested whether ZMYNDIO ex-
pression can be restored by pharmacological demethyla-
tion in ZMYND10-downregulated breast cancer cell lines
MDA-MB231 and SK-BR-3 via treating with the DNA
methyltransferase inhibitor Aza and histone deacetylase
inhibitor TSA. The expression of ZMYND10 was restored
after Aza treatment without or with TSA in MDA-MB231
and SK-BR-3 cell lines.

Meanwhile, the results of quantitative methylation-
specific PCR (qMSP) showed that the methylation level
of ZMYNDI10 was decreased and the un-methylation
level of ZMYND10 was increased (Fig. 2b).

MSP was used to examine ZMYNDI0 methylation in
138 primary breast cancer tissue, 40 breast cancer-
adjacent tissue, 46 breast fringe, and 8 normal breast tis-
sue samples. ZMYNDI0 promoter methylation was de-
tected in 101 of 138 (73%) breast cancer tissue samples,
but not in normal breast tissues (0/8, Fig. 2c,Table 2).
Bisulfite genomic sequencing was then used to measure
the methylation of ZMYNDIO CpG in MB468 and
MDA-MB231 cells treated with Aza and TSA and two-
paired normal breast and breast tumor tissue samples,
which verified the MSP results (Fig. 2d, e).

The association of ZMYNDIO promoter methylation
and patient clinicopathological features was analyzed,
which clearly showed that ZMYNDI10 methylation was
not statistically connected to age, histological type, tumor
size, lymph node metastasis, or PR, ER, and HER2 breast
cancer patient status (data not shown). These data indi-
cated that ZMYNDI0 promoter methylation was common
in breast cancer tissues, which is maybe an underlying bio-
marker for early detection of breast cancer.

Overexpression of ZMYND10 inhibited colony formation
and proliferation of breast cancer cells

Silencing of ZMYNDIO by promoter methylation in breast
cancer cell lines as well as primary tumors suggested
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Fig. 1 The expression levels of ZMYNDI10 in breast cancer tissues. a Representative images of ZMYNDI10 IHC staining in breast tumor and tumor-
adjacent tissues. b Quantitative real-time PCR (gPCR) analysis of ZMYND10 mRNA expression in paired breast tumor and tumor-adjacent tissue
samples. ¢ Box plot of ZMYND10 gene expression for tumor samples stratified according to ER status. d Box plot of ZMYND10 gene expression for
tumor samples stratified according to Hu subtypes and PAM50 subtypes. e Box plot of ZMYND10 gene expression for tumor samples stratified
according to histological grade. f Low ZMYND10 expression is associated with poor 10-year distant metastasis-free survival (DMFS) and relapse-
free survival (RFS) in breast cancer patients. Prognosis data was acquired and analyzed using the Gene expression-based Outcome for Breast
cancer Online tool (http://co.bmc.luse/gobo) and the Kaplan-Meier Plotter database

ZMYNDIO0 as a functional tumor suppressor in breast cancer.
Therefore, MDA-MB231(ER-/PR-/HER2-) and SK-BR-3(ER
—/PR-/HER2+) cell lines with low expression of ZMYNDI0
were selected for a series of functional experiments in vitro.
Colony formation and MTS assays were used to evaluate the

ZMYNDIO suppressor function. The overexpression of
ZMYNDI0 in MDA-MB231 and SK-BR-3 cells was detected
by RT-PCR and western blot (Fig. 3a, b). When ZMYNDI10
was overexpressed, the growth of MDA-MB231 and SK-BR-3
cells was strongly inhibited at 48 and 72 h (p < 0.001, Fig. 3¢).
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Fig. 2 The methylation status of ZMYNDI10 promoter in breast carcinoma a RT-PCR and MSP analysis of ZMYND10 mRNA expression and
promoter methylation in breast cancer cell lines. Normal breast tissue samples were used as controls. b gPCR indicates demethylation by Aza and
TSA (A+T) restored ZMYND10 expression in MDA-MB231and SK-BR-3 cells. ¢ Representative methylation of ZMYND10 in breast tumor and normal
tissues as examined by MSP. d Bisulfite genomic sequencing confirmed A+T treatment could inhibit the methylation of the ZMYND10 promoter.
e The methylation status of the ZMYND10 promoter in breast cancer tissues was significantly higher than which in normal breast tissues. Aza, 5-
aza-2"-deoxycytidine; BN, breast normal tissue; BF, breast fringe; BA, breast cancer adjacent tissues; M, methylated; U, unmethylated; MSP,
methylation-specific polymerase chain reaction; RT-PCR, semiquantitative reverse transcription PCR

Table 2 Methylation status of ZMYNDI10 promoter in primary

breast tumors

Samples ZMYND10 promoter Frequency of

Methylation Unmethylation methylation
BC (n =138) 101 37 101/138 (73%)
BN (n = 8) 0 8 0/8 (0%)

Note: BC, breast cancer; BN, breast normal tissues

Smaller and fewer colonies were formed in MDA-MB231 and
SK-BR-3 cells expressing ZMYNDIO than that in the empty
vector group (p < 0.001, Fig. 3d, e).

ZMYND10 induces cell cycle arrest in the G2/M phase and
promotes apoptosis of breast tumor cells

To explore the effects of ZMYNDIO on cell cycle pro-
gression, flow cytometry analysis was performed. The



Wang et al. Clinical Epigenetics (2019) 11:184 Page 5 of 16

A
MB231 SK-BR-3
N e
S » & »
L § o 8 MB231 SK-BR-3
N — 2.0 — 3
£ | = Vector € | = Vector ke
RT- [ZMYND10_ = - ZMYND10 £ | = zwyND10
1.5- ok
PR GarH | g 2 o
2 g y
B MB231 SK-BR3  § '] x5 5
O 1T g7
o Q i
& & & & 2 2
T4 N9 00— o
ZMYND10‘ .iH*“ — Oh 24h 48h 72h Oh 24h 48h 72h
{ Time (Hours) Time (Hours)
GAPDH s s —|
D E
Vector ZMYND10 g B Vector
-/ A = 1207 W ZMYND10
/ ©
£ |
o 100 Fokk Fokk
S 807
:v
29 60
8T 4.
o
2 207
)
> |
(14 MB231 SK-BR-3

Fig. 3 Overexpression of ZMYND]10 inhibited the proliferation of breast cancer cells a, b Validation of ZMYND10 overexpression by RT-PCR and
Western blot. ¢ The capacity of cell proliferation was detected in MDA-MB231 and SK-BR-3 cells stably transfected with ZMYND10 or empty vector
plasmid via MTS assay. d, e Representative images and the histogram statistics of the colony-formation assay in vector- and ZMYND10-expressed

MDA-MB231 and SK-BR-3 cells. Mean =+ SD, *p < 0.05, **p < 0.01, ***p < 0.001. All experiments were performed in triplicate, respectively

results showed that increased cell accumulation in the G2/M
phase ZMYNDIO-transfected cells (vector control vs
ZMYNDIO = 14.6% vs 286% in MDA-MB231 cells, p <
0.005; and 10.3% vs 16.3% in SK-BR-3 cells, p < 0.005, Fig. 4a).
Western blot analysis was used to examine the expression of
cell cycle-related proteins. While ZMYNDI10 upregulated the
expression of protein p27 and protein p21 in MDA-MB231
cells and SK-BR-3 cells, cyclin D1 protein expression was
suppressed in ZMYNDI0-transfected cells (Fig. 4b). Annexin
V-FITC/PI staining assays were performed to examine apop-
tosis. Annexin V-Pl-positive cells were increased in
ZMYNDI10-transfected MDA-MB231 and SK-BR-3 cells to
36.98% and 8.19%, respectively, compared with the controls (p
< 0.01, Fig. 4c), suggesting that ZMYNDI10 can accelerate cell
apoptosis. Furthermore, western blot analysis showed that ec-
topic ZMYNDI10 downregulated anti-apoptotic proteins Bcl-
xL and Bcl-2 and upregulated the pro-apoptotic protein Bax,

cleaved caspase-3, and cleaved PARP in both MDA-MB231
and SK-BR-3 cells (Fig. 4d). These results indicated that
ZMYNDIO0 suppresses cell proliferation through inducing G2/
M cell cycle arrest and apoptosis.

Ectopic ZMYND10 expression inhibits breast cancer cell
migration and invasion

A wound-healing assay was performed to investigate
whether ZMYNDI10 suppresses tumor cell migration. Ec-
topic expression of ZMYNDIO0 significantly inhibited cell
migration from the wound edges compared to the vector
control (Fig. 5a). Transwell assay demonstrated a corre-
sponding reduction of migration and invasion in
ZMYNDI10-overexpressing cells compared to that in
vector-transfected cells (p < 0.01, Fig. 5b, c). These results
suggested that ZMYNDI0 had the capacity to inhibit mi-
gration and invasion in vitro.
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ZMYND10 regulates pathways related to focal adhesion in
breast cancer cells

To further study the biological mechanism by which
ZMYNDIO0 suppresses the development of breast cancer,
gene expression profiles between the control cells and
ZMYNDI10-overexpressing cells were compared using
RNA-Sequencing (RNA-Seq). There were 392 differentially
expressed genes (DEGs) identified, among which 156 were
upregulated and 236 were downregulated (fold change > 2,
FDR (false discovery rate) < 0.05, Additional file 1: Figure
S1A]. The major identified biological pathways included
the focal adhesion, PPAR, and MAPK signaling pathways
(Additional file 1: Figure S1B).

ZMYND10 inhibits breast cancer by suppressing NEDD9
expression

Screening of differentially expressed genes in the focal ad-
hesion pathway leads the focus to NEDD9 that is closely
related to breast cancer metastasis (Additional file 1: Fig-
ure S1C). qPCR assay was performed to confirm the in-
hibitory effect of ZMYNDIO on NEDD9Y expression in
breast cancer cells (Fig. 6a). And the negative regulatory
effect of ZMYND10 on NEDD9 was also verified via dual-
luciferase reporter assay. These data indicated that

ZMYNDIO obviously repressed luciferase reporter activity
of NEDD9 (Fig. 6b). By immunofluorescence detected
with laser scanning confocal microscopy, reduced NEDD9
expression was seen in ZMYNDI10-expressing cells than in
the control cells at different time points (Fig. 6¢). Because
ZMYNDIO was reported to inhibit PI3K/AKT [19] and
NEDD?9 participated in AKTactivation in certain circum-
stances [22], we examined if ZMYNDIO affects this
pathway in breast cancer. As expected, NEDD9,p-PI3K,
and p-AKT were significantly down-regulated while p-
GSK3f was markedly upregulated in ZMYNDIO-trans-
fected cells (Fig. 6d). The results clearly showed that
ZMYNDI0 could inhibit the PI3K/AKT pathway in breast
cancer cells. Since NEDD9 belongs to the Cas family of
non-catalytic scaffold proteins, it controls cell survival, cell
cycle, migration, and adhesion signals. And NEDD9 was
reported to affect the lysosomal degradation of E-cadherin
by regulating SRC kinase [23], we examined a number of
proteins that were involved in EMT (epithelial-mesenchy-
mal transformation ) process. The data showed that
ZMYNDIO inhibited the process of EMT. In a rescue ex-
periment, overexpression of NEDD9 partially attenuated
the ability of ZMYNDIO0 in inhibiting migration and inva-
sion of breast cancer cells (Fig. 7a, b). Altogether, the
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results suggested that ZMYNDIO is able to suppress mi-
gration and invasion of breast cancer cells by inhibiting
NEDD9 expression.

Mechanism for ZMYND10 regulation of NEDD9 expression
Co-immunoprecipitation assay was performed but there
was no direct interaction between ZMYNDIO and

NEDD9 detected (data not shown). Thus, we focused on
micro-RNA because micro-RNA might play an import-
ant role in gene inhibition and activation via a diverse
series of mechanisms and may have vital effects on
breast cancer progression [24]. Potential micro-RNA
binding sites in the 3'-UTR of NEDD9 were first identi-
fied using a bioinformatics website (http://www.
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targetscan.org/) (Fig. 8), which was consistent with a re-
port in lung cancer [25]. Indeed, ZMYNDI10 induced
miR145-5p expression in MDA-MB231 and SK-BR-3
cells, which was detected by the qPCR (Fig. 8b). The
luciferase reporter assay with the pmiR-RB-Report™
vector carrying MT or WT 3'-UTR sequences of
NEDD9 was used to validate the direct effect of miR-
145-5p on NEDD9 expression. The results showed
that the miR-145-5p inhibitor inhibited miR-145-5p
expression and induced the activity of WT3'-UTR
but not MT3'-UTR reporter (Fig. 8c). The qPCR
assay data showed that miR-145-5p inhibitor was
added to ZMYNDIO-expressing breast cancer cells
could reduce the expression of miR145-5p and in-
creased the expression of NEDD9 (Fig. 8d, e). Con-
sistent results were also confirmed at the protein
level. The miR-145-5p inhibitor enhanced NEDD9
protein levels and partially reversed ZMYNDI0-de-
creased NEDDY expression (Fig. 8f). Thus, ZMYNDI10
may inhibit the expression of NEDD9 by upregulating
miR-145-5p.

The ZMYND10/miR-145-5p axis promotes breast cancer
cell migration and invasion by regulating the expression
of NEDD9

In order to confirm whether miR-145-5p is a key medi-
ator of ZMYNDIO0 regulating NEDD9. We further inves-
tigated whether the effect of the ZMYNDI10-miR-145-
5p-NEDD?9 signaling axis on migration and invasion of
breast cancer was sustained with the miR-145-5p inhibi-
tor. While the miR-145-5p inhibitor enhanced NEDD9
protein levels and partially reversed ZMYNDI10-de-
creased NEDD9 expression, it enhanced cell migration
and invasion and attenuated the inhibitory effect of
ZMYNDI0 decreased on migration and invasion (Fig. 9a,
b). These data showed that the ZMYND10/miR145-5p/
NEDD9 axis regulates the migration and invasion ability
of breast cancer cells, which may contribute to breast
cancer metastasis.

ZMYND10 inhibits breast cancer growth in vivo
To assess the role of ZMYNDIO in suppressing breast
tumor in vivo, a xenograft tumor model was established
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in nude mice. Tumor size and weight were significantly
decreased in tumors derived from ZMYND10-expressing
MDA-MB231 cells, as compared to mice injected mice
with MDA-MB231 cells containing empty vector plas-
mids (Additional file 1: Figure S2A—C). The immunobhis-
tochemical assay showed that the proliferation markers
Ki67 and NEDD9 were significantly reduced in the
ZMYNDI10-expressing tumors. (Additional file 1: Figure
S2D). These data indicated that ZMYNDIO plays an im-
portant role in inhibiting breast cancer in vivo, which is
consistent with the previous results in vitro. The above
results indicated that ZMYNDI0 inhibits migration and
invasion of breast cancer by suppressing NEDD9 expres-
sion in vivo and in vitro.

Discussion and conclusion

Abnormal methylation of tumor suppressor gene pro-
moter CpG islands has been established as a mechanism
for transcriptional inactivation of tumor suppressor

genes, which is important for the pathogenesis of malig-
nant tumors including breast cancer [26, 27]. ZMYNDI0
is contained in a 630-kb region in the 3p21.3, which is
frequently and homozygously deleted in multiple cancer
types as a result of promoter hypermethylation [28].
This region contains several tumor suppressor genes,
such as RASSFIA, CACNA2D2, SEMA3B, and HYALI
[5]. Consistent with the literature, ZMYNDIO is an epi-
genetically regulated tumor suppressor gene and the
hypermethylation of its promoter is associated with poor
clinical prognosis in several cancer types. However, the
function and molecular mechanism of ZMYNDIO in
breast cancer are still unknown. Here, we found that
ZMYNDI0 is downregulated or silenced in breast cancer
but not in normal breast and surgical-margin tissues.
We also confirmed that promoter hypermethylation of
ZMYNDIO is a major cause of its downregulation in
breast cancer. Accordingly, ZMYNDIO expression in
ZMYNDI10-silenced cells was restored by demethylation
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treatment. ZMYNDI0 repressed breast cancer cell prolif- ZMYNDIO had strong tumor-suppressing effects in
eration, promoted G2/M cell cycle arrest, apoptosis, and  breast cancer cells both in vitro and in vivo.

dramatically lessened migration and invasion of breast As a potential tumor suppressor gene, ZMYNDI10 has
cancer cells in vitro. Moreover, ZMYNDI10 slowed down  been shown to promote apoptosis of tumor cells by regu-
the growth of xenograft tumors in vivo. Overall, lating SMEK1 activity [15], and inhibition of angiogenesis.
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However, how ZMYNDIO inhibits tumor metastasis re-
mains unclear. So, we used RNA-sequence analysis to ex-
plore how ZMYNDI0 performs its cellular functions. The
screening results focused on genes and pathways associ-
ated with migration and adhesion. Further results indi-
cated that cells overexpressing ZMYNDI0 have a poor
invasion and migration ability, which confirmed that
ZMYNDIO0 inhibited the invasion and migration of tumor
cells. Particularly, we detected that ZMYNDI0 repressed
the expression of NEDD?Y, a pro-migration protein. There-
fore, we concentrated on metastasis to illuminate the
tumor inhibition mechanism of ZMYNDI0 and identified
the miR-145-5p-NEDD9 signaling pathway downstream
of ZMYNDIONEDD9 was found to be closely related to
breast cancer metastasis. There is abundant evidence that
NEDDS? is an established marker of metastasis in multiple
cancers, including breast cancer [21, 29-38]. NEDD9 was
shown to restore the activity of MAMPI4 by promoting the
inactivation of Arf6 to facilitate breast cancer metastasis
[21]. Other studies also confirmed that NEDD9 promotes

TNBC (triple-negative breast cancer) invasion by regulat-
ing the epithelial-mesenchymal transition [39]. However,
no relationship has been reported with respect to the roles
of ZMYNDI10 and NEDD9 in breast cancer development.
We found that ZMYNDIO significantly decreased the
expression of NEDD9. In addition, restoring NEDD9 ex-
pression facilitated migration and invasion of the
ZMYNDI10-expressing cells.

In the process of tumorigenesis and development, the
expression of a variety of miRNAs changes, leading to
corresponding changes in the expression of downstream
target genes and affecting the tumor process [40].
NEDD?9 was found to be regulated by miR145-5p by dir-
ectly targeting the 3'-UTR of NEDD9-mRNA in lung
cancer [25]. miR145-5p expression was downregulated
in breast cancer cells compared to normal human mam-
mary cells, which was reversely correlated to the meta-
static ability of breast cancer cells [41]. Therefore, we
focused on miR145-5p to interpret the biological mech-
anism of ZMYNDIO regulating the expression of
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NEDD?9. Consistently, we showed that ZMYND10 down-
regulates the expression of NEDD9 through miR145-5p.
Although we found that ectopic expression of
ZMYNDIO0 increased miR145-5p mRNA expression in
MDA-MB231 and SK-BR-3 cells, the mechanism of
ZMYNDI10-mediated miR-145-5p activation has not
been fully determined.

Altogether, our study identified ZMYNDIO as a tumor
suppressor, which is downregulated in breast cancer due to
its promoter hypermethylation, and suggested that
ZMYNDIO suppresses breast cancer metastasis by through
the miR145-5p/NEDDY signaling cascade. Whether this
newly identified signaling pathway can be targeted for ther-
apies against breast cancer deserve further studies.

Methods
Cell lines, plasmids, and tissue samples
Ten breast cancer cell lines (BT549, MDA-MB231,
MCF7, T-47D

YCC-B1, YCC-B2, YCC-B3, ZR-75-1, MB468, SK-BR-
3) were kindly provided by Prof. Qian Tao (The Chinese
University of Hong Kong). The cells were cultured in
the RPMI 1640 medium supplemented with 10% fetal
bovine serum (FBS, Gibco-BRL), 100 U/mL penicillin,
and 100 mg/mL streptomycin (Gibco-BRL) and incu-
bated in 5% CO, at 37 °C. HEK293T cells were incu-
bated in the DMEM medium (high glucose, HyClone,
Logan, USA) with 10% FBS. The pEGFPc2-ZMYNDI0
plasmid was constructed by cloning the entire amplified
coding region of ZMYNDIO into pEGFPc2 and se-
quenced for verification. The pEGFPc1-NEDD9 was con-
structed in a similar manner. Breast tissues were
obtained from the Endocrine and Breast Surgery Depart-
ment of the First Affiliated Hospital of Chongqing
Medical University (Chongqing, China). Every sample
was evaluated and subjected to histological diagnosis by
expert pathologists. Every patient provided informed
consent. Samples were stored at the Chongqing Medical
University tissue bank until used in the study. This re-
search was approved by the Institutional Review Board
of the Chongqing Medical University(approval notice
20150302).

Establishing stable cell lines

MDA-MB231 and SK-BR-3 cells were cultured in six-well
plates. pEGFPc2-ZMYND10 or pEGFPc2 was then trans-
fected into 80% confluent MDA-MB231 and SK-BR-3
cells using Lipofectamine 2000 reagent (Lipofectamine
2000 Reagent, Invitrogen, CA, USA) according to the
manufacturer’s protocol. After transfection, cells were
grown in a non-selective growth medium for 48 h, after
which it was replaced with a selection medium containing
24 pL/mL (MDA-MB231) and 10 pL/mL (SK-BR-3) G418
(50 mg/mL) for 14 days. Overexpression of ZMYNDIO

Page 12 of 16

was confirmed by western blotting and quantitative real-
time PCR (qPCR) before other experimental procedures.

miRNA inhibitor and transfection

The miR-145-5p inhibitor and negative control miRs
(miR-NC) were synthesized by RIBOBIO (Guangzhou
Ribobio Co., Ltd). All transfections were implemented
using Lipofectamine 2000 according to the manufac-
turer’s instructions with a concentration of 75 nM miR-
145 inhibitor or miR-NC. Total RNA and protein were
extracted 48 h post-transfection and used for quantita-
tive real-time PCR (qPCR) and western blot analysis.

DNA and RNA extraction

Genomic DNA was isolated from BrCa tissues and cell
lines using the QIAamp® DNA Mini Kit (Qiagen, Hilden,
Germany) and DNAzol® Reagent (Invitrogen) following
the manufacturer’s instructions. Total RNA was sepa-
rated from the BrCa tissues and cell lines using the TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA). Total RNA
and DNA were determined using gel electrophoresis.
Samples were reserved at — 80 °C until further use.

Semiquantitative reverse transcription PCR and qPCR
Reverse transcription was implemented using the Pro-
mega GoScript™ reverse transcriptase (Promega). Reverse
transcription PCR (RT-PCR) was performed using the
Go-Taq (Promega, Madison, WI, USA) and GeneAmp
RNA PCR system (Applied Biosystems). [-actin was
used as a control. SYBR Green (Thermo Fisher) and
7500 Real-Time PCR System (Applied Biosystems) were
used to perform qPCR. GAPDH was amplified as a con-
trol. Primer sequences are listed in Table 1.

5-Aza-2'-deoxycytidine and trichostatin A treatment

Cells were treated with 10 uM Aza (Sigma-Aldrich, St.
Louis, MO, USA) for 72 h and then further treated with
100 nM trichostatin A (TSA) (Cayman Chemical Co,
Ann Arbor, MI, USA) for 24 h. RNA was extracted for
RT-PCR, and DNA was extracted for methylation-
specific PCR(MSP).

Bisulfite treatment, MSP, and gMSP

Genomic DNA was extracted from tissues and cell lines
using the QIAamp DNA Mini Kit (Qiagen, Hilden,
Germany). DNA bisulfite treatment was carried out ac-
cording to previously published methods [42]. MSP
primers for ZMYNDIO are listed in Table 3. All primers
were previously tested for their inability to amplify unbi-
sulfite DNA. PCR products were analyzed on 2% agarose
gels.qMSP was performed as previously described [43].
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Table 3 List of PCR primers used in this study
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PCR Primer Sequence (5'-3) Product size (bp) PCR cycles Annealing
temperature (°C)
RT-PCR  ZMYND10F CTCGATATGGGAGACCTG A1 AT1111.0.2 A1.1.1.1.1.13.55
ZMYND10R CACCACCATGTAGATGGG 3276p 32
NEDDSF GCTGGATGGATGACTACGAT A1111.0.04
NEDD9R AACAGCTGGAACTGGCTCAG 1456p
GAPDHF GGAGTCAACGGATTTGGT A11.1.1.1.05. A11L1LI106.
GAPDHR GTGATGGGATTTCCATTGAT 206bp 23
gRT- ZMYNDI10F CTAACTGAAACCCAGCCTCCTA A1.1.1.1.1.07. A1.1.1.1.1.1.8. 60
PCR ZMYND10R TTGCCTGCCACTTGCCTC 1006p
miR-145-5pF  CTGATGGTGGAGAGCTCACA
MiR-145-5pR  GTGCAGGGTCCGAGGT
MIiR-145-5pRT  GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACG
ACAGGGAT
U6F CTCGCTTCGGCAGCACA
U6R AACGCTTCACGAATTTGCGT
U6RT AACGCTTCACGAATTTGCGT
GAPDHF CCAGCAAGAGCACAAGAGGAA 114bp
GAPDHR CAAGGGGTCTACATGGCAACT
MSP ZMYND1Om1  GGTTGTTGTTTAGGATTCGTC Al1.1.1.1.1.009. A111.1.1.1.000 AT111.1.0.01.60
ZMYND10m2 — AACAATAACTCCGAAACTCCG 1786p 40
ZMYNDI10ul TGGTTGTTGTTTAGGATTTGTT Al1100102 ATT111.1030 AT.1.1.1.1.1.04.58
ZMYNDT0u2 AAACAATAACTCCAAAACTCC A 1816p 40
BGS ZMYND10BGST GGGTAGGTTAAGATGTTATAGT A.].Wb.HJ.HS. AT11111106. A1.1.1.1.1.1.7.60
454bp 40

ZMYND10BGS2  AACAACAACAATTCCAAATCTC

Note: RT-PCR semiquantitative reverse transcription PCR, gPCR quantitative real-time PCR, MSP methylation-specific PCR, BGS Bisulfite genomic sequencing

Colony formation assay

Cells stably expressing ZMYNDI0 or vector were plated
at a number of different densities in fresh 6-well plates
and incubated for 2 weeks with medium containing 10%
FBS and G-418. Surviving colonies (=50 cells per col-
ony) were counted after staining with crystal violet. Data
were obtained from three independent cultures and each
experiment was repeated in three separate wells.

Cell proliferation assay

Cell proliferation was evaluated with the CellTiter 96
AQueous One Solution Cell Proliferation Assay (MTS,
Promega) according to the manufacturer’s instructions.
Cells stably expressing ZMYNDIO or vector were seeded
in 96-well plates (2000 cells per well) with 200 pL of
medium containing 10% FBS and cultured for 24, 48, or
72 h. Cells were then incubated with 100 pL of medium
per well containing 20 pL of the CellTiter 96 Aqueous
One Solution reagent for 2 h at 37 °C. Absorbance values
were measured at 450 nm with the microplate reader
(Multiskan MK3, Thermo Fisher Scientific, Schwerte,
Germany). Each experiment was repeated three times.

Flow cytometry analyses of cell cycle and apoptosis

For cell cycle analysis, cells were digested with trypsin
and fixed with ice-cold 70% ethanol, treated with 5 mg/
mL RNase A (Sigma), stained with propidium iodide,
and analyzed by flow cytometry (FACSCalibur instru-
ment and CELLQUEST software, Becton Dickinson).
For the apoptosis assays, cells were stained with annexin
V-fluorescein isothiocyanate and PI (propidium iodide).
Apoptosis and cell cycle status data were analyzed using
the CELL Quest software (BD Biosciences, San Jose, CA,
USA). All experiments were performed in triplicate.

Wound healing assay

Cells were seeded in six-well plates and allowed to grow
until confluent. Following serum starvation of 24 h, a
linear scratch “wound” was created on the cell mono-
layer with a sterile 10-pL tip. Cells were then washed
with PBS (phosphate buffer saline), serum-free media
were added, and microscopic cell images (x10 magnifi-
cation) were collected every 6 h. The linear “wound” was
evaluated based on the zero-line. The experiment was
performed three times in triplicate.
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Transwell migration and invasion assay

Transwell chamber inserts with 8-um pores and coated
with 70 pL of Matrigel (2.5 mg/mL; BD Biosciences Dis-
covery Labware, 1:7 dilution) were used for the invasion
assay. Cells were seeded into the upper wells of pre-coated
transwell chambers. Lower wells of the transwell cham-
bers were filled with 700 pL of the same medium with
20% FBS. After a 48-h incubation, cells were fixed with 4%
paraformaldehyde for 30 min and then stained for 30 min
with Crystal violet. Cells were then wiped off from the
upper side of the filter using cotton swabs. Microphoto-
grams of the cells that had migrated to the lower side of
the filter were obtained using light microscopy.

Immunofluorescence

MDA-MB231 and SK-BR-3 cells were seeded on 24-well
plates with microcover glass and then transfected with
pEGFPc2-ZMYNDI10 plasmids for expression of the
green fluorescent protein. After 48 h, cells were fixed for
30 min in 4% paraformaldehyde, permeabilized with
0.5% Triton X-100 at room temperature for 10 min, and
then blocked with blocking buffer for 1 h. After treat-
ment, the slides were incubated with anti-HEFI
(NEDD9Y, 1:150; #ab18056; Abcam, USA) at 4 °C. After
20 h, cells were incubated with Alexa Fluor 555-
conjugated goat anti-mouse secondary antibodies for 1 h
in the dark. All slides were counterstained with 4'-6-dia-
midino-2-phenylindole (DAPI, Roche, Palo Alto, CA,
USA). Photomicrographs were captured with a confocal
laser scanning microscope.

Western blot

Cells were lysed using a protein extraction reagent (Thermo
Scientific, Rockford, IL, USA) containing protease inhibitor
phenyl methane sulfonyl fluoride and a phosphatase inhibi-
tor cocktail (Sigma, St. Louis, MO, USA). Total protein
concentrations were measured using the BCA protein assay
reagent (Thermo Scientific, Rockford, IL, USA). Western
blot assayswere implemented as previously described [43].
The primary antibodies were used as follows: ZMYND10
(#S0437, Epitomics), p21( #2947,Cell Signaling Technol-
ogy), p27(#3686, Cell Signaling Technology), Cyclin D1(
#sc-20044, , Santa Cruz Biotechnology), Bcl-xL (#2764, Cell
Signaling Technology), Bcl-2 (#2870, Cell Signaling Tech-
nology), Bax ( #5023, Cell Signaling Technology), cleaved
caspase-3 (#9664, Cell Signaling Technology), cleaved
PARP(#5625, Cell Signaling Technology), total AKT(
#4691, Cell Signaling Technology), Phospho-AKT (#4060,
Cell Signaling Technology), total PI3K(sc-423,Santa Cruz
Biotechnology), Phosphor-PI3K( #17366, Cell Signaling
Technology),total GSK3p( #9315, Cell Signaling Technol-
ogy), Phospho-GSK3p( #9323, Cell Signaling Technology),
Snail ( #3895, Cell Signaling Technology) Active-p-ca-
tenin(#19807, Cell Signaling Technology) E-cadherin (
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#14472, Cell Signaling Technology),Vimentin ( #5741,Cell
Signaling Technology) and NEDD9 (#ab18056, Abcam). -
actin ( #sc-8432, Santa Cruz Biotechnology) served as a
loading control. The intensity of the protein bands was
gauged with Image] 1.52 version(NIH, Bethesda, MD, USA)

In vivo tumor model

The anti-tumor effect of the target gene was evaluated
using an in vivo model. ZMYNDI0-and Vector-
expressing MDA-MB231 cells (5 x 10° in 0.2 mL of
PBS) were injected subcutaneously into the right and left
sides of the back in nude mice, respectively (female, aged
4—6 weeks, weighing 18-22 g, n = 4 per group). All pro-
cedures for tumor model construction were approved by
the Institute Ethics Committee of the First Affiliated
Hospital of Chongqing Medical University (approval no-
tice 20150302).

Immunohistochemistry

Standard streptavidin—peroxidase immunohistochemistry
was performed using the UltraSensitive TM SP Kit
(Maixin-Bio, Fujian, China) according to the manufac-
turer’s instructions. Sections were dewaxed, rehydrated
and blocked, and then incubated with primary antibodies
against ZMYND10 (1:50 dilution, #S0437, Epitomics) and
Ki67 (1:100 dilution, #ARG53222, Arigo) at 4 °Covernight.
The sections were then treated with a secondary antibody
and stained with diaminobenzidine. IHC scores were de-
termined according to previously published methods [44].

Dual-luciferase reporter assay

To verify NEDD9 as a direct target of miR-145-5p, target
reporter plasmid containing wild-type (WT) and mutant
(MT) NEDD9 3'-untranslated region (3'-UTR,
Guangzhou Ribobio Co, Ltd., Guangzhou, China) was
constructed. MDA-MB231 and SK-BR-3 cells were
seeded in 24-well plates and co-transfected with WT or
MT reporter plasmid and miR-145-5p inhibitor or miR-
NC according to the manufacturer's instructions. Lucif-
erase activity was measured with a dual-luciferase
reporter assay kit (Promega) after 48 h. The regulation
of NEDD9 by ZMYNDI10 was verified by luciferase re-
porter assay as previously described [43].

Statistical analysis

Statistical analyses were performed using GraphPad
Prism 5.0 software and IBM SPSS 22.0 software. Two-
tailed Student’s ¢ tests, the y2 test, and Fisher’s exact test
were used to evaluate the experimental results. p values
of all tests were less than 0.05, which was considered
statistically significant.
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