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Abstract

Background: The clinical course of prostate cancer (PCa) is highly variable, demanding an individualized approach
to therapy. Overtreatment of indolent PCa cases, which likely do not progress to aggressive stages, may be
associated with severe side effects and considerable costs. These could be avoided by utilizing robust prognostic
markers to guide treatment decisions.

Results: We present a random forest-based classification model to predict aggressive behaviour of prostate cancer.
DNA methylation changes between PCa cases with good or poor prognosis (discovery cohort with n = 70) were
used as input. DNA was extracted from formalin-fixed tumour tissue, and genome-wide DNA methylation
differences between both groups were assessed using Illumina HumanMethylation450 arrays. For the random
forest-based modelling, the discovery cohort was randomly split into a training (80%) and a test set (20%). Our
methylation-based classifier demonstrated excellent performance in discriminating prognosis subgroups in the test
set (Kaplan-Meier survival analyses with log-rank p value < 0.0001). The area under the receiver operating
characteristic curve (AUC) for the sensitivity analysis was 95%. Using the ICGC cohort of early- and late-onset
prostate cancer (n = 222) and the TCGA PRAD cohort (n = 477) for external validation, AUCs for sensitivity analyses
were 77.1% and 68.7%, respectively. Cancer progression-related DNA hypomethylation was frequently located in
‘partially methylated domains’ (PMDs)—large-scale genomic areas with progressive loss of DNA methylation linked
to mitotic cell division. We selected several candidate genes with differential methylation in gene promoter regions
for additional validation at the protein expression level by immunohistochemistry in > 12,000 tissue micro-arrayed
PCa cases. Loss of ZIC2 protein expression was associated with poor prognosis and correlated with significantly
shorter time to biochemical recurrence. The prognostic value of ZIC2 proved to be independent from established
clinicopathological variables including Gleason grade, tumour stage, nodal stage and prostate-specific-antigen.

Conclusions: Our results highlight the prognostic relevance of methylation loss in PMD regions, as well as of
several candidate genes not previously associated with PCa progression. Our robust and externally validated PCa
classification model either directly or via protein expression analyses of the identified top-ranked candidate genes
will support the clinical management of prostate cancer.
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Background
Prostate cancer (PCa) is the second most prevailing can-
cer in the male population worldwide, an estimated 1.28
Mio. newly diagnosed cases and 350,000 cancer-related
deaths in 2018 [1]. Although the aetiology of prostate
cancer is controversial, it is likely to result from accumu-
lating DNA damage in stress-exposed ageing prostate
epithelial cells [2]. Specifically, chromosomal rearrange-
ments and oncogene fusion genes in these cells are
driven by androgens [3, 4]. Despite a large number of
studies that have suggested a multitude of candidate
prognostic markers in prostate cancer, none of these
genes has proven to be superior over the established
histological prognostic factors including tumour stage
and Gleason grade. Localized prostate cancer with low
Gleason score usually remains indolent, requiring only
active surveillance or minimal treatment. Nevertheless,
many patients may be over-treated with associated side
effects and substantial costs [5]. There is, therefore, gen-
eral agreement that novel specific biomarkers for the
diagnosis and prognosis of prostate cancer are needed
for an efficient clinical management of this disease [6, 7].
Recent high-resolution genome-wide studies have sig-

nificantly improved our understanding of chromosomal
and genetic alterations associated with prostate cancer
development, such as the androgen-driven formation of
gene fusions between the transmembrane serine prote-
ase TMPRSS2 and a member of the oncogenic ETS tran-
scription factor family like ERG in about 50% of all
prostate cancer cases, and frequent loss of the tumour
suppressor gene PTEN [4, 8, 9]. These events affect sig-
nalling pathways and lead to alterations in gene expres-
sion programs that have been used for the development
of gene signatures (genomic classifiers) as biomarkers
for the prediction of prostate cancer prognosis [10].
Although several studies have demonstrated some prog-
nostic value of gene expression-based signatures, due to
the limited stability of RNA and often low quality when
extracted from formalin-fixed paraffin-embedded (FFPE)
material, protein- or DNA-based methods might be
superior to RNA expression profiles for biomarker
development.
There is substantial evidence that genetic defects in

prostate cancer are complemented or even preceded by
epigenetic aberrations such as DNA methylation [11].
Novel technologies based on genome-wide screens for
aberrant DNA methylation and epigenetic gene silencing,
including the widely used Illumina 450k Beadchip arrays,
have allowed identification of hundreds of genes aberrantly
methylated during prostate cancer development [3, 8, 11,
12]. These cancer-specific epigenetic alterations have been
shown to enable the development of methylation-based
assays to distinguish between benign and malignant tissue
and to predict the course of the disease [11, 13, 14].

In recent years, machine-learning techniques became
widely used in modern molecular research to build pre-
dictive models [15]. Random forest [16] is an ensemble
learning method based on the construction of many
classification trees. Main benefits of the method are its
robustness against overfitting, user-friendliness and the
easy interpretation of the model [16].
Our goal was to use random forest-based modelling of

DNA methylation alterations to develop a classifier pre-
dicting the outcome of prostate cancer. In addition, the
tight connection of DNA methylation events with gene
expression allowed us to utilize immunohistochemistry
(IHC), a universally available tool in diagnostic labora-
tories, on tissue microarrays of thousands of clinically
well-annotated samples to validate ZIC2 as a prognostic
protein biomarker independent of established clinico-
pathological variables.

Results
Differential methylation analysis
To identify methylation alterations associated with PCa
aggressiveness, we used a discovery cohort of 70 PCa
cases (Table 1) with good (organ-confined disease and
lack of recurrence for at least 5 years) or poor prognosis
(systemic presence of metastatic disease, indicated by
biochemical PSA-based recurrence within 3 years and no
response to local radiation therapy) for genome-wide
methylation analyses using Illumina 450k arrays. The
two groups showed differences in preoperative PSA
levels (p = 1.2 × 10− 6) and survival rates. Patients in the

Table 1 Clinical characteristics of the discovery cohort

Good prognosisa Poor prognosisa

n 35 35

Age (mean ± sd) 62.7 ± 5.6 65 ± 6.6

Pretreatment PSA (ng/ml) 6.86 ± 3.4 28.3 ± 22.3

Stage (path. T)

pT2 35 0

pT3a 0 3

pT3b 0 31

pT4 0 1

Gleason score

3 + 3 15 0

3 + 4 17 6

4 + 3 3 15

4 + 4 0 4

4 + 5 0 7

5 + 4 0 3
aGood prognosis defined as an organ-confined disease (pT2) and lack of
biochemical (PSA-based) recurrence (BCR) for at least 5 years. Poor prognosis
defined as systemic presence of metastatic disease, indicated by recurrence
within 3 years and no response to local radiation therapy
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poor prognosis group suffered from rapid BCR, with a
median disease-free survival of 3.8 months.
After adjusting for age at diagnosis and tumour purity

(based on the samples’ basal, stromal and immune cell
contents computed from DNA methylation data using
the PEPCI R-package [9] (Additional file 1: Table S1)),
we selected 402 differentially methylated CpG sites
(DMS, with minimum 10% absolute methylation differ-
ence, FDR-adjusted p value < 0.2) (Fig. 1a). Of these, 302
DMS lost methylation in the poor prognosis group com-
pared to the good prognosis group, and 100 DMS gained
methylation (Fig. 2). Hypermethylated DMS were mainly
localized in CpG islands, shores and shelves, while DMS
with loss in methylation were mostly located in inter-
genic (open sea) regions (Fig. 1b). To characterize the
enrichment of DMS in specific genomic regions, we used
the EpiAnnotator tool and chromatin state information
(ChromHMM data) for normal prostate (PrEC) and
prostate cancer (PC3, LnCAP) cell lines [9]. DMS with
hypermethylation in aggressive PCa were enriched in
poised promoters and repressed regions in normal PrCE
cells. In both prostate cancer cell lines, these regions
were marked as heterochromatin, indicating remodelling
of the 3D chromatin structure during carcinogenesis.
DMS that lost methylation in aggressive tumours
showed enrichment for heterochromatic, often gene-
poor regions in normal prostate as well as in prostate
cancer cell lines (Fig. 1c).
We observed only minor differences in enrichment be-

tween the androgen-responsive cell line LNCaP and AR-
independent PC3 cells. Still, we explored the proximity
of the genes associated with DMS to androgen receptor
binding sites (ARBS), using a list of consensus ARBS
(n = 8162) derived from Stelloo et al. [17]. For > 90% of
the genes, the most proximal ARBS was located > 10 kb
away from the transcription start sites (TSSs) (Add-
itional file 2: Table S2), and none of the DMS directly
overlapped with an ARBS. These findings indicated that
androgen signalling was not the major driver underlying
differential methylation between the two prognosis
groups.
Poised promoters that significantly overlapped with

hypermethylated DMS in PrEC synchronously bear acti-
vating and repressive histone marks at the transcription
start site and are often associated with cell fate deter-
mination and differentiation [18]. In line with these
observations, a GREAT-based pathway analysis [19] of
genes associated with hypermethylated DMS showed
enrichment of developmental processes (Fig. 1d).

Random forest model
We applied random forest-based modelling to rank the
selected DMS according to their discriminative power
(for details, see description in the “Methods” section). In

addition to the DMS, our recently developed Purity-
Adjusted Epigenetic Prostate Cancer Index (PEPCI) of
tumour aggressiveness [9] was included in the model.
Mean PEPCI was significantly different between the two
prognosis groups of the discovery cohort (t test p value =
0.03). Using a cut-off of 69.1 to define PEPCI-low and
PEPCI-high tumours (as described in [9]), the aggressiv-
ity score stratified the discovery cohort according to
PSA recurrence-free survival (log-rank p value = 0.045)
(Additional file 3: Figure S1).
For the random forest-based modelling, the discovery

cohort was randomly split into a training (80% randomly
selected samples) and a test set (20% randomly selected
samples). The model was trained on the training set,
with 10,000 trees. Prediction accuracy was then mea-
sured on the test set. For variable selection, DMS were
ranked based on mean decrease in accuracy and Gini
scores [20] (complete list of CpG sites in the model, as
well as importance scores in Additional file 2: Table S2).
The Gini score indicates how often a random sample
from the test set would be incorrectly categorized as
having good or poor prognosis if the samples were ran-
domly distributed [20].
The random forest model showed an error of 14.81%

on the training set (n = 56), with better prediction for
the poor prognosis subgroup (Additional file 4: Figure
S2). On the test set (n = 14), the model showed an error
rate of 18.8%, with an area under the receiver operating
characteristic (ROC) curve (AUC) of 95% (Fig. 3a). A
Kaplan-Meier plot indicated excellent stratification of
the subgroups of the test set predicted to have good or
poor prognosis (log-rank p value < 0.0001, Fig. 3b). We
applied our model to two independent PCa cohorts for
validation of the good prediction rate. We were able to
validate our results using the ICGC PCa cohort of early-
and late-onset prostate cancer (n = 222) [9]. The AUC
for the sensitivity analysis was 77.1% (Fig. 3c). With an
AUC of 99.7%, the model demonstrated excellent per-
formance when we only used a subset of the cohort
based on the same selection criteria as in our discovery
cohort (n = 63). With the TCGA PRAD cohort (n = 477,
Table 2), we observed an AUC of 68.7% (Fig. 3e), while
the AUC was 77.5% with a preselected subset (n = 84,
Table 2). Our classifier efficiently stratified both valid-
ation cohorts according to PSA recurrence-free survival
(log-rank p value < 0.0001 for both cohorts) (Fig. 3d, f
and Additional file 5: Figure S3). In the ICGC dataset,
our model proved to be an independent predictor of
recurrence-free survival, when the Gleason score was
included in the model (Cox regression p = 0.011).

Candidate selection
Based on their localization in regulatory regions and dis-
tance from TSS, DMS were associated with genes [19].
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The genes were ranked to select the top 20 candidates
for confirmatory analyses based on immunohistochemis-
try (IHC), as further described below (Table 3, with indi-
vidual Kaplan-Meier curves for the candidate gene-

related CpG sites and the full model in Additional file 3:
Figure S1).
Comparison with recently published whole genome bi-

sulfite sequencing data (WGBS) for prostate cancer [21]

Fig. 1 Differential methylation analysis. a Mean methylation values of the good and poor prognosis groups in a smoothed colour density
representation plot. Sites with FDR-corrected p values < 0.2 and absolute beta value difference > 0.1 are marked in red. b Distribution of the
localization of differentially methylated CpG sites (DMS) hypermethylated (n = 100, top) or hypomethylated (n = 302, bottom) in the poor
prognosis group relative to the good prognosis group, in relation to CpG islands. c Enrichment analysis of the hypermethylated (left) and
hypomethylated (right) DMS using 7-state ChromHMM data for PC3 and LnCaP tumour cell lines and prostate epithelial cells (PrEC) [9]. The size
of the circles demonstrates the significance of enrichment, while their colour represents the strength and the direction of the enrichment (red:
enriched, blue: depleted). The black circle outline indicates significant results. d Pathway analysis of genes associated with the hypermethylated
(top) and hypomethylated (bottom) DMS. GREAT tool was used to assign genes to CpG sites. The shade of blue shows the significance of the
enrichment, while the bars represent the strength
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revealed that about 60% of the top DMS (associated with
C11orf87, CCT8L2, CD84, CTSC, DOK5, FCRL1, LCE3A,
MMP16, MOS, OR5W2, PEG3/ZIM2 and SLC1A6) were
located in so-called partially methylated domains
(PMDs) (Additional file 6: Figure S4). PMDs are gen-
omic regions of several hundred kilobases to few mega-
bases in length that are associated with heterochromatic
areas in the nuclear periphery, replicated late during cell
cycle progression and progressively losing methylation.
In tumours, stronger hypomethylation in PMDs was sig-
nificantly associated with higher genome-wide somatic
mutation densities [22], supporting our findings of com-
monly more loss of methylation in more aggressive PCa
compared to the good prognosis group.
Beside the PMD-associated DMS, we also identified

DMS with focal changes in methylation in gene pro-
moter regions. The gene of matrix metalloproteinase 16
(MMP16), a proteolytic enzyme involved in the

development of PCa progression and metastases [23], is
located in a frequent PMD. However, we identified
cg12818557 located in the promoter region of MMP16
as a strong predictor, with almost 20% methylation gain
in the poor compared to the good prognosis group.
Gain of methylation at cg00874055 in the promoter

region of GPR137B (G protein-coupled receptor 137B)
was inversely correlated (rho = − 0.497, p = 1.85 × 10−6)
with mRNA expression (data from ICGC EOPC cohort).
GPR137B upregulation is linked to aggressive forms of
pancreatic cancer [24] and associated with increased
proliferation in various cancer types but has not been
identified as a PCa biomarker yet.
Similarly, nucleolar protein NOP56 (cg18146506) and

protein arginine methyltransferase PRMT8 (cg24100636)
with hypomethylated promoter DMS were were identi-
fied as biomarkers for multiple cancer types [25, 26].
Arginine methylation is relevant for various cellular

Fig. 2 Methylation heatmap of the selected CpG sites in the discovery cohort. Each column represents a sample with predicted good or poor
prognosis, while rows represent selected differentially methylated CpG sites. Annotations on the left side indicate top-ranked candidate genes
associated with most informative CpG sites. Low and high methylation beta values in a range from 0 to 1 are shown in a blue to red colour
scale. Hierarchical clustering was done on Euclidian distance between samples and sites. BCR: PSA-based biochemical recurrence
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processes, including DNA repair, RNA transcription, sig-
nal transduction, protein compartmentalization, and
possibly protein translation [27]. We also identified a
DMS (cg17225407) in the promoter of RND2, a rela-
tively unexplored member of the Rho GTPase family
[28], with loss in methylation in the poor prognosis
group compared to the good prognosis group.
Cg04211581 is located only 26 bps from the TSS of
ESR1. ESR1 encodes oestrogen receptor alpha (ERα), the
role of which has been proposed in PCa; however, it is
still controversial [29]. Interestingly, we identified an
ARBS in close vicinity (distance < 1 kbp) of the DMS.
Three DMS affected the promoter region of zinc finger

proteins. Two sites were located in the promoter of
ZFP36L2 (cg16876647, cg12092201), while one CpG site
(cg24690071) was located in a poised promoter of ZIC2.
ZFP36L2 encodes a CCH-type zinc finger protein, which
is regulated by the cell-cycle, might play a role in DNA
damage response [30] and inhibit cell proliferation [31].

In PCa, ZFP36L2 upregulation was associated with the
transcription factor Runx2 and poor prognosis [32].
ZIC2 belongs to a family of transcription factors in-
volved in neuroectodermal development. Elevated ZIC2
mRNA expression was described in high Gleason pros-
tate cancer [33].
Our results highlight the prognostic relevance of

methylation loss in PMD regions, as well as of several
candidate genes not previously associated with PCa. The
influence of the methylation changes of these candidates
DMS on gene or protein expression and the impact on
prostate carcinogenesis needs to be experimentally con-
firmed in mechanistic chromatin conformation and gain-
and loss-of-function studies.

Candidate validation
ZIC2 was one of the candidate genes for which a suit-
able antibody for IHC was available. ZIC2 expression
was analysed by immunohistochemistry on a tissue

Fig. 3 Performance analysis of the model in the test and validation datasets. a, c, e ROC curve analysis of the model’s performance in the test set
(a), ICGC PCa cohort (c) and TCGA PRAD cohort (e). The x-axis shows the model’s specificity while the y-axis shows the sensitivity. Red dot
represents the performance of the model when a cut-off of 0.5 is used during classification. b, d, f Kaplan-Meier curves using PSA recurrence-free
survival as an outcome in the test set (b), in the ICGC PCa cohort (d) and in the TCGA-PRAD cohort (f), based on the predicted prognostic
categories (blue: good prognosis, red: poor prognosis). p values were calculated using log-rank test
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microarray (TMA) containing more than 12,000 prostate
cancer specimens (Table 4). Results were compared with
tumour phenotype, BCR, ETS-related gene (ERG) status
and other recurrent genomic alterations. ZIC2 expres-
sion was detectable and considered to be strong in
23.3% of cases and was absent in the majority of the tu-
mours (76.7%) (Fig. 4a, Table 4). Loss of ZIC2 protein
expression was associated with ERG-fusion positivity
(p < 0.0001) (Fig. 4b). Loss of ZIC2 expression was also
linked to Gleason grade, advanced pathological tumour
(pT) stage, lymph node metastasis and higher preopera-
tive PSA levels in all cancers (p < 0.0001, each) and in
the subset of ERG-fusion negative tumours (Table 4,
data not shown). These associations were either weaker
or absent in ERG-fusion positive cancers (data not
shown). Within ERG fusion-negative cancers, ZIC2 ex-
pression was also strongly associated with 6q15 and
5q21 deletions (p < 0.001) (Fig. 4c). Loss of ZIC2 expres-
sion was associated with adverse outcome and correlated
with significantly shorter time to biochemical recurrence
in all cancers, independent of ERG and PTEN (Fig. 4d).
The prognostic value of ZIC2 proved to be independent
from established clinicopathological variables including
Gleason, stage, nodal stage and PSA. Overall, ZIC2 was
identified as an excellent marker and might provide clin-
ically useful predictive information by identification of
aggressive prostate cancer subsets.

Discussion
In the present study, we have identified methylation dif-
ferences related to PCa prognosis and subsequently
showed that methylation-based prediction of PCa prog-
nosis using random forest-based modelling is feasible
with high accuracy.
PCa is the most prevalent cancer among men in

Germany. With a 5-year survival rate of 91%, PCa is a
cancer type with comparably good prognosis (German
Cancer Registry). Nevertheless, biomarkers predicting
the prognosis of PCa are needed for an efficient clinical
management, to avoid overtreatment of cases with indo-
lent disease and to identify patients who develop aggres-
sive forms and require chemotherapy [34].
DNA methylation is an excellent source for biomarker

development, since it is a stable modification and can be
quantitatively determined in clinical samples with high
throughput and precision and relatively low cost [35].
Previous studies trying to establish a methylation-based
classifier for prostate cancer mostly used a preselected
set of genes [36, 37] or used high Gleason score as an
outcome [38, 39]. Here, we are presenting a genome-
wide approach, with PSA recurrence-free survival as an
endpoint. One limitation of our study is the use of the
Illumina 450k platform for biomarker selection, which
limits methylation analyses to preselected CpG sites on
the 450k array (enriched for CpG islands and flanking
regions, bioinformatically predicted enhancers, DNase I
hypersensitive sites, and validated differentially methyl-
ated regions [40]). Future studies using whole genome
bisulfite sequencing (WGBS) of all > 29 million CpG
sites in the human genome will allow identification of
additional biomarkers.
Our discovery cohort consisted of 70 patients, 35

with good and 35 with poor prognosis. After cell type
adjustments, our cut-off criteria for selection of differ-
entially methylated CpG sites were absolute methyla-
tion differences > 10% and an FDR-adjusted p value <
0.2. Altogether, 402 DMS and the PEPCI score for
tumour aggressiveness [9] were included in the predic-
tion model. Our random forest-based model demon-
strated excellent performance with the discovery
cohort (AUC 95%). We were able to validate our re-
sults using the ICGC PCa cohort of early and late
prostate cancer (AUC 77.1%), with slightly worse per-
formance using the TCGA PRAD dataset (AUC
68.7%). Different reasons might contribute to the lower
performance with the TCGA PRAD cohort, such as
possibly different definitions of PSA recurrence-free
survival and the generally high Gleason score and high
tumour stage of the TCGA patients. Other genome-
wide studies have faced similar problems using TCGA
as a validation set [38, 41]. Nevertheless, for both
ICGC and TCGA validation cohorts, the resulting

Table 2 Clinical characteristics of the TCGA PRAD cohort and
the preselected subcohort

TCGA PRAD TCGA PRAD subcohort

Full cohort Good prognosisa Poor prognosisa

n 477 27 57

Age (mean ± sd) 61.06 ± 6.9 57.23 ± 6.7 62.46 ± 6

Stage (path. T)

n.a. 6 0 0

pT2a 13 1 0

pT2b 6 3 0

pT2c 161 23 0

pT3a 153 0 24

pT3b 129 0 31

pT4 9 0 2

Gleason score

6 43 6 0

7 243 17 12

8 61 2 8

9 127 2 36

10 3 0 1

n.a. not available
aGood prognosis defined as lack of BCR for at least 5 years and stage < pT3.
Poor prognosis defined as BCR within 3 years and stage ≥ pT3
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prognostic subgroups had highly significantly different
survival rates.
We compared the performance of our model with

commercially available, RNA expression-based genomic
tests. Using RNA-seq data available for the TCGA
PRAD cohort, we generated sums of Z-scores for the
gene lists included in the Decipher, OncotypeDX and
Prolaris tests, as described by Wei et al. [42]. Prolaris
outperformed Decipher and OncotpyeDX with an AUC
of 64.6% versus 51.5% and 50.8% for Decipher and
OncotypeDX (Additional file 7: Figure S5). Our
methylation-based classifier showed a higher AUC
(68.7%) with the TCGA PRAD cohort. The low perform-
ance of Decipher and OncotypeDX might be due to the
fact that the commercially available tests were not de-
signed for RNA-seq data.
We identified significantly more loss than gain in

methylation associated with PCa progression and could
map the majority of our top selected candidate bio-
marker to PMDs. A recent small breast cancer study
concluded that loss of methylation in PMDs might be
more valuable as diagnostic than prognostic biomarker
[43]. Generally, loss of methylation of candidate DMS lo-
cated in PMDs might be more informative on larger-

scale methylation changes in these late-replicating het-
erochromatic regions than have functional relevance on
the expression of the associated genes. Accordingly,
Brinkman et al. concluded that PMDs commonly did
not overlap with tumour suppressor genes in breast can-
cer [43]. Our findings, in conjunction with WGBS data
on PCa [21], support a more intensive analysis of the
prognostic relevance of PMD methylation in PCa.
A recent proteomics-based biomarker study of curable

prostate cancer reported a stronger link of DNA methy-
lation status to protein than mRNA abundance [44]. In
line with these findings, we performed a validation of
the clinical impact of ZIC2 as one of the candidate genes
on more than 12,000 micro-arrayed PCa cases. The zinc
finger of the cerebellum (ZIC) family of genes consists of
five human homologues ZIC1–5 [45]. ZIC family mem-
bers inhibit TCF4/β-catenin and interact with GLI sig-
nalling [46]. ZIC2 is related to the sonic hedgehog
pathway. Its oncogenic role was described in epithelial
ovarian cancer [47], hepatocellular carcinoma [48] and
pancreatic cancer [49]. Our IHC validation indicated a
particularly strong adverse prognostic value of ZIC2 ex-
pression loss, including early biochemical recurrence
and high Gleason grade. Of note, an eminent weakness

Table 4 Association between ZIC2 immunostaining results and prostate cancer phenotype in tissue micro-arrayed cancers

Parameter n evaluable Negative (%) Positive (%) p value Bonferroni correction

All cancers 12,581 76.7 23.3

Tumour stage

pT2 7994 74.6 25.4 < 0.0001 0.000006

pT3a 2837 78.7 21.3 0.000018

pT3b-pT4 1700 83.1 16.9 0.000029

Gleason grade

≤ 3 + 3 2303 71.5 28.5 < 0.0001 0.000022

3 + 4 6700 75.1 24.9 0.000007

3 + 4 Tert.5 606 77.7 22.3 0.000083

4 + 3 1238 81.4 18.6 0.000040

4 + 3 Tert.5 907 85.6 14.4 0.000055

≥ 4 + 4 731 87.1 12.9 0.000068

Lymph node metastasis

N0 7459 77.6 22.4 < 0.0001 0.000007

N+ 932 86.3 13.7 0.000054

Preop. PSA level (ng/ml)

< 4 1479 75.8 24.2 < 0.0001 0.000034

4–10 7470 75.4 24.6 0.000007

10–20 2642 79.2 20.8 0.000019

> 20 916 81.3 18.7 0.000055

Surgical margin

Negative 10,018 75.8 24.2 < 0.0001 0.000005

Positive 2519 80.3 19.7 0.000020
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of Gleason grading is the high inter-observer variability
between pathologists that generally exceeds 30% [50]. In
this study, the original Gleason grade from the patient’s
files was used for statistical analyses. From 2005 on, in
our department, Gleason grading was performed almost
exactly as recommended by the WHO 2016 classifica-
tion [51]. ZIC2 analysis, thus, appears to be of high value

for distinguishing between patients with more or less
aggressive forms of the disease and may be useful to
select patients for active surveillance.
There are some limitations connected to our study.

The patient cohort used for candidate gene identification
was selected from patients subjected to curative radical
prostatectomy and did not include individuals with

Fig. 4 ZIC2 immunostaining in > 12,000 micro-arrayed PCa cases. a Examples of negative (no nuclear staining, upper panels) and strong staining
(lower panels). b Association between ZIC2 immunostaining results and the ERG-status determined by IHC and FISH analysis. c Association
between ZIC2 immunostaining and deletions of 10q23 (PTEN), 6q15 (MAP 3 K7), 5q21 (CHD1) and 3p13 (FOXP1) for all cancers (a), ERG fusion-
negative (b) and ERG fusion-positive subset (c) according to ERG-IHC analysis. d Kaplan-Meier curves for the relationship of ZIC2 immunostaining
with PSA recurrence-free survival in all cancers (a), in ERG fusion-negative cancers (b), in ERG fusion-positive cancers (c), in PTEN normal cancers
(d) and in PTEN deleted cancers (e). Log-rank p values
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advanced castration-resistant cancers who have the
worst prognosis. Also, a 5-year recurrence-free interval
as defined for our good prognosis group might be too
short to select only patients with the best possible prog-
nosis. Thus, it cannot be excluded that some relevant
candidate genes may have been missed by our approach.
The same might also apply to the 17,000 cancer valid-
ation set, which is also limited to prostatectomy speci-
mens. An optimal validation set would have been made
up from biopsy specimens which precisely represent the
kind of samples that are available for molecular analysis
when a therapy decision has to be taken. However, nee-
dle biopsies are precious material that is exhausted after
only a few analyses. The 0.6-mm TMA punches used in
our study very much resemble the size of needle biop-
sies. This makes them probably well-suited to reflect the
diagnostic problems connected to needle biopsy analysis
including a possible selection bias, heterogeneity issues
and the limited amount of cancer cells available for
analysis.

Conclusions
We present a candidate selection of cancer progression-
related CpG methylation changes, as well as a classifica-
tion model to predict aggressive behaviour of PCa. This
model, with further tuning, might help in decision mak-
ing related to the treatment of prostate cancer patients.
The effect of candidate CpG site methylation on gene
expression helps to pinpoint further genes, which play
an important role in prostate cancer development. Rank-
ing of the selected CpG sites and associated genes
allowed selection of candidate biomarkers for validation
by IHC. We identified loss of ZIC2 expression as a
promising prognostic biomarker for PCa.

Methods
Study population
In order to build a classifier that predicts the patients’
outcome the best, a highly selected group of patients
was included in the study. Sample selection was based
on the following criteria: good prognosis indicated by
the presence of organ-confined disease (pT2) and lack of
biochemical prostate-specific antigen (PSA)-based recur-
rence (BCR) for at least 5 years. In contrast, poor prog-
nosis is defined as systemic presence of metastatic
disease, indicated by BCR within 3 years and no response
to local radiation therapy. Initially, 84 patients were
selected.
A pathologist selected FFPE tissue blocks containing

tumour-rich areas (≥ 70% tumour cells) for analysis.
Three tissue punches (0.6 mm × 3mm) were taken of
each tissue block, and genomic DNA was isolated using
the AllPrep® DNA/RNA FFPE kit (Qiagen). DNA was
submitted to the DKFZ Genome and Proteome core

facility for Illumina 450k Methylation analyses. After re-
moving samples and DNA methylation profiles with low
quality, the study included 35 patients with good and 35
patients with bad prognosis (Additional file 1: Table S1).

Validation datasets
The ICGC PCa cohort has been described earlier [9].
Clinical information for the TCGA PRAD cohort was
downloaded from cBioPortal in June 2018 (Table 2). For
the subcohorts, patients were selected as good prognosis
patients by lack of BCR within 5 years and a disease
stage pT2 and as poor prognosis patients when suffering
from BCR within 3 years and having a stage pT3 or pT4.
Consensus androgen receptor (AR) binding sites (n =
8162) were defined by Stelloo et al. [17] based on AR
ChIP-seq data for 100 prostate carcinomas. Genomic
distances of DMS-associated gene TSSs were calculated
using the middle point of the nearest region. Prostate
cancer WGBS data was accessed at GEO accession num-
ber GSE104789 [21]. Information on common PMDs
was derived from [22].

DNA methylation processing
DNA methylation was assessed using the Illumina
HumanMethylation450 Array. The methylation data was
processed using the RnBeads R package [52]. Probes
with SNPs (dbSNP 144) overlapping with the C nucleo-
tide of the CG site and having MAF> 0.01 (28,722
probes) were excluded. Probes with high likelihood of
false hybridization (28,736 probes, as defined in
RnBeads) were also removed. Quality filtering was per-
formed using the Greedycut algorithm, which removed
21,040 probes and 11 samples. Additional 969 non-CpG
probes and 9229 probes located on the sex chromo-
somes were removed. No normalization or background
correction was used.
During the analysis, a batch effect was observed be-

tween data from fresh frozen (TCGA PRAD and ICGC
PCa cohort) and formalin-fixed tissue (discovery cohort).
In order to have a generalizable model, we avoided shift-
ing the beta values as would happen with batch correc-
tion methods. Instead, we used principal component
analysis (PCA) on the top 10,000 most variable CpG
sites to identify the probes affected by this effect. This
was done using two independent datasets containing
formalin-fixed [53] or fresh frozen tissue [8] and re-
moved the top 5000 sites captured by PC2, the main
principal component affected by the sample type. The
PEPCI score and the basal, stromal, luminal, T-luminal
and immune cell composition were estimated using the
PEPCI R package [9]. Linear models of the limma pack-
age [54] were applied to identify differentially methylated
probes after adjustments for age, basal, stromal and im-
mune cell content. CpG sites with FDR-adjusted p values
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< 0.2 and mean methylation difference > 0.1 (10%) were
used to build the model. Enrichment analysis of the sig-
nificantly methylated sites, promoters and genes were
performed with EpiAnnotator [55]. Annotation of the
most important CpG sites of the random forest model
was done using the GREAT tool [19].

Random forest classifier
A random forest-based classifier was built using the ran-
domForest R package, which is based on the algorithm
of Breiman and Cutler [16]. Random forest is a learning
method that constructs numerous decision trees and
outputs the classes (in case of classification) of the indi-
vidual trees. The predicted class of the input instance
will be decided upon majority vote (schematic principle
in Additional file 8: Figure S6). Each tree was built on a
bootstrap training set, which represents about two thirds
of the discovery cohort with replacement. Out-of-bag
(OOB) error was used to measure the performance of
the model on the training set. Classification of the in-
stances left out (OOB samples) was used to estimate a
generalization error (OOB error). The OOB error will
give an unbiased estimate of the current classification
error, while the bagging method will decrease the chance
of overfitting.
Two variable importance scores are used in random

forest. The mean decrease in accuracy reflects a variable
importance measure to assess the prediction strength of
each predictor variable. When a tree is grown, the OOB
samples are used to calculate the error rate. Then, the
values of a given predictor variable are randomly per-
muted and the error rate is calculated again. The
decrease in accuracy caused by the permutation is
averaged over all trees. The mean decrease in Gini score
gives the improvement in the split-criterion at each split
in each tree [20].
Twenty different models were trained as follows: data

was randomly split into training (80%) and test (20%)
set. The model was trained on the training set, with 10,
000 trees and 19 variables to select randomly for each
tree. Prediction accuracy was measured on the test set.
The results were collected and the best performing
model was selected. This model was then optimized for
the number of variables selected for each tree. For
variable selection, CpG sites were ranked based on
mean decrease in accuracy and mean decrease in Gini
scores [20].
Validation of the classifier was performed using the

TCGA PRAD and the ICGC cohort of early and late
prostate cancer. TCGA-PRAD DNA methylation data
was downloaded from the GDC portal (https://portal.
gdc.cancer.gov/) legacy archive in .idat format. The
performance was evaluated with ROC curve analysis,
using the ROCR R package [56] and Kaplan-Meier

curves for the validation datasets and individual candi-
date CpG sites.

Candidate selection
Based on our model, the top-rated candidates underwent
a further selection to identify the ones with the highest
possibility to perform well as a protein expression-based
biomarker. First, we used the GREAT tool and the gene
annotation of the Illumina 450k methylation array to
identify gene-CpG site associations, by selecting the
genes closest to the sites. The CpG sites in close vicin-
ity to transcription start sites (± 2 kb) were preferred, to
enhance the potential functional relevance for corre-
lated gene/protein expression changes. Finally, the se-
lection was based on the mean decrease in the Gini
score (cutoff > 0.1).

Genomic risk scores
Risk scores for TCGA-PRAD based on the gene expres-
sion panels of Decipher, Oncotype DX and Prolaris tests
were calculated as described in [42]. TCGA-PRAD
RNA-Seq HTSeq counts were downloaded from GDC
portal (https://portal.gdc.cancer.gov/). Gene-based Z-
scores were calculated for the 19, 12 and 31 genes of the
respective panels. The sum of the scores was used as risk
scores.

Validation of candidate genes by immunohistochemistry
(IHC)
Patients
Radical prostatectomy specimens were available from 17,
747 patients undergoing surgery between 1992 and 2017
at the Department of Urology and the Martini Clinics at
the University Medical Centre Hamburg-Eppendorf
(Additional file 9: Table S3). All prostate specimens were
analysed according to a standard procedure, including
complete embedding of the entire prostate for histo-
logical analysis [57]. Histo-pathological data was re-
trieved from the patient files, including tumour stage,
Gleason grade, nodal stage and resection margin status.
Gleason grading was performed already from 2005 on as
outlined later in the 2016 WHO recommendations with
minor modifications, i.e., we have a conservative position
to define irregular glands as Gleason 4. Follow-up data
were available for a total of 14,464 patients with a me-
dian follow-up of 48 months (range 1 to 241months;
Additional file 9: Table S3). PSA values were measured
in regular intervals following surgery, and PSA recur-
rence was defined as the measurement of a postoperative
PSA of ≥ 0.2 ng/ml and increasing. The TMA manufac-
turing process was described in detail earlier [58]. In
short, one 0.6-mm core was taken from a tumour-
containing tissue block from each patient. The molecular
database attached to this TMA contained results on
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ERG expression in 10,711 [3], ERG break apart FISH
analysis in 7122 (expanded from [59]), deletion status of
5q21 (CHD1) in 7932 (expanded from [60]), 6q15
(MAP 3 K7) in 6069 (expanded from [61]), 10q23
(PTEN) in 6704 (expanded from [62]) and 3p13 (FOXP1)
in 7081 (expanded from [63]) cancers.

Immunohistochemistry
Freshly cut TMA sections were immunostained on one
day and in one experiment. Slides were deparaffinised
and exposed to heat-induced antigen retrieval for 5 min
in an autoclave at 121 °C in pH 7.8 Tris-EDTA-citrate
buffer. The primary antibody specific for ZIC2 (anti-
bodies online, ABIN2776475) was applied at 37 °C for
60 min. Bound antibody was then visualized using the
EnVision Kit (Dako, Glostrup, Denmark) according to
the manufacturer’s directions. ZIC2 staining intensity
was assessed as negative or positive.

Statistics
Statistical calculations were performed with JPM 12 soft-
ware (SAS Institute Inc., NC, USA). Contingency tables
and the χ2 test were performed to search for associations
between molecular parameters and tumour phenotype.
Survival curves were calculated according to Kaplan-
Meier. The log-rank test was applied to detect significant
survival differences between groups. Cox proportional
hazards regression analysis was performed to test the
statistical independence and significance between
pathological, molecular and clinical variables. Separate
multivariate analyses were performed using different
sets of parameters available either before or after
prostatectomy.

Supplementary information files
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13148-019-0736-8.

Additional file 1: Table S1. Clinical information and cell type
composition of discovery cohort samples.

Additional file 2: Table S2. Full list of CpG sites contributing to the
model.

Additional file 3: Figure S1. Individual Kaplan-Meier curves. Predictive
power for PSA recurrence–free survival of the full classifier, PEPCI, and in-
dividual candidate CpG sites associated with the top20 selected genes in
the discovery cohort (n = 70). p values from log-rank test. Red: high
methylation (above median), blue: low methylation (below median).

Additional file 4: Figure S2. Performance of the random forest model.
The plot shows the performance of the random forest model as a
function of the trees built in the model, using the generalized OOB
(black) and classification error for the good (red) and poor (green)
prognosis groups.

Additional file 5: Figure S3. Heatmap of the selected CpG sites in the
ICGC prostate cancer (left) and TCGA PRAD (right) validation datasets.
Each column represents a sample with predicted good or poor
prognosis, while rows represent selected differentially methylated CpG
sites. Annotations on the left side indicate top ranked candidate genes

associated with most informative CpG sites. Low and high methylation
beta values in a range from 0 to 1 are shown in a blue to red color scale.
BCR: PSA-based biochemical recurrence.

Additional file 6: Figure S4. Localization of DMS in PMDs identified in
prostate cancer by WGBS. WGBS data for three prostate cancer cases with
matching benign tissue was derived from GSE104789 and uploaded to
the UCSC genome browser. For comparison, common PMDs identified in
eight common cancer types excluding prostate cancer [22] were displays
in a color gradient from light grey to black.

Additional file 7: Figure S5. Specificity and sensitivity of gene
expression-based prognostic tests to prognosticate PSA-based BCR for
the TCGA PRAD cohort. Sums of Z-scores of RNA-seq-derived gene ex-
pression per patient were used for calculations of risk scores, as described
in Ref. [42].

Additional file 8: Figure S6. Schematic representation of the random
forest model.

Additional file 9: Table S3. Pathological and clinical data of the
arrayed prostate cancers.
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