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Abstract

Background: African Americans (AAs) experience premature chronic health outcomes and longevity disparities
consistent with an accelerated aging phenotype. DNA methylation (DNAm) levels at specific CpG positions are
hallmarks of aging evidenced by the presence of age-associated differentially methylated CpG positions (aDMPs)
that are the basis for the epigenetic clock for measuring biological age acceleration. Since DNAm has not been
widely studied among non-European populations, we examined the association between DNAm and chronological
age in AAs and whites, and the association between race, poverty, sex, and epigenetic age acceleration.

Results: We measured genome-wide DNA methylation (866,836 CpGs) using the Illumina MethylationEPIC BeadChip in
blood DNA extracted from 487 middle-aged AA (N = 244) and white (N = 243), men (N = 248), and women (N = 239).
The mean (sd) age was 48.4 (8.8) in AA and 49.0 (8.7) in whites (p = 0.48). We identified 4930 significantly associated
aDMPs in AAs and 469 in whites. Of these, 75.6% and 53.1% were novel, largely driven by the increased number of
measured CpGs in the EPIC array, in AA and whites, respectively. AAs had more age-associated DNAm changes than
whites in genes implicated in age-related diseases and cellular pathways involved in growth and development. We
assessed three epigenetic age acceleration measures (universal, intrinsic, and extrinsic). AAs had a significantly slower
extrinsic aging compared to whites. Furthermore, compared to AA women, both AA and white men had faster aging
in the universal age acceleration measure (+ 2.04 and + 1.24 years, respectively, p < 0.05).

Conclusions: AAs have more wide-spread methylation changes than whites. Race and sex interact to underlie biological
age acceleration suggesting altered DNA methylation patterns may be important in age-associated health disparities.

Keywords: DNA methylation, Epigenetics, Epigenetic clock, Biological age, Aging, Health disparities, Race, European
ancestry, African Americans, Epigenome-wide association study

Background
Health disparities are marked differences or inequalities
in health measures and indicators, such as morbidity
and mortality, between two or more population groups.
Health disparities disproportionately affect African
Americans (AAs), other racial minorities, and the socio-
economically disadvantaged. The disparities for overall
longevity as measured by life expectancy are particularly

compelling in the USA where the most pronounced life
expectancy gap for AA men who experienced a 20.7-year
life expectancy gap when compared to Asian women
who had the best overall survival [1]. Nearly two decades
later, this troubling trend of lower life expectancy still
continues to persist [2]. AAs manifest age-related
phenotypes and develop chronic diseases such as cardio-
vascular diseases, diabetes, and cognitive disorders at
younger ages than other demographic groups. This sug-
gests that AAs experience significant rates of premature
biological aging. A study conducted in participants of
the National Health and Nutrition Examination Survey
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found that AAs age significantly faster than whites and
that biological aging was associated with all-cause mor-
tality rates [3].
The causes of health disparities and its premature aging

phenotype are multifactorial and include but are not lim-
ited to socioeconomic status, psychosocial stress, genetics,
poor access to health care, education, and toxic environ-
mental exposures. However, it has never been fully
explained how social determinants of health result in the
premature aging phenotype, poor health outcomes, and
reduced overall survival. The transduction of a social de-
terminant of health may involve genomic and epigenomic
processes that are indeterminate at this time. Among the
various epigenetic processes, DNA methylation could be
one potential mechanism that may mediate this observed
disparity given that DNA methylation is influenced by age,
lifestyle, environmental, and host factors [4, 5]. There is
evidence from targeted methylation studies that DNA
methylation changes are associated with socioeconomic
status and age-related diseases [6, 7].
DNA methylation regulates gene expression and main-

tains genome stability. It is a dynamic process that
changes over an individual’s lifespan and is influenced
by age and environmental and genetic factors [4]. Fur-
ther, altered patterns of DNA methylation have been
considered as one of the hallmarks of aging and lifespan
[8]. Identification of age-associated DNA methylation
changes among diverse population groups could provide
clues on the epigenetic basis of aging and age-related
health disparities among population groups. However,
AAs and other racial minorities are underrepresented in
epigenetic studies of age-related diseases. Previous stud-
ies have identified several age-associated differentially
methylated CpG positions (aDMPs) located in genes
implicated in chronic diseases and aging [9–28]. How-
ever, the majority of these studies were limited by their
low genome-wide coverage of CpG sites and also were
mostly comprised of populations of European ancestry,
therefore precluding the study of the role of DNA
methylation in the biology of age-related health dispar-
ities among minority populations. The recent develop-
ment of biological age prediction algorithms based on
methylation levels of genome-wide selected CpG sites using
elastic net regularized regression methods referred to as
DNA methylation age (DNAm age) also known as epigen-
etic age or the “epigenetic clock,” and the demonstration of
robust correlations between DNAm age (epigenetic age)
and chronological age provides a valuable research tool to
study the social determinants of biological age acceleration
[24, 25]. Epigenetic age acceleration has been associated
with overall and cause-specific mortality, physical and cog-
nitive function decline, and other aging-related diseases;
thus, epigenetic age has been suggested to be a marker of
biological age [29–33]. Although sociodemographic and

lifestyle factors were shown to accelerate epigenetic aging
[32, 34, 35], the interplay between these factors is poorly
understood. Specifically, whether race, socioeconomic sta-
tus, and sex interact with each other to influence acceler-
ated epigenetic age is not known.
The objectives of the present study were (1) to identify

novel aDMPs among AAs and whites and (2) to assess the
association between race, sex, and poverty status and their
interaction on epigenetic age acceleration. We conducted
the present study in samples drawn from the Healthy Aging
in Neighborhoods of Diversity across the Life Span
(HANDLS) study [36]. HANDLS is a population-based lon-
gitudinal study of community-dwelling urban AAs and
whites aged 30–65 years. Using the Illumina Infinium
MethylationEPIC BeadChip, we quantified genome-wide
DNA methylation levels at single-CpG dinucleotide resolu-
tions in blood DNA collected from AA and white men and
women above and below poverty status. We performed epi-
genome-wide association analysis of chronological age. We
also assessed main effects and interactions between sex,
race, and poverty status on epigenetic age acceleration mea-
sures. We found that chronological age was associated with
widespread DNA methylation changes in various CpG posi-
tions and that AAs compared to whites had more aDMPs.
These aDMPs were enriched for important genetic regula-
tory regions, cellular pathways involved in growth and
development, and age-related chronic disease susceptibility
loci identified by genome-wide association analyses. We
also found that AA men had a faster aging corroborating
the epidemiologic observations that AA men have a shorter
life expectancy.

Results
MethylationEPIC array methylation data preprocessing
and normalization
We measured DNA methylation using the Illumina Infi-
nium MethylationEPIC BeadChip in blood DNA of 487
participants (244 AAs, 243 whites, 248 men, and 239
women) and 12 technical replicates for quality control.
Four hundred seventy participants (50.4% AAs, 50.6%
men, and 49.8% above poverty status) passed quality
control (Table 1). The age range of the total study partici-
pants was 30.2–65.2 years with mean age of 48.7 (standard
deviation (sd) = 8.7). The mean (sd) age was 48.4 (8.8) in

Table 1 Demographic characteristics of the HANDLS study
participants with complete DNA methylation data

Characteristics AAs, N = 237 Whites, N = 233 P

Age, years (sd) 48.4 (8.8) 49.0 (8.7) 0.48

Sex Men 120 118 1.0

Women 117 115

Poverty status Above 120 114 0.78

AAs African Americans, sd standard deviation
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AAs and 49.0 (8.7) in whites (p value = 0.48) indicating no
difference in age distributions. Because the EPIC array is a
new technology, we compared the performance of differ-
ent methylation data normalization and preprocessing ap-
proaches using methylation levels of technical replicates
to identify an optimal method for data preprocessing.
After excluding probes with detection p value ≥ 0.01,
cross-hybridizing probes, and probes containing single nu-
cleotide polymorphisms (minor allele frequency cutoff
= 0.05) available in the DMRcate package [37], we calcu-
lated correlation and probe variance of methylation beta
values between technical replicates. Additional file 1: Fig-
ure S1a and S1b show the relative performance (correl-
ation and probe variance) of the different methylation
data normalization and preprocessing methods: Illumina
Genome Studio (Illumina), normal-exponential out-of-
band (NOOB), stratified quantile normalization (quantile),
subset-quantile within array normalization (SWAN), and
no normalization (raw). We found that the NOOB
method yielded a higher correlation between technical
replicates compared to the other methods.

Identification of age-associated differentially methylated
CpG positions in African Americans and whites
We hypothesized that there would be differences in gen-
ome-wide age-associated DNA methylation changes
between AAs and whites. To identify age-associated

differentially methylated CpG positions (aDMPs), we per-
formed epigenome-wide association analysis of chrono-
logical age. We examined the association of baseline
chronological age with each of the 765,808 CpG positions
that passed quality control separately for AAs (N = 237)
and whites (N = 233). Linear regression models were ad-
justed for sex, race, poverty status, estimated white blood
cell compositions (granulocytes, monocytes, natural killer
cells, B cells, CD4+, and CD8+ T cells), and the first two
principal components to account for population stratifica-
tion. Using a stringent Bonferroni corrected significance
threshold and excluding CpGs with effect size between −
0.01 and 0.01, we found significant associations with
chronological age for 4930 aDMPs in AAs and 469 aDMPs
in whites with effect sizes ranging from − 0.039 to 0.051 in
AAs and − 0.050 to 0.047 in whites. Figure 1a and b show
the distributions of p values of the association between indi-
vidual CpG positions and chronological age in AAs and
whites, respectively. Of these significantly associated
aDMPs, 4343 in AAs and 166 in whites gained methyla-
tion (hypermethylated) with age (Fig. 1c, d). Although
there was substantial overlap of significantly associated
aDMPs between AAs and whites, there were more wide-
spread age-associated changes (hyper- and hypomethy-
lated) in AAs compared to whites (Fig. 2a, b and c).
Thus far, studies of DNA methylation with chrono-

logical age have identified 5321 unique aDMPs in blood-

Fig. 1 Distribution of age-associated differentially methylated CpG positions (aDMPs) with their effect size in beta values and significance p value
in the African American (AA) and white participants of the HANDLS study: a Manhattan plot in AAs, b Manhattan plot in whites, c volcano plot in
AAs, and d volcano plot in whites
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derived DNA using the previous 27K and 450K methyla-
tion BeadChips [10, 12–14, 17, 19, 21, 22, 25, 27, 28].
We replicated a number of these previously reported
aDMPs in either AAs (1204 aDMPs) or whites (220
aDMPs) with p value < 6.53E−08. The list of previously
reported aDMPs replicated in our study is shown in
Additional file 2: Table S1. Of these previously reported
aDMPs, 174 CpG positions including those located in
ELOVL2 replicated in both AAs and whites in the
HANDLS study. Previous studies of DNAm and age
were conducted in predominantly European ancestry
samples and were limited by the number of genome-
wide CpG coverage. Using the EPIC array and a bal-
anced sample size of AAs and whites, we found novel
aDMPs in both AAs and whites. Of the 4930 aDMPs
identified in AAs, 3726 (75.6%) were novel compared
with 249 (53.1%) of the 469 aDMPs identified in whites.
Table 2 shows the top 50 aDMPs that have not been
previously reported. The beta coefficients of these top-
ranking aDMPs ranged from − 0.030 to 0.041 in AAs
and from − 0.034 to 0.044 in whites. Additional file 3:
Figure S2a and b show scatter plots of top ten aDMPs
and their corresponding Pearsons’s correlation coeffi-
cient with age in AAs and whites, respectively. Some of
the top novel age-methylation associations identified in
both AAs and whites include CpG positions located in
FGF14, FHL2, C1QC, CELF6, NEFM, and LHFPL4. The
top unique age-methylation association in AAs were
C21orf91, JAZF1, NEURL1, and ADGRB2, and in whites
were SLC25A21, CPED1, NRXN3, and OTUD7A (Table 2).

Genomic feature enrichment and functional annotations
We then characterized each of the significant aDMPs for
enrichment across various regulatory regions of the
genome as determined by the ENCODE and FANTOM
projects using Fisher’s exact test. Enrichment analysis
was performed separately for aDMPs that showed gain
(hypermethylated) and loss of methylation (hypomethy-
lated) with chronological age. As expected, aDMPs that
gained methylation with age were enriched at CpG
islands (Additional file 4: Table S2). Hypermethylated
aDMPs were also enriched at 5′ UTR, DNase I hypersensi-
tivity sites (DHS), first exon regions, and reprogramming-

specific genomic regions (Additional file 4: Table S2).
Hypomethylated aDMPs were enriched at Open Sea
regions, transcription factor binding sites, CpG island shore
regions, and open chromatin regions (Additional file 5:
Table S3).
To further understand the functional significance of

aDMPs and to identify canonical pathways overrepre-
sented among aDMPs, we performed gene ontology
(GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis while accounting for
the differences in the number of CpG positions present
in each gene in the MethylationEPIC BeadChip. aDMPs
in both AAs and whites were enriched for gene ontology
terms related to system and organismal development
and morphogenesis. These top terms include central
nervous system development, multicellular organism
development, and cell-cell signaling (Additional file 6:
Table S4 and Additional file 7: Table S5). These results
suggest that aging may affect the methylation status of
genes and pathways that are important for growth and
development in the nervous system and other organ
systems.

Age-related disease gene enrichment analysis
To characterize the significance of hyper- and hypo-
methylated aDMPs in age-related diseases and pheno-
types, we performed enrichment analysis using genes
identified by genome-wide association studies (GWAS).
We focused on GWAS-identified genes implicated in
age-related diseases and quantitative traits and longev-
ity and survival (overall and disease-specific) [38]. After
accounting for multiple testing, we found that genes
containing hypermethylated aDMPs were enriched for
genes linked with visceral fat distribution, lung func-
tion, cognitive ability, blood pressure, and IgG glycosyl-
ation (Additional file 8: Table S6). Hypomethylated
aDMPs were enriched for iron homeostasis and breast
cancer (Additional file 9: Table S7).

Assessment of DNA methylation age using the epigenetic
clock
We calculated DNA methylation age (DNAm age) for
each of the participants using the Horvath [24] and

Fig. 2 Venn diagrams of significantly age-associated differentially methylated CpG positions (aDMPs) in African Americans (AAs) and whites: a
overlap of aDMPs between AAs and whites, b overlap of aDMPs that were hypermethylated with age, and c overlap of aDMPs that were
hypomethylated with age
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Hannum algorithms [25] implemented in the online
DNAm age calculator [24]. DNAm age predicted by
both the Horvath and the Hannum clock was strongly
correlated with chronological age (Pearson’s r = 0.85)
(Fig. 3). In subgroup correlation analysis stratified by sex,
race, and poverty status, similar strong correlations be-
tween chronological age and DNAm age were observed
(Pearson’s r range 0.83–0.89) indicating that the epigenetic
clocks are robust estimator of chronological age and that
the prediction algorithms performed well in our cohort.

Determinants of epigenetic age acceleration
Epigenetic age acceleration, generally defined as the dif-
ference between DNAm age and chronological age, has
been suggested as a promising marker of biological age
[31]. We hypothesized that there would be population
differences in biological age such that men compared to
women, AAs compared to whites, and individuals below
poverty status compared to those above would be fast
agers. To test our hypothesis, we first computed a
universal measure of age acceleration (AgeAccel) as the
residuals of regressing DNAm age predicted by the Hor-
vath method, which is independent of cell and tissue
types, over chronological age. The absolute mean (±
standard error) AgeAccel (in years) was − 1.03 (± 0.47)
in AA women, + 1.01 (± 0.40) in AA men, − 0.20 (±
0.19) in white women, and + 0.19 (± 0.43) in white men.
Positive residual values of AgeAccel indicate faster aging
based on chronological age, and negative residual values
indicate slower aging. Two additional measures of epi-
genetic age acceleration were derived: intrinsic epigen-
etic age acceleration (IEAA) and extrinsic epigenetic

age acceleration (EEAA). IEAA is meant to capture cell-
intrinsic properties of the aging process, which is inde-
pendent of estimated white blood cell type proportions,
while the EEAA measure is enhanced by white blood cell
estimates and may further capture age of the immune sys-
tem cells (immunosenescence) [31]. We found that men
compared to women were fast agers in AgeAccel and
EEAA (Fig. 4a). No differences between AAs and whites
were observed in AgeAccel and IEAA measures, but sig-
nificant differences in EEAA were observed by race (p =
4.8E−17) (Fig. 4b). Poverty status was not associated with
any of the epigenetic age acceleration measures (Fig. 4c).
We used linear regression models to assess two-way

interactions between sex, race, and poverty status on the
three epigenetic age acceleration measures. A nominally
significant p value between sex and race for AgeAccel
(pinteraction-term = 0.049) was observed but not for IEAA
(pinteraction-term = 0.058) or EEAA (pinteraction-term = 0.6).
Specifically, AA men by + 2.04 years (p = 6.07E−04) and
white men by + 1.24 years (p = 0.038) were fast agers
using AgeAccel compared to AA women (Table 3).
However, if we were to account for multiple testing
(nine tests: three age acceleration measures and three
two-way interaction terms), the results become non-sig-
nificant. Figure 5a–c shows interaction plots of the
association between sex, race, and AgeAccel, IEEA, and
EEAA and highlights the AgeAccel differences between
AA women, AA men, and white men.

Discussion
To the best of our knowledge, this is the first study to
apply the MethylationEPIC BeadChip with its enhanced

Fig. 3 Correlation between DNA methylation-predicted age based on the Horvath and the Hannum clocks, and chronological age in the
HANDLS study. Abbreviation: AAs: African Americans
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and expanded genome-wide CpG coverage to assess the
genome-wide distribution of age-associated DNA methy-
lation changes and to perform comparative analysis of
aDMPs among socioeconomically diverse urban commu-
nity-dwelling AAs and whites. We replicated several
aDMPs previously discovered in blood DNA using the
27K and 450K arrays. However, we identified novel
CpGs (75.6% of significant aDMPs in AAs and 53.1% of
significant aDMPs in whites) with small effect sizes that
were either hyper- or hypomethylated with age using
stringent significance threshold criteria. Interestingly, we
found that compared to whites, AAs display more

widespread DNA methylation changes. Our results also
indicate that, compared to AA women, white men and
AA men are found to be fast agers as indicated by
AgeAccel and IEAA measures. On the other hand, AA
women have a slower age of the immune system cells as
indicated by EEAA. Contrary to our hypothesis, there is
no association between poverty status and any of the
epigenetic age acceleration measures.
Age and the social determinants of health (sociodemo-

graphic characteristics, lifestyle, and environmental fac-
tors) are important risk factors of most chronic diseases.
In many ways, these risk factors disproportionately affect

Fig. 4 Associations between epigenetic age acceleration measures and sex, race, and poverty status. a Sex, b race, and c poverty status.
Abbreviations: AAs: African Americans; AgeAccel: universal age acceleration measures; IEAA: intrinsic epigenetic age acceleration; and EEAA:
extrinsic epigenetic age acceleration

Table 3 Association between sex, race, poverty status, and measures of epigenetic age acceleration

Parameters N AgeAccel IEAA EEAA

Beta SE P Beta SE P Beta SE P

Race, sex

African American, women 117 Ref. Ref. Ref.

African American, men 120 2.04 0.59 6.07E−04 1.47 0.58 0.011 2.39 0.74 1.25E−03

White, women 115 0.84 0.60 0.16 0.76 0.58 0.2 4.72 0.75 5.48E−10

White, men 118 1.24 0.59 0.038 0.69 0.58 0.2 6.64 0.74 7.48E−18

P interaction 0.049 0.058 0.6

Sex, poverty status

Women, above poverty 117 Ref. Ref. Ref.

Women, below poverty 115 − 0.52 0.60 0.4 − 0.51 0.58 0.4 − 0.42 0.74 0.6

Men, above poverty 117 1.21 0.60 0.04 0.76 0.58 0.2 1.69 0.74 0.02

Men, below poverty 121 0.73 0.59 0.2 0.14 0.58 0.8 2.20 0.73 0.003

P interaction 0.97 0.9 0.4

Race, poverty status

African American, above 120 Ref. Ref. Ref.

African American, below 117 − 0.81 0.59 0.2 − 0.90 0.58 0.1 − 0.42 0.74 0.6

White, above 114 − 0.31 0.60 0.6 − 0.36 0.58 0.5 4.00 0.74 1.11E−07

White, below 119 − 0.50 0.59 0.4 − 0.58 0.57 0.3 4.54 0.73 1.34E−09

P interaction 0.5 0.4 0.4

AgeAccel universal epigenetic age acceleration, EEAA extrinsic epigenetic age acceleration, IEAA intrinsic epigenetic age acceleration, SE standard error
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racial minorities, socioeconomically disadvantaged, and
marginalized population groups. There is ample evidence
in the literature that supports the notion of premature
aging or “weathering” among AAs in particular [39]. How
these social determinants of health bring about the mo-
lecular and cellular changes that lead to chronic disease
and aging-related health disparities is poorly understood.
DNAm is one of the epigenetic modifications that plays
an important role in the regulation of various cellular pro-
cesses including developmental processes and imprinting,
gene expression, and maintenance of genome stability [4].
DNAm, which is a dynamic process that is continuously
added and removed from the genome during the lifespan
of an individual, is affected by both environmental expo-
sures and external stresses. Therefore, it could play a role
in age-related health disparities. Aging is generally charac-
terized by DNAm changes specifically a gain of methyla-
tion in CpG islands, bivalent chromatin domains [21], and
polycomb-group target genes [22], and loss of methylation
predominantly in non-CpG island regions and in the
active chromatin mark H3K4me1 [11]. In regard to CpGs
used in the epigenetic clocks, there is evidence in AAs in-
dicating that a third of the CpGs in the Horvath’s epigen-
etic clock respond to glucocorticoid receptor activation
and influence the gene expression of stress-responsive
genes which are enriched for association with aging-re-
lated diseases [40]. Further, some of the CpGs found in
the epigenetic clock of mice have been shown to be
involved in the development, differentiation, and tissue

morphogenesis consistent with a program-like behavior
[41]. Although the exact mechanisms that drive changes
in DNAm during aging are not fully understood, by the
virtue of its link with age-related diseases and risk factors,
DNAm is a promising molecular factor that could link
health disparities and its risk factors. Therefore, under-
standing age-related DNAm changes and identification of
differential association among racial groups could shed
light on aging and aging-related health disparities.
Our findings of aDMPs and their enrichment for gen-

omic regulatory elements, developmental, and morpho-
genesis processes are broadly consistent with previously
published epigenetic association studies of chronological
age showing that age is associated with extensive DNA
methylation changes (both hyper- and hypomethylation)
that overlapped with functional genomic regulatory re-
gions [11, 21, 22]. We observed that genes containing
aDMPs overlap with genes implicated in several age-
related diseases and traits in genome-wide studies [38].
This overlap between genes containing aDMPs and age-
related disease genes and traits implies there are common
factors and underlying mechanisms that generally control
changes in DNAm with age and the development of
age-related diseases. Understanding these factors and the
underlying molecular mechanisms will have implications
in the effort to narrow down the age-related disease
disparity gap between population groups. We replicated
several aDMPs including those located in ELOVL2, PENK,
KLF14, and SLC12A5. Interestingly, methylation changes

Fig. 5 Interaction plots of the association between sex, race, and three measures of epigenetic age acceleration. a AgeAccel, b IEAA, and c EEAA.
Abbreviations: AAs: African Americans; AgeAccel: universal age acceleration measures; IEAA: intrinsic epigenetic age acceleration; and EEAA:
extrinsic epigenetic age acceleration
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in ELOVL2 and PENK are associated with age in various
tissues in addition to DNA derived from blood [25, 27]
suggesting that some age-associated methylation changes
are tissue independent and that blood DNA could be used
to further investigate the underlying biological mecha-
nisms and downstream functional alterations in large
population-based studies where blood is the most feasible
source of DNA for methylation profiling. ELOVL2 has
been linked to changes in human plasma metabolite levels
such as glycerophospholipids [42], and photoaging
response in epidermis [43]. It remains to be seen how
age-associated DNAm changes in ELOVL2 and the other
consistently replicated genes mechanistically contribute to
aging-related disease development and accelerated bio-
logical aging phenotypes. The epigenome-wide association
analysis results of methylation M values are reported here
(Additional file 11: Figure S4).
The aDMPs we identified, similar to previous studies,

have small beta coefficients, consistent with previous
observations with other traits and exposures. What is the
biological meaning of these large numbers of aDMPs with
small effect sizes? First, one of the functions of DNA
methylation is regulation and fine tuning of transcription
by transducing external and internal cues, and hence, large
effects may not be observed. Second, age-related common
diseases are multifactorial in origin and include genetic and
epigenetics factors which act in concert with each other or
other risk factors. Therefore, it is possible that there could
be interactions between significantly associated aDMPs and
acting in synergy (between themselves or with other
epigenetic modifications such as histone acetylation and
methylation); they could bring about changes in transcrip-
tion thereby contributing multiplicatively to age-related
disease risk. Third, accumulating evidence indicates that
these age-related chronic diseases have been shown to be
associated with a large number of genetic sites mostly with
small effects. Epigenetics and epigenetic inheritance have
been put forward as a potential explanation for missing her-
itability of complex diseases, i.e., inherited risk factors of
common complex diseases and traits that are yet to be
identified [44]. Therefore, CpGs with small effect sizes
would be consistent with the observations that common
complex age-related diseases are associated with a large
number of sites with small effect sizes that could have
cumulative effect on disease risk. Finally, analogous to the
variety of different molecular and cellular changes such as
mutations that accrue over the life course of an individual,
it is possible that not all the DNA methylation changes
linked with age may have discernable biological conse-
quences, and they might be “passengers” rather than key
“drivers” DNA methylation changes that could lead to the
expression a certain aging-related trait or disorder [45].
While these explanations require empirical data, it is im-
portant to note that large numbers of CpGs with small

effect sizes linked with age, several environmental expo-
sures, and other traits have been reported in diverse study
designs and settings and were consistently replicated sug-
gesting that these seemingly small effect size associations
are robust and could have true biological significances [46].
Our findings that men are generally fast agers as indi-

cated by AgeAccel and EEAA measures are consistent
with previous studies of age acceleration studies using
DNA extracted from blood, brain, and saliva [34, 35, 47].
This biological age acceleration difference between men
and women has been postulated to explain the sex mor-
bidity-mortality paradox. Several factors have been put
forward to explain this observed difference including dif-
ferences in health seeking behavior and lifestyle factors
[34]. The slower immune system cell age seen in AAs
compared to whites is consistent with studies that re-
ported longer leukocyte telomere length in AAs com-
pared to whites [48, 49].
It should be noted that not all aging-related diseases

are associated with the premature aging phenotype. For
example, cancer tissues have been shown to display in-
consistent patterns of aging rate which is dependent on
the site of cancer origin, cancer stage/histology, and type
and the number of driver somatic mutations. Compared
to adjacent normal tissue, slower epigenetic age was ob-
served in basal-like breast cancer and glioblastoma mul-
tiforme with H3F3A mutations [24]. On the one hand,
faster epigenetic age was observed in tumors carrying a
smaller number of somatic mutations, tumors with TP53
mutations, acute myeloid leukemia, hormone receptor-
positive (luminal type) breast cancer, and BRAF-positive
colorectal cancer [24, 50]. In addition, faster epigenetic
age in various cancer tissue samples (lung, skin, breast,
and kidney), compared to matched normal tissue sam-
ples, has also been reported [25].
The observation of a faster epigenetic aging in AA men

is consistent with the epidemiologic literature reporting
higher chronic disease risk earlier in the life course of AA
men and premature mortality rates [1, 2, 51]. This finding
implies that the biological aging rate of AA men ticks
faster before they succumb to age-related diseases. What
is driving this observed age acceleration in AA men?
Stressors (psychosocial and socioeconomic stress and their
correlates) could be one potential explanation. Although
we did not observe in our study differential association be-
tween poverty status and any of the epigenetic age acceler-
ation measures, cumulative lifetime stress has been shown
to cause epigenetic age acceleration in AAs possibly
through glucocorticoid-induced epigenetic changes [40].
The implication of our study is that some of aDMPs and

the epigenetic clock could be utilized for the identification
of at-risk groups or to determine the efficacy of clinical
and public health interventions to extend lifespan and
reverse the accelerated aging process. Recent studies
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conducted in animal models provide a potential usefulness
of these age-associated DNAm changes in identifying
interventions to extend longevity. Using mouse models
and non-human primate studies, Maegawa et al. showed
that age-associated DNAm changes are amenable to lon-
gevity intervention. Specifically, they found that mice and
rhesus monkeys exposed to caloric restriction showed
attenuation of age-associated methylation changes com-
pared to ad libitum-fed controls such that their blood
DNAm age appeared younger than their chronologic age,
and these effects were detectable across different tissues
[52]. Another study by Petkovich et al. conducted in
mouse models showed that the epigenetic clock accurately
estimates biological age of various mouse models, and it
could be used to evaluate the longevity effects of caloric
restriction, pharmacological interventions, and genetic
intervention of longevity such as growth hormone recep-
tor knockout [41]. These results suggest that anti-aging
interventions can affect the epigenetic clock in mouse and
in non-human primates, and future research lies in deter-
mining whether these findings translate to humans.
Our study has a number of strengths: (1) large sample

size, (2) use of MethylationEPIC array that doubled the
number of genome-wide CpG sites to interrogate and
improve one of the limitations of previous epigenome-
wide association studies of age, and (3) study partici-
pants with diverse characteristics and balanced sample
size. The limitations of our study include the use of
DNA derived from mixed peripheral blood cells, which
could confound the observed association between CpG
positions and chronological age. To address the issue of
confounding due to cellular heterogeneity, we included
white blood cell estimates based on DNAm in our re-
gression models. While studying DNAm changes in
DNA derived from sorted white blood cells is ideal, it is
not scalable in large population-based studies like ours.
Other limitations include the use of cross-sectional data
and lack of validation sample to confirm our race-spe-
cific aDMPs. Because of the cross-sectional nature of
our study, it is impossible in this design to determine
whether all the reported aDMPs in our study were dir-
ectly driven by age. In addition, it must be considered
that it is possible that the high number of significant sites
could also be influenced by population sub-stratification
and other unmeasured covariates. Functional studies in
experimental model systems of aging and age-related
diseases could provide further biological insight and help
interpret these results.

Conclusions
In summary, we found that age differences are associ-
ated with DNAm changes at several genes enriched for
predicted functional genomic regulatory regions and that
AAs compared to whites have more aDMPs, majority of

which are novel CpG sites. The identification of novel
aDMPs has the potential to expand our knowledge of
the effect of age on DNAm and its differential effect
among racial groups. Our study also shows that there is
an interaction between sex and race in influencing epigen-
etic age acceleration among population groups. These
age-associated genes could provide insight in the epigen-
etic bases of aging and age-related health disparities and
could explain the observed differences in disease incidence
and lifespan between AAs and whites. Future larger stud-
ies with longitudinal data are required to replicate our
findings. The results generated in the present study also
provide a valuable resource to the study and prioritization
of genes and gene networks that might be implicated in
aging and age-related diseases, and to advance the nascent
field of the epigenetics of health disparities.

Methods
Study aim, design, and population
Participants were drawn from the HANDLS study
(https://handls.nih.gov/) [36], a large population-based
prospective longitudinal study of middle-aged AA and
white men and women above and below poverty status
being conducted in Baltimore, Maryland. HANDLS was
designed to explore the interplay among sex, race, pov-
erty status, and biological and environmental factors in
the development of aging-related diseases and health
disparities in community-dwelling adults vulnerable for
health disparities. Participants eligible for this study had
DNA samples isolated from blood at their enrollment.
We randomly sampled 508 participants using a factorial
design across sex, race, and poverty status, oversampling
AA men below poverty status, to test for interactions
among these sociodemographic factors. From these sam-
ples, 487 had DNA methylation measures. The age range
at baseline was 30.2 to 65.2 years [mean age (standard
deviation) = 47.8 (8.7)]. Poverty status in the HANDLS
study was defined as a household income above or below
125% of the 2004 US Federal Poverty Guidelines, and
race was self-identified. We used blood DNA and socio-
demographic data collected during the enrollment period,
from 2004 to 2009. DNA was extracted from peripheral
blood mononuclear cells using standard methods.

Bisulfite treatment and DNA methylation quantification
using the EPIC BeadChip
Two hundred fifty nanograms of DNA was treated with
sodium bisulfite using Zymo EZ-96 DNA Methylation
kit as per the manufacturer’s protocol (Zymo Research,
Orange, CA, USA). Following bisulfite treatment, we
then measured genome-wide DNAm using the latest
Illumina Infinium MethylationEPIC BeadChip, which
contains 866,836 CpG sites, of these, 142,262 (16.4%)
were assayed in type I probes and the rest in type II
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probes. This new EPIC array has similar Infinium assay
design chemistry as the previous 450K array, except that
it has twice as much coverage of CpG sites that are par-
ticularly enriched for promoter and enhancer regulatory
regions [53], providing increased power and genome
coverage to identify novel loci relevant for aging and
health disparities. The EPIC array contains 92% and 94%
of CpG sites found in the 27K and 450K arrays, respect-
ively. We included 12 technical replicates (two per plate)
for quality control.

Quality control and preprocessing of the DNA
methylation data
We performed extensive quality control of the DNAm
data at sample and probe levels to ensure high-quality
methylation data. Given the EPIC array is a new technol-
ogy, we assessed the performance of different data
normalization and preprocessing algorithms in reducing
technical variations using DNA methylation measured in
technical replicates to identify a suitable method. The
methods we compared were Illumina Genome Studio,
normal-exponential out-of-band (NOOB) [54], stratified
quantile normalization (quantile) [55], and subset-quan-
tile within array normalization (SWAN) [56]. At the
sample level, we excluded 17 samples which were multi-
dimensional scaling outliers, low-quality methylation
values as indicated by a mean detection p value ≥ 0.01
and have evidence of sex mismatch between self-
reported sex and methylation predicted sex. At the probe
level, we excluded low-quality probes (mean detection
p value ≥ 0.01), probes with overlapping single-nucleotide
polymorphisms (SNPs) (minor allele frequency cutoff =
0.05), cross-hybridizing probes [37], and probes mapping
to the sex chromosomes leaving 765,808 CpG positions
for the current analysis.
To identify an optimal method for normalization, we

compared the performance of the above methods using
correlations and probe variances of methylation beta
values of technical replicates. We found the NOOB
method yielded the lowest variance and highest correl-
ation between technical replicates. Therefore, this method
was used to normalize the EPIC methylation data in our
cohort. Regression on correlated probes (RCP) method
was used to correct for type I and type II probe design
biases [57]. We performed principal component analysis
to identify the presence of experimental batch effect and
beadchip position. We then applied the ComBat method
to adjust for batch effect [58]. We estimated white blood
cell proportions based on DNAm data using the House-
man and the Horvath methods [24, 59]. The Houseman
method estimated the proportion of CD8+ and CD4+ T
lymphocytes, natural killer cells, B lymphocytes, mono-
cytes, and granulocytes. The Horvath method was used to
estimate the percentage of exhausted CD8+ T cells

(CD8+CD28−CD45RA−), plasmablasts, and the number of
naïve CD8+ T cells (CD8+CD45RA+CCR7+).

Principal component analysis and control for population
stratification
To correct for population stratification, we calculated
methylation-based principal components. Barfield et al.
showed that principal components calculated based on
CpG positions that overlap with SNPs serve as proxy
and provide powerful and computationally efficient
approach to account for population stratification in the
absence of genetic data [60]. We used the methylation
level of 7905 CpG positions that passed quality control
and overlapped with SNPs to calculate principal com-
ponents. The first two principal components were then
in the regression models to control for population
stratification. Once these CpG positions were used for
the calculation of principal components, they were
dropped before downstream analysis.

DNA methylation age prediction and epigenetic age
acceleration measures
DNAm age was calculated using the Horvath and the
Hannum methods based on the methylation levels of
353 and 71 CpG sites, respectively, using the epigen-
etic clock algorithm. The algorithms were trained and
validated on participants from varied genetic ances-
tries and using DNA derived from various tissues
including blood DNA. A detailed description of esti-
mation of DNAm age and epigenetic age acceleration
can be found here: (https://labs.genetics.ucla.edu/hor-
vath/dnamage/). Briefly, the Horvath method predicts
age irrespective of the tissue or cell source of DNA,
and hence, it is tissue and cell type agnostic. On the
other hand, the Hannum method was developed
based on blood DNAm. Universal epigenetic age ac-
celeration (AgeAccel) is defined as the residuals after
regressing DNAm age predicted by the Horvath algo-
rithm over chronological age. A positive residual
value suggests a faster aging, and a negative value
suggests a slower aging. In addition to the AgeAccel
measure, we used two additional epigenetic age accel-
eration measures that reflect intrinsic and extrinsic
epigenetic age acceleration—IEAA and EEAA, respect-
ively. IEAA is thought to measure a cell’s epigenetic
age acceleration, independent of estimated white
blood cell type proportions. It is defined as the resid-
uals after regressing DNAm age (predicted by the
Horvath over chronological age and white blood cell
proportions (naive CD8+ T cells, exhausted CD8+ T
cells, plasmablasts, CD4+ T cells, natural killer cells,
monocytes, and granulocytes). EEAA, which is based
on the DNAm age (predicted by the Hannum
algorithm), is thought to measure epigenetic age
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acceleration in addition to changes in white blood cell
proportions, and it might be indicative of immune
system cell aging (immunosenescence) [31]. Chen et
al. showed that EEAA strongly predicts mortality bet-
ter than the other measures of epigenetic age acceler-
ation [31].

Epigenome-wide association study of age
To identify CpG positions associated with chronological
age in AAs and whites, we fitted linear regression
models adjusted for sex, race, poverty status, white blood
cell compositions (granulocytes, monocytes, natural
killer cells, B lymphocytes, CD4+, and CD8+ T lympho-
cytes), and principal components to account for popula-
tion stratification. The resulting epigenome-wide results
were adjusted using estimated empirical null distribution
method, a recently described method for controlling
genomic inflation and bias in epigenome-wide associ-
ation studies [61].
The quantile-quantile plots, histogram and density

plots of p values, and corresponding inflation measures
before (AAinflation = 1.040 and whitesinflation = 1.263) and
after (AAinflation = 0.998 and whitesinflation = 0.807) cor-
rection for inflation in both AAs and whites are shown
in Additional file 10: Figure S3. In order to confirm the
approximately 5000 differences found after correcting
for genomic inflation were valid, we performed a sensi-
tivity analyses by testing associations based on winsor-
ized DNA methylation data. To increase the power
estimation, we performed the winsorization for the ex-
treme values over 3*IQR.
The inflation correction was performed using an R/

Bioconductor package BACON [61], which constructs
an empirical null distribution using a Gibbs Sampling
algorithm by fitting a three-component normal mix-
ture on z-scores. Respective genomic inflation factor
(lambda) values before and after the correction were pro-
vided in the Additional file 12: Table S8. We used the
DNAm beta (β) and M values of 765,808 CpG positions
that passed quality control in the regression analysis. The
DNAm β values were calculated as the ratio of the methyl-
ated (M) and unmethylated (U) fluorescent intensity sig-
nals, i.e., β = M/[M + U + 100], where 0 indicates
unmethylated and 1 indicates fully methylated status. The
methylation M value was defined as M = logit(β) and was
shown to approximate a normal distribution and provide
good model fit [62]. A Bonferroni corrected p value of
6.53E–08 was used as a significance threshold. We ex-
cluded CpG with effect size between − 0.01 and 0.01. The
summary statistics are available at the HANDLS study
website (https://handls.nih.gov/). The lambda estimates
for M values after the inflation correction for AAs ranged
from 0.99 to 1.39, whereas for whites, it ranged from 0.80
to 1.21 (Additional file 12: Table S8).

Genomic feature enrichment and functional annotations
Genomic regulatory feature enrichment was performed
on significant aDMPs using one-sided Fisher’s exact test.
The genomic regulatory regions compared for enrichment
analysis included CpG islands, shelves, shores, DNase I
hypersensitivity sites, open chromatin states, exon bound-
aries, transcription factor binding sites, and Phantom en-
hancer regions. Functional characterization through gene
ontology and canonical pathway analysis was performed
by accounting for the differing number of methylation
probes found in each gene in the EPIC array given the evi-
dence that a severe bias exists when performing gene set
analysis for genome-wide methylation data that occurs
due to the differing numbers of CpG sites profiled for
each gene [63].

Age-related disease gene enrichment analysis
To assess enrichment of genes containing aDMPs for
various age-related diseases and quantitative phenotypes,
we leveraged the genome-wide association study (GWAS)
summary association statistics catalog of various age-re-
lated diseases and traits available at the National Human
Genome Research Institute (NHGRI) and the European
Molecular Biology Laboratory (EMBL) [38]. Using the
summary statistics catalog (accessed on July 17, 2018,
https://www.ebi.ac.uk/gwas/) that included gene names,
ontology annotations, and diseases/traits, we investigated
whether genes containing aDMPs were overrepresented in
GWAS-identified age-related diseases genes. While age is
associated with many diseases and their risk factors and
quantitative traits, the enrichment analysis was focused on
GWAS-identified genes implicated in age-related diseases
and traits, longevity, and survival (overall and disease-spe-
cific). Enrichment analysis was performed separately for
hyper- and hypomethylated aDMPs using one-sided Fish-
er’s exact test.

Association between epigenetic age acceleration and
demographic characteristics
Linear regression models adjusted for sex, race, and pov-
erty status were used to identify associations between the
epigenetic age acceleration measures (AgeAccel, IEAA,
and EEAA) and these factors. We also assessed all two-
way interactions among sex, race, and poverty status on
the epigenetic age acceleration measures. Data quality
control, preprocessing, and data analyses were conducted
using the R/Bioconductor packages minfi, enmix, dmrcate,
sva, and missmethyl (https://www.bioconductor.org/).

Additional files

Additional file 1: Figure S1. Comparison of the performances of
different DNA methylation data normalization and preprocessing
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methods: (a) correlation between technical replicates; (b) probe variance
between technical replicates. (PPTX 100 kb)

Additional file 2: Table S1. List of previously discovered age-associated
differentially methylated CpG positions (aDMPs) replicated in the HANDLS
study. (XLSX 135 kb)

Additional file 3: Figure S2. Scatter plots and Pearson’s correlation
coefficients of methylation M values of top ten age-associated differentially
methylated CpG positions (aDMPs) and chronological age in (a) African
Americans and (b) whites. (PPTX 121 kb)

Additional file 4: Table S2. Genomic feature enrichment of significantly
age-associated differentially methylated CpG positions
(aDMPs)—hypermethylated. (XLSX 10 kb)

Additional file 5: Table S3. Genomic feature enrichment of significantly
age-associated differentially methylated CpG positions
(aDMPs)—hypomethylated. (XLSX 10 kb)

Additional file 6: Table S4. Gene-set enrichment analysis of age-
associated differentially methylated CpG positions (aDMPs). (XLSX 11 kb)

Additional file 7: Table S5. KEGG pathway analysis of age-associated
differentially methylated CpG positions (aDMPs). (XLSX 11 kb)

Additional file 8: Table S6. Top enrichment results of age-associated
differentially hypermethylated CpG positions (aDMPs) for age-related
diseases and quantitative traits. (XLSX 12 kb)

Additional file 9: Table S7. Top enrichment results of age-associated
differentially hypomethylated CpG positions (aDMPs) for age-related
diseases and quantitative traits. (XLSX 8 kb)

Additional file 10: Figure S3. Quantile-quantile plots of expected and
observed p values of the association between DNA methylation and
chronological age in African Americans (green) and whites (magenta) A)
uncorrected and B) corrected using empirical null distribution. Genomic
inflation measures are shown in parentheses. Histogram of test statistic
expected (green) and observed (red) p values of the association between
DNA methylation and chronological age in African Americans and whites
C) uncorrected and D) corrected using empirical null distribution. Density
plot of expected (black) and observed (red) p values of the association
between DNA methylation and chronological age in African Americans
and whites E) uncorrected and F) corrected using empirical null
distribution. (PPTX 234 kb)

Additional file 11: Figure S4. Volcano plots showing the distribution of
age-associated differentially methylated CpG positions (aDMPs) with their
effect size in M values and significance p value in the a) African American
(AA) and b) white participants of the HANDLS study. (PPTX 197 kb)

Additional file 12: Table S8. List of genomic inflation factor lambda values
calculated for African American (AA) and white population. (XLSX 10 kb)
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