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Abstract

Background: The metabolic syndrome (MetS) is a collection of metabolic disturbances that can lead to various
cardiovascular diseases. Previous studies have shown a more adverse metabolic risk profile is associated with more
advanced biological aging. The associations between epigenetic biomarkers of age with MetS, however, are not
well understood. We therefore investigated the associations between epigenetic age acceleration and MetS severity
score and incident MetS.

Results: A subset of study participants with available whole blood at examination years 15 and 20 from the
Coronary Artery Risk Development in Young Adults Study underwent epigenomic profiling using the Illumina
MethylationEPIC Beadchip (~ 850,000 sites). Intrinsic and extrinsic epigenetic age acceleration (IEAA and EEAA) were
calculated from DNA methylation levels. The MetS severity score was positively associated with IEAA at years 15
(P = 0.016) and 20 (P = 0.016) and EEAA at year 20 (P = 0.040) in cross-sectional analysis. IEAA at year 20 was
significantly associated with incident MetS at year 30 (OR = 1.05 [95% CI 1.01, 1.10], P = 0.028).

Conclusions: To our knowledge, this is the first report of the longitudinal association between epigenetic age
acceleration and MetS. These findings suggest that a higher MetS severity score is associated with accelerated
epigenetic aging and such aging may play a role in the development of metabolic disorders, potentially serving as
a useful biomarker of and early detection tool for future MetS.
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Background
The metabolic syndrome (MetS) is defined as a collec-
tion of metabolic disturbances that includes hyper-
tension, elevated plasma glucose, dyslipidemia, and
abdominal obesity [1]. Individuals with MetS are at
higher risk for type 2 diabetes, several types of cancer,
and cardiovascular morbidity and mortality [2–6]. The
prevalence of MetS has increased over the past several
decades worldwide and currently affects more than one
third of all adults and nearly half of those 60 years of age
and older in the USA [7–9]. Given the number of

individuals affected by this condition and the aging
population, understanding the underlying molecular
determinants and biological processes of MetS may lead
to the development of novel markers of risk and preven-
tion tools for this condition.
Substantial interindividual differences in age-

associated metabolic dysregulation exist in older adults,
which often exceeds the variation in younger adults, sug-
gesting that chronological age may not be an adequate
index of physiologic aging. Previous studies have investi-
gated the association between leukocyte telomere length,
a measure of biological age, and the components of
MetS. For example, shorter leukocyte telomere length
was found to be associated with higher triglycerides and
fasting glucose, lower high-density lipoprotein (HDL)
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cholesterol, and obesity, as well as the total number of
MetS components and presence of MetS [10–14]. These
findings suggest that a more adverse metabolic risk
profile is associated with accelerated biological aging.
Assessment of other measures of aging may further our
understanding of the association between the aging
process and MetS.
Research into epigenetic mechanisms has led to the

identification of age-related DNA methylation profiles/
signatures that correlate with chronological age [15].
Specifically, the weighted average of DNA methylation
levels at multiple CpG sites is commonly used to calcu-
late epigenetic age as well as the discrepancy between
this biological age measure and chronological age, re-
ferred to as epigenetic age acceleration (EAA). Intrinsic
epigenetic age acceleration (IEAA) and extrinsic epigen-
etic age acceleration (EEAA), two measures of EAA,
have been widely used to investigate the associations be-
tween epigenetic aging and numerous traits. IEAA has
been proposed to capture cell-intrinsic properties of the
aging process, while EEAA reflects immune system
aging. Overall, slower epigenetic age acceleration (i.e.,
negative values) has been associated with lifestyle factors
such as diet, alcohol consumption, physical activity, and
educational attainment [16], whereas faster epigenetic
age acceleration (i.e., positive values) has been associated
with multiple age-related health outcomes including
frailty, cancer, lung function, cognition, and all-cause
mortality [17–20]. While accelerated epigenetic aging
has been associated with lifestyle factors and diseases re-
lated to MetS, the relationship between EAA and this
metabolic condition is currently not clearly delineated.
In this study, we investigated the cross-sectional and

longitudinal associations between epigenetic age acceler-
ation and MetS by leveraging blood epigenomewide
DNA methylation data from the Coronary Artery Risk
Development in Young Adults (CARDIA) study. We hy-
pothesized that the number of MetS components (MetS
severity score) is positively associated with epigenetic
age acceleration and that individuals with accelerated
epigenetic age are more likely to develop incident MetS.

Results
Sample characteristics
Summary characteristics for the study participants who
underwent methylation profiling and those who did not
at examination years 15 and 20 from the CARDIA co-
hort are presented in Table 1. Overall, 1042 and 957
participants who underwent methylation profiling had
data quality acceptable for further analysis at years 15
and 20, respectively. Year 15 participants with methyla-
tion data had a mean (standard deviation) age of 40.4
(3.5) years, were 51.3% female, had 15.1 (2.5) years of
education, were 59.3% white, and 62.8% had never

smoked; similar characteristics were found for year 20
participants with available methylation data. At year 15,
35% of participants with methylation data had two or
more MetS components, compared to 46% of partici-
pants at year 20. Compared to those without methyla-
tion data at year 15, those with methylation data were
older and had lower proportions of female and black
participants, more years of education, lower systolic
blood pressure, and higher triglycerides (P < 0.05). Simi-
larly, the subset with methylation data had lower propor-
tions of female and black participants, higher total
cholesterol and triglycerides, and lower HDL compared
to those without methylation data at year 20 (P < 0.05).
Additional file 1: Table S1 presents the summary charac-
teristics after adjusting for sex and race. Overall, only
total cholesterol and triglycerides differed between
methylation groups at year 20 after adjustment for sex
and race. We found no significant differences in the
remaining sample characteristics, i.e., center, smoking
status, alcohol, physical activity, body mass index, glu-
cose, waist circumference, or MetS, at either year 15 or
20. Additional file 2: Figure S1 presents a scatterplot
matrix displaying the relationships between chrono-
logical age, epigenetic age as calculated by Horvath’s and
Hannum’s method, and the MetS severity score at
examination years 15 and 20.

Metabolic syndrome severity score
Table 2 presents the results for the cross-sectional ana-
lyses of the MetS severity score and epigenetic age accel-
eration, as well as results from the generalized
estimating equation (GEE) analyses using measurements
at two time points. After adjusting for sex, race, center,
education, smoking status, alcohol consumption, and
physical activity, the MetS severity score was positively
associated with IEAA but not EEAA at year 15 (P =
0.016 and P = 0.209, respectively). That is, each add-
itional MetS component was associated with a 0.29 [95%
CI 0.05, 0.53]-year gain in IEAA. The MetS severity
score was also positively associated with both IEAA and
EEAA at year 20 after adjusting for covariates, with a
0.27 [95% CI 0.05, 0.49]-year gain in IEAA (P = 0.016)
and a 0.25 [95% CI 0.01, 0.49]-year gain in EEAA (P =
0.040) for each additional MetS component. Moreover,
after adjusting for covariates, the MetS severity score
was significantly and positively associated with both
IEAA and EEAA using measurements at two time
points. Specifically, there was a respective 0.29 [95% CI
0.11, 0.47]-year (P = 0.002) and a 0.21 [95% CI 0.02,
0.41]-year (P = 0.034) gain in IEAA and EEAA per each
additional MetS component. Interaction analyses yielded
no significant associations.
We performed quantile regression to further evaluate

the effect of the MetS severity score on EAA. Figure 1
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displays plots generated from the quantile regression
analyses for the MetS severity score at years 15 and 20
for IEAA. We plotted regression estimates for 19

quantiles ranging from 0.05 to 0.95. As illustrated in the
plots, the overall pattern depicts that the MetS severity
score has a positive effect on IEAA at both years 15 and

Table 1 Comparison of study sample characteristics between participants who underwent methylation profiling and participants
who did not at examination years 15 and 20

Characteristica Year 15 cohort Year 20 cohort

Without methylation With methylation P Without methylation With methylation P

N 2630 1042 2592 957

Female, n (%) 1517 (57.7) 535 (51.3) 0.0005 1524 (58.8) 490 (51.2) 0.0001

Race, n (%)

White 1324 (50.3) 618 (59.3) 1334 (51.5) 564 (58.9)

Black 1306 (49.7) 424 (40.7) 0.0001 1258 (48.5) 393 (41.1) 0.0001

Age, mean (SD), years 40.1 (3.7) 40.4 (3.5) 0.04 45.1 (3.7) 45.4 (3.5) 0.06

Epigenetic age, mean (SD), yearsb N/A 45.4 (5.5) N/A 49.4 (6.1)

IEAA, mean (SD), years N/A 0 (4.6) N/A 0 (5.4)

EEAA, mean (SD), years N/A 0 (6.4) N/A 0 (5.4)

Education, mean (SD), years 14.8 (2.5) 15.1 (2.5) 0.007 15.0 (2.6) 15.1 (2.5) 0.20

Center, n (%)

Birmingham, AL 603 (22.9) 255 (24.5) 597 (23.0) 222 (23.2)

Chicago, IL 591 (22.5) 225 (21.6) 585 (22.6) 208 (21.7)

Minneapolis, MN 715 (27.2) 278 (26.7) 667 (25.7) 258 (27.0)

Oakland, CA 721 (27.4) 284 (27.3) 0.78 743 (28.7) 269 (28.1) 0.87

Smoking status, n (%)

Never 1540 (58.7) 653 (62.8) 1580 (61.5) 570 (60.2)

Former 484 (18.4) 181 (17.4) 491 (19.1) 191 (20.2)

Current 601 (22.9) 206 (19.8) 0.06 497 (19.4) 186 (19.6) 0.73

Alcohol, mean (SD), mL/day 10.5 (25.7) 12.1 (22.6) 0.08 10.0 (18.2) 11.1 (18.4) 0.10

Physical activity, mean (SD), total intensity score 346.3 (287.1) 350.0 (274.7) 0.72 331.2 (273.3) 348.6 (276.1) 0.09

BMI, mean (SD), kg/m2 28.8 (7.1) 28.5 (6.2) 0.20 29.5 (7.5) 29.3 (6.5) 0.32

SBP, mean (SD), mmHg 113.6 (15.4) 112.3 (13.6) 0.001 116.8 (15.4) 116.4 (14.9) 0.53

DBP, mean (SD), mmHg 74.7 (11.9) 74.1 (10.8) 0.14 73.3 (11.6) 72.7 (11.2) 0.17

Total cholesterol, mean (SD), mg/dL 184.0 (35.9) 186.4 (35.5) 0.07 184.7 (34.6) 188.3 (36.1) 0.007

HDL cholesterol, mean (SD), mg/dL 50.9 (14.7) 50.1 (14.1) 0.10 54.6 (16.6) 53.2 (16.7) 0.03

Triglycerides, mean (SD), mg/dL 103.2 (92.5) 110.9 (93.4) 0.02 105.9 (72.6) 119.0 (95.4) 0.0001

Glucose, mean (SD), mg/dL 86.8 (21.9) 86.3 (18.4) 0.42 98.1 (27.4) 97.9 (23.8) 0.89

Waist circumference, mean (SD), cm 89.5 (16.0) 89.5 (13.9) 0.94 91.8 (15.9) 92.2 (14.6) 0.48

Metabolic syndrome

Prevalence, n (%) 426 (16.8) 164 (15.9) 0.53 625 (24.7) 253 (26.5) 0.28

Severity score, median (IQR) 1 (0, 2) 1 (0, 2) 1 (0, 2) 1 (0, 3)

0 components, n (%) 942 (37.0) 366 (35.5) 757 (30.0) 278 (29.1)

1 component, n (%) 678 (26.7) 307 (29.8) 669 (26.4) 237 (24.8)

2 components, n (%) 498 (19.6) 195 (18.9) 482 (19.0) 188 (19.7)

3 components, n (%) 279 (11.0) 108 (10.5) 334 (13.2) 146 (15.3)

4 components, n (%) 115 (4.5) 49 (4.8) 219 (8.7) 78 (8.2)

5 components, n (%) 32 (1.3) 7 (0.7) 0.33 72 (2.8) 29 (3.0) 0.63
aStudy sample characteristics were measured at years 15 and 20 of CARDIA, respectively
bDNA methylation age as predicted by Horvath’s method
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20. For year 15, the effect of the MetS severity score on
IEAA in the middle range of the distribution can be four
times greater than the lower and upper tails of the distri-
bution (0.36 vs 0.09 year gain, respectively). The effect of
the MetS severity score at year 20 appears to be rela-
tively flat, with a 0.27-year gain in IEAA for nearly all
quantiles. Similar overall patterns were observed for the
effect of the MetS severity score on EEAA at years 15
and 20 (Additional file 3: Figure S2.)

Metabolic syndrome
We next evaluated whether epigenetic age acceleration
at years 15 and 20 was associated with incident MetS
status at years 25 and 30. Table 3 displays the associ-
ation results for both the logistic and GEE approaches.

Neither IEAA nor EEAA at year 15 was significantly as-
sociated with MetS status at years 25 and 30. Similarly,
neither IEAA nor EEAA at year 20 was associated with
MetS status at year 25; however, IEAA at year 20 was
significantly associated with MetS status at year 30. That
is, every 1-year gain in IEAA was associated with a 5%
greater odds of MetS (OR = 1.05 [95% CI 1.01, 1.10]; P =
0.028). Neither IEAA nor EEAA was significantly associ-
ated with MetS status at year 25 using measurements at
two time points. IEAA, however, was significantly associ-
ated with MetS status at year 30. Specifically, a 1-year
gain in IEAA was associated with a 4% greater odds of
MetS (OR = 1.04 [95% CI 1.01, 1.07]; P = 0.024). Sex and
race interactions with IEAA and EEAA were non-
significant.

Discussion
Our results indicate associations between epigenetic age
acceleration and MetS severity score and incident MetS,
independent of known risk factors. We observed positive
cross-sectional associations between MetS severity score
and IEAA at year 15 and both measures of epigenetic
age acceleration (IEAA and EEAA) at year 20, with a
higher severity score associated with more advanced epi-
genetic age acceleration. We also observed a positive as-
sociation between the MetS severity score and both
IEAA and EEAA with repeated measures. Additionally,
we found that IEAA was associated with incident MetS,
with a positive association between IEAA and MetS
status using GEE. These findings suggest associations
between EAA and MetS both cross-sectionally and
longitudinally.
The MetS severity score was positively associated with

epigenetic age acceleration in our study, indicating

Table 2 Cross-sectional results for the association between EAA
and the MetS severity score at examination years 15 and 20

IEAA EEAA

β [95% CI] P β [95% CI] P

Year 15

Crude model 0.31 [0.08, 0.53] 0.008 0.16 [− 0.11, 0.43] 0.236

Adjusted modela 0.29 [0.05, 0.53] 0.016 0.17 [− 0.10, 0.44] 0.209

Year 20

Crude model 0.32 [0.11, 0.53] 0.003 0.24 [0.00, 0.47] 0.047

Adjusted modela 0.27 [0.05, 0.49] 0.016 0.25 [0.01, 0.49] 0.040

GEE

Crude model 0.31 [0.14, 0.48] < 0.001 0.21 [0.01, 0.41] 0.036

Adjusted modela 0.29 [0.11, 0.47] 0.002 0.21 [0.02, 0.41] 0.034
aResults are adjusted for sex, race, center, education, smoking status, alcohol
consumption, and physical activity
Beta coefficients represent the amount of years gained per each additional
MetS component

Fig. 1 Estimated parameters by quantile with 95% confidence limits for the effect of the MetS severity score on IEAA. Quantile regression plots
for the MetS severity score at years a 15 and b 20. The x-axis represents the quantile scale, and the y-axis represents the effect of the MetS
severity score on IEAA for a given quantile. Results are adjusted for sex, race, center, education, smoking status, alcohol consumption, and
physical activity
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greater accelerated epigenetic aging for each additional
MetS component. Our finding that the MetS severity
score is associated with biological aging is in agreement
with previous findings [10]. Moreover, our results are
consistent with a recent study that reported positive
associations between epigenetic age acceleration and the
number of MetS components [16]. Although it is gener-
ally accepted that MetS induces precocious aging, the
exact mechanisms through which this occurs are unclear
[21]. One theory suggests that excess reactive oxygen
species may contribute to metabolic dysregulation, cell
damage, and consequently aging [22]. Similarly, DNA
methylation may partially mediate the effects that oxida-
tive stress may have on the metabolic dysregulation
found in MetS [23]. Together, the current and previous
findings demonstrate that metabolic risk factors may
have negative impacts on biological aging. Moreover,
understanding the effect of metabolic risk factors on
epigenetic modifications may lead to interventions that
slow the aging process at the cellular and/or molecular
levels and potentially prevent age-related diseases.
We further conducted quantile regression to investi-

gate the association between MetS severity score and
epigenetic age acceleration. In quantile regression, the
conditional quantiles of an outcome are modeled, com-
pared to ordinary least squares regression, which models
the conditional mean of the response variable. As such,
the former approach provides a more detailed picture of
the conditional distribution of a response variable (EAA)
for a given independent variable (MetS severity score)
and is useful when the change in response varies by
quantile. In the current analysis, there was an overall
positive association of MetS severity score on epigenetic
age acceleration at both years 15 and 20 with linear re-
gression. This effect, however, varied across the MetS se-
verity score-IEAA distribution at year 15 with the MetS

severity score exhibiting a larger effect in the middle of
the distribution compared to the tails. This suggests that
an additional MetS component has a smaller effect
among individuals with highly advanced and highly
slowed epigenetic age acceleration but a greater impact
among individuals with modest to no epigenetic age
acceleration. This finding suggests that individuals with
relatively limited accelerated epigenetic age may be most
affected by metabolic risk factors with regard to epigen-
etic aging, a finding that is not captured using traditional
linear regression. As such, lifestyle modifications that
aim to reduce the number of MetS components among
those individuals with little epigenetic age acceleration
may benefit the most from such modifications with re-
gard to the aging of the epigenome, although additional
studies are needed to verify this hypothesis.
We also observed that advanced epigenetic age accel-

eration was associated with MetS development at later
stages in life, i.e., IEAA at year 20 was associated with
MetS at year 30. This finding strengthens the hypothesis
that biological age may be useful in assessing risk of
metabolic health outcomes and adds to the growing
body of evidence that accelerated epigenetic aging may
predict future health events. Numerous studies have
shown that epigenetic age can be used in predicting
cancer mortality [18], cardiovascular mortality [20], and
lung cancer [24]. These findings aid in elucidating the
role of epigenetic aging on different health states, as well
as demonstrate the potential utility of this biological
marker for aging in risk prediction. We did not, how-
ever, observe significant associations with epigenetic age
acceleration at year 15 and MetS status at year 25, pos-
sibly due to relatively younger epigenomes and an over-
all healthier population at these time points. Moreover,
later time points may better capture both the cumulative
aging effects on the epigenome and the greater amount
of age-related metabolic disturbances, and as such, we
would expect to see more associations with older aged
individuals when the phenotype is more prevalent. With
regard to the MetS severity score, more of the metabolic
factors presented in this study are associated with IEAA
than with EEAA. IEAA and EEAA are two measures of
epigenetic age acceleration that are based on different
sets of CpGs and capture different biological processes
of aging. IEAA is proposed to reflect cell-intrinsic aging
that appears unaffected by lifestyle factors, whereas
EEAA is proposed to reflect age-related alterations in
leukocyte composition and correlates with lifestyle char-
acteristics [25]. Based on these inherent differences, it is
not unexpected that different associations were observed
between the two measures. Moreover, similar findings
were previously observed in other study populations, i.e.,
MetS was more significantly associated with IEAA than
EEAA [16]. Thus, our findings, in conjunction with

Table 3 Prospective results for the association between MetS
status at examination years 25 and 30 and EAA at years 15 and
20

MetS25 MetS30

OR [95% CI] P OR [95% CI] P

Year 15

IEAA 1.01 [0.97, 1.05] 0.666 1.03 [0.99, 1.07] 0.111

EEAA 1.02 [0.98, 1.05] 0.374 1.01 [0.98, 1.04] 0.496

Year 20

IEAA 1.04 [0.99, 1.09] 0.171 1.05 [1.01, 1.10] 0.028

EEAA 1.02 [0.97, 1.07] 0.538 1.03 [0.99, 1.07] 0.212

GEE

IEAA 1.02 [0.98, 1.05] 0.300 1.04 [1.01, 1.07] 0.024

EEAA 1.02 [0.99, 1.04] 0.281 1.02 [0.99, 1.04] 0.255

Results are adjusted for sex, race, center, education, smoking status, alcohol
consumption, and physical activity
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previous findings, suggest that cell-intrinsic aging, rather
than immune system aging, may contribute more to
MetS and its related components.
The large sample size of this study enabled us to ob-

tain stable estimates for the conducted analyses. Add-
itionally, the longitudinal aspect of this study provided
us the opportunity to examine the temporal relationship
between EAA and MetS. However, this study is not
without limitations. We found differences in sample
characteristics between participants with and without
methylation data at years 15 and 20. A possible explan-
ation for the difference in sex is the manner in which
participants were selected for methylation profiling.
Given study participants were stratified by sex (1:1 ratio
of females and males) for profiling, the methylation
cohorts’ relatively even sex distributions would be
expected, as would the difference from the full cohort
(which had a greater proportion of females). However,
as both subgroups selected for methylation processing
remained well-balanced on almost all other characteris-
tics, and because our analyses both control for and strat-
ify on sex and race, we believe that these differences do
not impact the present analysis. Future research in CAR-
DIA using DNA methylation from the full study popula-
tion may help clarify any lingering concern over
differences in our study population. Our analysis of
MetS cases was limited by the relative youth of our
population; we were unable to evaluate the examined as-
sociations in older individuals (chronological age > 60
years) where MetS is more prevalent. Further studies are
needed to evaluate the association between EAA and
MetS among this age group. Although this served as a
strength for examining early metabolic changes that may
presage MetS, and thus allowed us to evaluate the pre-
dictive efficacy of epigenetic age acceleration, future re-
search with greater longitudinal follow-up may be able
to provide even more concrete validation of our findings.
Similarly, while the CARDIA population is very diverse
in its characteristics, the study design was limited to four
geographic areas of the USA and to white and African-
American populations. Additional validation of these
findings in more diverse populations in race/ethnicity
and geographic areas will allow their generalizability to
the population as a whole. And lastly, several analyses
were performed, raising a potential issue with multiple
testing. The current study sought to evaluate the asso-
ciations between different measures of EEA at different
time points of MetS and inherently yielded multiple ana-
lyses. We did not formally correct for multiple testing as
the analyses were primarily non-independent, and we
wanted to avoid increasing the chance of false-negative
results that may hinder future investigations [26]. The
analyses presented are complements of each other and
thus does not necessitate correction for multiple testing.

Moreover, our analyses yielded consistent results, both
at individual time points and during repeated measures,
indicating the reliability of the findings and our conclu-
sions are based on general patterns of associations that
are consistent with previous findings.

Conclusions
In conclusion, we identified significant associations be-
tween the MetS severity score and both IEAA and EEAA
cross-sectionally, suggesting with a greater number of
MetS components associated with more advanced epi-
genetic age acceleration. Prospectively, we identified sig-
nificant associations between epigenetic age acceleration
and incident MetS. These findings provide novel insight
into the relationship between epigenetic aging and MetS
by indicating metabolic risk factors may accelerate the
biological aging process and epigenetic markers of aging
may serve as a predictive tool in the development of
metabolic disorders. Moreover, additional studies will
aid in identifying causal relationships that may improve
the predictive ability for MetS, such as Mendelian
randomization. Epigenetic age acceleration has the po-
tential to be adapted into an early detection biomarker
of age-related chronic diseases, which may have a large
impact on public health as the population ages. More-
over, given the movement towards precision medicine,
the epigenome may serve as an additional source of in-
formation to summarize an individual’s overall risk to
disease and subsequently may provide novel information
for the development of disease prevention strategies.

Methods
Study sample
Participants from the CARDIA study were included in
this analysis. Details regarding the study design, recruit-
ment, and examinations have been described elsewhere
[27]. Briefly, the CARDIA study was established to inves-
tigate the development and determinants of subclinical
and clinical cardiovascular disease and related risk fac-
tors. A total of 5115 black and white study participants
18 to 30 years of age were recruited from 4 centers (Bir-
mingham, AL; Chicago, IL; Minneapolis, MN; and Oak-
land, CA) at the study baseline from 1985 to 1986. Study
participants were followed over time and received exam-
inations at 2, 5, 7, 10, 15, 20, 25, and 30 years after the
baseline visit. For the current study, we selected a subset
of participants who had available whole blood at years
15 and 20. A total of 1200 participants, stratified by sex
to ensure equal representation of this demographic char-
acteristic, were randomly selected for methylation pro-
filing. Study participants with methylation data at years
15 and 20 and those with complete clinical data relating
to the MetS components at years 15, 20, 25, and 30 were
included in this analysis. In total, 1024 and 923 study
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participants had available whole blood and complete
MetS data at years 15 and 20, respectively. Additionally,
among those with available whole blood at year 15 who
were non-cases, 860 and 738 study participants had
MetS data at years 25 and 30, respectively. For those
with available whole blood at year 20 who were non-
cases, 678 and 586 study participants had MetS data at
years 25 and 30, respectively.

Metabolic syndrome severity score and case definition
As per guidelines from the American Heart Association
and the National Heart, Lung, and Blood Institute, we
used the following five components and criteria to define
MetS: abdominal obesity (waist circumference ≥ 88 cm
for women and ≥ 102 cm for men), elevated triglyceride
levels (≥ 150 mg/dL or drug treatment for elevated tri-
glycerides), low HDL cholesterol levels (< 50mg/dL for
women or < 40 mg/dL for men or drug treatment for re-
duced HDL), elevated blood pressure (systolic blood
pressure ≥ 130mmHg or diastolic blood pressure ≥ 85
mmHg, or use of medication to treat hypertension), or
elevated fasting blood glucose levels (≥ 100 mg/dL or
current use of medication to treat hyperglycemia) [28].
In order to better account for blood glucose levels, par-
ticipants who control diabetes with either diabetic medi-
cations or diet and pills only were classified as having
elevated fasting glucose. The MetS severity score was
calculated for each study participant as the summation
of the number of MetS components, ranging from 0 to
5. Study participants with at least three components
were defined as MetS cases and participants with 2 or
less were defined as non-cases.

DNA methylation profiling
Standard methods were used for DNA extraction and
quality control (available upon request). DNA methy-
lation levels were estimated at years 15 and 20 of
CARDIA using the Illumina MethylationEPIC Bead-
chip (~ 850,000 sites). Samples that contained > 5%
failed probes at detection P > 0.01, CpG sites that
failed in > 5% of samples (i.e., call rate < 95%), and
CpGs containing common genetic variants based on
dbSNP were removed [29, 30]. The final analysis set
included only CpG probes located on autosomal chro-
mosomes, while CpGs on chromosomes X and Y
were retained to examine concordance between bio-
logical sex and self-reported sex. Cytosine modifica-
tion intensities were generated using the R package
minfi [31].

Epigenetic age and EAA calculation
We estimated epigenetic age using two methods available
through Horvath’s online epigenetic age calculator (http://
labs.genetics.ucla.edu/horvath/dnamage/). The first method,

developed by Horvath, uses DNA methylation levels at 353
CpG sites [15]. Intrinsic epigenetic age acceleration (IEAA)
was then estimated from the residuals from a linear regres-
sion model of epigenetic age regressed on chronological
age and numerous blood immune cell counts. As such,
IEAA is proposed to capture cell-intrinsic properties of the
aging process, independent of blood cell composition. The
second method, developed by Hannum, uses DNA methy-
lation levels at 71 CpG sites [32]. Similar to IEAA, extrinsic
epigenetic age acceleration (EEAA) was estimated by calcu-
lating the residuals from a linear regression model of epi-
genetic age regressed on chronological age, up-weighting
age-related blood cell counts. EEAA is proposed to reflect
immune system aging. These estimations were performed
for study participants at years 15 and 20. Both IEAA and
EEAA measured were calculated and reported to be con-
sistent with a previous study investigating MetS and EAA,
as well as to elucidate the biological mechanism of each
EAA measure on MetS.

Statistical analysis
We first performed cross-sectional analyses to examine
associations between MetS severity score and IEAA and
EEAA at years 15 and 20, to determine whether individ-
uals with higher MetS severity scores (more MetS com-
ponents) exhibited greater epigenetic age acceleration.
We performed linear regression with epigenetic age ac-
celeration (IEAA or EEAA) modeled as the outcome and
the MetS severity score as the independent variable.
Quantile regression was additionally performed to fur-
ther assess the relationship between epigenetic age accel-
eration, as the outcome, and the MetS severity score, as
the independent variable. This approach provides a more
complete picture of covariate effects on the variables
under investigation [33]. We also evaluated generalized
estimating equations (GEEs) to further examine the as-
sociations between the MetS severity score and epigen-
etic age acceleration, a nuanced approach that
previously has been used to evaluate the association of
epigenetic age acceleration across time on outcomes of
interest [34]. GEE captures and accounts for within-
individual variation with repeated measurements of
methylation data and represents a larger effective sample
size, providing more stable parameter estimates for the
associations under investigation. We then assessed
whether epigenetic age acceleration at years 15 and 20
was associated with incident MetS status at years 25 and
30 using logistic regression, and further evaluated these
associations to leverage repeated measures using GEEs.
We further explored sex and race interactions with the
exposure variable for each model. All models were
adjusted for sex, race, center, education, smoking status,
alcohol consumption, and physical activity and all
statistical analyses performed using SAS 9.4.
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