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Abstract

Background: Despite improvements in cancer management, most pancreatic cancers are still diagnosed at an
advanced stage. We have recently identified promoter DNA methylation of the genes ADAMTS1 and BNC1 as
potential blood biomarkers of pancreas cancer. In this study, we validate this biomarker panel in peripheral cell-free
tumor DNA of patients with pancreatic cancer.

Results: Sensitivity and specificity for each gene are as follows: ADAMTS1 87.2% and 95.8% (AUC = 0.91; 95% CI 0.
71–0.86) and BNC1 64.1% and 93.7% (AUC = 0.79; 95% CI 0.63–0.78). When using methylation of either gene as a
combination panel, sensitivity increases to 97.3% and specificity to 91.6% (AUC = 0.95; 95% CI 0.77–0.90). Adding
pre-operative CA 19-9 values to the combined two-gene methylation panel did not improve sensitivity. Methylation
of ADAMTS1 was found to be positive in 87.5% (7/8) of stage I, 77.8% (7/9) of stage IIA, and 90% (18/20) of stage IIB
disease. Similarly, BNC1 was positive in 62.5% (5/8) of stage I patients, 55.6% (5/9) of stage IIA, and 65% (13/20) of
patients with stage IIB disease. The two-gene panel (ADAMTS1 and/or BNC1) was positive in 100% (8/8) of stage I,
88.9% (8/9) of stage IIA, and 100% (20/20) of stage IIB disease. The sensitivity and specificity of the two-gene panel
for localized pancreatic cancer (stages I and II), where the cancer is eligible for surgical resection with curative
potential, was 94.8% and 91.6% respectively. Additionally, the two-gene panel exhibited an AUC of 0.95 (95%
CI 0.90–0.98) compared to 57.1% for CA 19-9 alone.

Conclusion: The methylation status of ADAMTS1 and BNC1 in cfDNA shows promise for detecting pancreatic
cancer during the early stages when curative resection of the tumor is still possible. This minimally invasive
blood-based biomarker panel could be used as a promising tool for diagnosis and screening in a select
subset of high-risk populations.
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Introduction
Pancreatic cancer is the third leading cause of both do-
mestic and global cancer-related mortality [1]. It has a
poor prognosis with an overall 5-year survival rate of 7%
[2, 3], as the cancer often grows insidiously and initially
does not cause symptoms. The poor prognosis is at least
in part due to the absence of specific symptoms early in
the course of the disease and lack of effective diagnostic
methods. Over 75% of pancreatic cancer cases are diagnosed
at stage III/IV [4]. Yet, surgical resection is currently the
only potentially curable therapy [5, 6]. Therefore, there is an
urgent need for reliable, non-invasive, and cost-effective
early detection method for biomarkers of pancreatic cancer.
DNA methylation plays an important role in cancer

development and progression [7]. DNA methylation can
alter the DNA chromatin structure and can lead to the
silencing of tumor suppressor genes or activation of on-
cogenes [7, 8]. Many of these changes occur early in
tumorigenesis, making epigenetic modifications a prom-
ising target as biomarkers for the early detection of can-
cer [9–12]. DNA methylation changes occur early in
cancer formation for many cancer types including colo-
rectal [13], breast [14], and pancreas [10–12, 15] and
that methylation changes can be potent biomarkers for
early detection [16–18]. The recent FDA approval of
methylation biomarkers for colorectal cancer (Colo-
guard®, Epi proColon®) as well as bladder cancer (Exact
Sciences Inc.) serves as a blueprint for taking these bio-
markers to patient care. In pancreatic cancer, CA19-9, a
carcinoembryonic antigen, is approved by the FDA for
prognostic surveillance of known pancreatic cancer pa-
tients; however, it is considered to have low sensitivity
and specificity for pancreatic cancer detection [19–22].
Currently approved tests for the early detection of pan-
creatic cancer do not exist.
Cell-free DNA (cfDNA) from tumor tissues has been

found within plasma samples from cancer patients’ per-
ipheral circulating blood. Additionally, the amount of
total cfDNA in cancer patients is higher than in normal
populations [23–27]. This cfDNA is composed of short
segments of nucleic acids that are not associated with
cells or cell fragments. Importantly, cfDNA reflects the
genetic and epigenetic makeup of the tumor from which
it originates, making it a desirable and highly specific
biomarker for the early detection of cancer. Tests for cir-
culating tumor DNA can be improved when they are
combined with highly selected protein markers [26].
We have been investigating the role of epigenetic

changes in pancreatic cancer over the past few years and
have previously published on the widespread methyla-
tion changes that occur in pancreatic cancer. Our stud-
ies identified two biomarkers ADAMTS1 (A disintegrin
and metalloproteinase with thrombospondin motifs 1)
and BNC1 (zinc finger protein basonuclin-1) as highly

sensitive markers for the early detection of pancreatic
cancer in tissue [15]. In a previous study of selected pan-
creatic cancer patients, we reported promising sensitivity
and specificity with the two genes at 81% and 85% re-
spectively using non-invasive fluids [15].
In this study, we took advantage of a newly developed

[28, 29] highly reliable technique called methylation on
beads (MOB). DNA methylation of genes ADAMTS1
and BNC1 was studied using cfDNA in a large cohort of
patients with varying stages of pancreatic cancer and an
age-matched normal group to determine the sensitivity,
specificity, and applicability of this two-gene panel as a
non-invasive biomarker set for the early detection of
pancreatic cancer. Furthermore, pre-operative CA 19-9
levels were also compiled to study the significance of
their values, either alone or in combination with the
methylation-based gene panel, in detecting early stage
pancreatic cancer.

Results
Patient and control cohorts
Patients with different stages of pancreatic cancer under-
going surgical resection were enrolled in this study.
20.5% (8/39) were found to have stage I cancer, 23.1%
(9/39) stage IIA, 51.3% (20/39) stage IIB, and only 5.1%
(2/39) stage III/IV cancers. Patients with stage III/IV
cancers were surgically explored and the surgery aborted
due to the advanced stage of the disease. There was no
significant age difference between the cancer and control
groups (mean age 60.1 years vs. 65.5 years) (Table 1).
Cigarette smoking, pancreatitis, and diabetes mellitus
have all been identified as important risk factors for pan-
creatic cancer in previous studies [30–32]. Our study re-
cruited population-based matched controls to determine
the specificity of our markers. Of note, amongst the con-
trols, 48% had diabetes mellitus, 38% had hypertension,
and 17% were current smokers. Patients with pancrea-
titis were undergoing surgery for pain control that was
unresponsive to long-standing medical therapy. Patients
with pancreatitis had median 84months of disease prior
to undergoing surgery. There was a significant racial dif-
ference between the two cohorts used in the study (76%
of control group were African-American vs 5% of cancer
cases; p < 0.05) (Table 1). The majority of the cancer pa-
tients (69.2%) were treated with pancreaticoduodenect-
omy, while 10.3% and 15.4% had total and distal
pancreatectomy respectively, and in 5.1%, the resection
was aborted (Additional file 1: Table S1).

ADAMTS1 and BNC1methylation status in pancreatic cancer
cfDNA isolated from the blood samples obtained from
pancreatic cancer patients (n = 39), pancreatitis (n = 8),
and control group (n = 95) was evaluated (Fig. 1). Overall
methylation of either gene (ADAMTS1 and/or BNC1)

Eissa et al. Clinical Epigenetics           (2019) 11:59 Page 2 of 10



was observed in 97.4% of cancer patients (38/39) com-
pared to 8.4% of control patients (8/95). Methylation of
ADAMTS1 was detected in 87.2% (34/39) pancreatic
adenocarcinomas. BNC1 methylation was detected in
65.1% (25/39) of cases. Methylation analysis was also
performed in a series of non-cancer individuals (n = 95).
Amongst this group, methylation of ADAMTS1 was de-
tected in 4.2% (4/95), while BNC1 was detected in 6.3%
(6/95) of cases. 97.4% (38/39) and 8.4% (8/95) of patients
and controls respectively showed evidence of methyla-
tion of either of the two genes. Among controls, 17%
and 42% of patients were current and former smokers
respectively, while 55.4% were type II diabetic. The use
of the two-gene combination (ADAMTS1 and/or BNC1)
panel made a demonstrable difference of the predictive
power of both the genes as compared to the use of a sin-
gle gene by itself (Table 2). Using the presence of methy-
lation in either gene, pancreatic cancer was detected in
97.4% (38/39) of all pancreatic cancer patients.

Table 1 Patient demographics, tumor clinicopathologic features

Control (n = 95) Cancer (n = 39) p value (cancer vs control) Pancreatitis (n = 8)

Average age, years (range) 65.5 (21–96) 60.1 (29–83) 0.059 46.6 (29–70)

Gender

Male (%) 41 (43%) 26 (67%) 0.013 4 (50%)

Female (%) 54 (57%) 13 (33%) 4 (50%)

Race

White (%) 22 (23%) 34 (87%) 6 (78%)

Black (%) 72 (76%) 2 (5%) < 0.05 1 (11%)

Others (%) 0 (0%) 3 (8%) 1 (11%)

Not specified (%) 1 (1%) 0 (0%) 0 (0%)

CA 19-9 level* – n = 34 N/A n = 1

Average – 665.3 –

Median – 47.6 –

Highest – 12,302.5 –

Lowest – 1 16.1

Smoking status n = 95 n = 39 n = 8

Never 38 (40%) 22 (56%) 5 (63%)

Former 40 (42%) 10 (26%) 0.159 3 (38%)

Current 16 (17%) 7 (18%) 0 (0%)

Not specified 1 (1%) 0 (0%) 0 (0%)

Average tumor size (range, cm)** – 3.2 (0.9–8) N/A –

Differentiation n = 39 N/A

Well – 1 (3%) –

Moderate – 17 (44%) –

Poor – 12 (31%) –

Undifferentiated – 2 (5%) –

Not specified – 7 (18%) –

*CA 19-9: five values unavailable for PDAC patient and four unavailable for pancreatitis
**Tumor size: three PDAC, no resection done, N/A: Not applicable

Fig. 1 Methylation of ADAMTS1 and BNC1 genes in control and
PDAC cases
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We also investigated the utility of CA19-9 as an early
detection biomarker. CA19-9 values were available in
87.2% (34/39) pancreatic cancer patients. Amongst these
patients, CA19-9 was elevated above the normal threshold
(> 36 units) in 55.9% (19/34) of pancreatic adenocarcinoma
group. Thus, CA19-9 failed to detect the presence of pan-
creatic cancer in 44.1% (15/34) of the cancer cases. We next
tested the utility of CA19-9 as an additive biomarker. The
combined sensitivity of ADAMTS1 and CA 19-9 was 87.2%
compared to 87.2% for ADAMTS1 alone while that of
BNC1 with CA 19-9 was 89.2% compared to 64.1% with
BNC1 alone. However, there was no improvement in sensi-
tivity on the addition of CA 19-9 to the two-gene methyla-
tion panel (ADAMTS1 and/or BNC1 +/− CA19-9, 97.4%
both) (Table 2).

ADAMTS1 and BNC1 methylation status in various stages
of cancer
Methylation of ADAMTS1 was found to be positive in
cfDNA of 87.5% (7/8) patients with stage I cancer, 77.8%
(7/9) of stage IIA, 90% (18/20) of stage IIB, and 100%
(2/2) of stage III/IV pancreatic cancer patients. Similarly,
BNC1 was positive in 62.5% (5/8) of stage I patients,
55.6% (5/9) of stage IIA, 65% (13/20) of stage IIB, and
100% (2/2) of stage III/IV pancreatic cancers. When
considering the combination panel of both genes
(ADAMTS1 and/or BNC1), the combined panel was
positive in 100% (8/8) of stage I, 88.9% (8/9) of stage

IIA, 100% (20/20) of stage IIB, and 100% (2/2) of stages
III and IV pancreatic cancers (Table 3). The difference in
positive methylation prevalence between different stages
was not statistically significant. When looking at CA19-9
by different cancer stages, CA19-9 was positive in only
57.1% (4/7) of stage I patients, 44.4% (4/9) of stage IIA,
64.7% (11/17) of stage IIB, and 0% (2/2) of stage III/IV
pancreatic cancers. The combined two-gene panel of
ADAMTS1 and/or BNC1 detected 94.8% (37/39) of all
early-stage PDAC patients (stages I and II) who are eli-
gible for surgical curative resection vs 57.6% for CA19-9
(19/33) alone (p = 0.0003).

Evaluation of the two-gene panel in pancreatitis
Patients with pancreatitis have a higher risk of develop-
ing PDAC; therefore, cfDNA samples from eight patients
with chronic pancreatitis were also evaluated. Using the
combination panel (ADAMTS1 and/or BNC1), 87.5%
(7/8) of chronic pancreatitis patients had positive
methylation (Table 2).

Sensitivity, specificity, and the accuracy of the biomarker
We calculated a methylation positivity for each gene in-
dependently and as a combination panel. There was no
significant difference in methylation level between differ-
ent races, genders, or age groups. We then used these
values to generate a receiver operating characteristic
curve (ROC) to determine the sensitivity and specificity

Table 2 Methylation frequency of two-gene panel (ADAMTS1 and/or BNC1) vs frequency of CA 19-9 elevation in control, PDAC, and
pancreatitis

Patients (n) Control PDAC Pancreatitis

Positive/total Positive (%) Positive/total Positive (%) Positive/total Positive (%)

ADAMTS1 4/95 4.2 34/39 87.2 6/8 75

BNC1 6/95 6.3 25/39 65.1 4/8 50

ADAMTS1 and BNC1 2/95 2.1 21/39 53.8 3/8 37.5

ADAMTS1 and/or BNC1 8/95 8.0 38/39 97.4 7/8 87.5

CA 19-9 (n = 34) N/A 19/34 55.9 N/A

ADAMTS1 and BNC1 and CA 19-9* N/A 6/34 17.6 N/A

ADAMTS1 and/or BNC1 + CA 19-9 N/A 38/39 97.4 N/A

*Positive for all three, N/A: Not applicable

Table 3 Methylation frequency of two-gene panel (ADAMTS1 and/or BNC1) vs frequency of CA 19-9 elevation in different stages of
pancreatic ductal adenocarcinoma

Patients Stage I (%) Stage IIA (%) Stage IIB (%) Stages III–IV (%)

Positive/total Positive (%) Positive/total Positive (%) Positive/total Positive (%) Positive/total Positive (%)

ADAMTS1 7/8 87.5 7/9 77.8 18/20 90 2/2 100

BNC1 5/8 62.5 5/9 55.6 13/20 65 2/2 100

ADAMTS1 and/or BNC1 8/8 100 8/9 88.9 20/20 100 2/2 100

CA 19-9 (n = 34)* 4/7 57.1 4/9 44.4 11/17 64.7 0/1 0

ADAMTS1 and/or BNC1 + CA 19-9 8/8 100 8/9 88.9 20/20 100 2/2 100

*Missing two CA 19-9 values, so % out of total recorded CA 19-9 values for each stage
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for each gene at the optimal cutoff value. The sensitivity
and specificity of ADAMTS1 was 87.2% and 95.8%, re-
spectively. BNC1 demonstrated a sensitivity and specifi-
city of 64.1% and 93.7%, respectively. The combination
panel of methylation of either gene demonstrated a sen-
sitivity and specificity of 97.4% and 91.6%, respectively.
The area under the curve (AUC) for ADAMTS1 was
0.91 (95% CI 0.85–0.95), while AUC of BNC1 was 0.79
(95% CI 0.70–0.85). The AUC of the two-gene combin-
ation panel was 0.95 (95% CI 0.91–0.98) (Table 4)
(Fig. 2a–c). The AUC for early stage, resectable pancreatic
cancers was 0.91 (95% CI 0.85–0.95) for ADAMTS1, AUC
0.78 (95% CI 0.70–0.85) for BNC1 alone, while the AUC
of the two-gene combination was 0.95 (95% CI 0.90–0.98).

Discussion
DNA methylation plays an important role in the epigen-
etic modification of the cells. Hypermethylation of CpG
islands in promoter regions of tumor suppressor genes
can lead to gene downregulation, gene silencing, or aber-
rant post-translational modifications, all of which can
contribute to cancer development. Identification of reli-
able early detection markers to identify cancers in a
non-invasive fashion using DNA methylation markers
has shown exciting promise.
An array of noninvasive clinical tests has been devel-

oped for colorectal (CRC) cancer screening, including
the fecal occult blood test, the fecal immunochemical
test, the fecal-based DNA test, and the blood-based
DNA test (the SEPT9 assay). Another popular commer-
cially available test is a non-invasive colon cancer
screening test based on DNA obtained from the stool,
Cologuard® (Exact Sciences). This test takes a
multi-target approach and screens for altered DNA,
hemoglobin biomarkers, methylation of genes (NDRG4
and BMP3), and KRAS point mutations for early detec-
tion of CRC [33]. Epi proColon® based on methylated
septin 9 which is altered in colorectal cancer tumor cells
more often than in normal cells is the first and only
FDA-approved blood-based test the detection of colorec-
tal cancer [34–36]. Another commercial test, Oncotype
DX, based on a multigene approach, has been developed

for the early detection of breast [37], colon [38], and
prostate [39] cancers. However, given the fact that one
gene rarely defines the status of tumor formation, a
multi-gene approach has been used in order to develop
a detection method that can recognize early events in
tumorigenesis [40, 41].
Early detection of cancer is crucial to treatment. Early

detection can mean less invasive or risky surgical proce-
dures prior to metastasis, along with improved survival.
This is exemplified by a diversity of public health statis-
tics on cancer. For breast cancer, the 5-year survival of
women with early stage diagnosis is as high as 90%, but
as low as 15% with advanced disease [42]. Early detection
through screening has increased the 5-year survival rate to
88% and 90% in lung and CRC respectively [43, 44]. Early
detection of pancreatic cancer is also associated with bet-
ter prognosis [45–47].
Earlier detection holds great promise for patients with

pancreatic cancer [48]. Chemotherapy has only been
shown to have moderate success, and surgical resection
remains the only curative option but less than 20% of
patients present with resectable tumor [46, 49, 50]. Add-
itionally, the most important factor in determining
whether a patient is a candidate for surgical intervention
is the presence or absence of metastases. However, pan-
creatic cancer is often either discovered incidentally or
remains asymptomatic for a long period, growing to be-
come either locally advanced or metastatic before caus-
ing symptoms such as gastric pain, jaundice, or other
signs of biliary obstruction. At that point, 80–85% of pa-
tients present with already advanced, unresectable disease.
Developing an early diagnostic approach is one possible so-
lution to increase detection at resectable stages of disease
[25–27]. Most studies concerning the use of tumor markers
in pancreatic cancer have been directed toward the use of
serum-based testing. However, currently, no available
serum-based marker can be used to aid in the diagnosis of
pancreatic cancer because of suboptimal sensitivity and
specificity. There is a dire need for an early detection test
that exhibits a high sensitivity and specificity. To achieve
this, the focus of early detection biomarkers should be to
identify early stages (stages I and II) of the disease.

Table 4 Gene methylation detection in plasma samples for cancer and controls

Sensitivity Specificity PPV NPV AUC

CA19-9 55.9% (19/34) NA NA NA NA

ADAMTS1 87.2% (34/39) 95.8% (91/95) 89/5% (34/38) 95.8% (91/96) 0.91

BNC1 64.1% (25/39) 93.7% (89/95) 80.6% (25/31) 86.4% (89/103) 0.79

ADAMTS1 and/or BNC1 97.4% (38/39) 91.6% (87/95) 82.6% (38/46) 98.9% (87/88) 0.95

ADAMTS1 and/or BNC1 and/or CA19-9 97.4% (38/39) NA NA NA NA

ADAMTS1 + CA19-9 87.2% (34/39) NA NA NA NA

BNC1 + CA19-9 89.2% (33/37) NA NA NA NA

N/A: Not applicable
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c

Fig. 2 Sensitivity and specificity of both genes. ROC curves for various genes. (a, b) ROC curves are represented for individual genes (ADAMTS1
and BNC1) and c combined methylation status of the genes (ADAMTS1 + BNC1) from the plasma samples
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CA 19-9 is currently the only biomarker routinely uti-
lized clinically in the management of pancreatic cancer,
generally as a method for surveillance of tumor recur-
rence. It can be used in the diagnostic workup of pa-
tients with suspicious lesions on imaging studies or
patients with symptoms of pancreatic cancer such as ob-
structive jaundice. However, it is commonly negative in
patients with pancreatic cancer and is not a reliable test
for the detection of pancreatic cancer even in high-risk
symptomatic patients, patients with pancreatitis, patients
lacking Lewis antigens, and patients with early-stage
cancer [19]. We showed this in our cohort, with stage I
and stage II cancers demonstrating a positive CA19-9 in
only 57.1% and 44.1%, respectively (Table 3). We now
show that a two-gene methylation panel (ADAMTS1
and/or BNC1) demonstrated significant improvement in
the detection rate, showing an even higher rate of positivity
in stage I and stage II cancers (100% and 94.4%, respect-
ively). However, the addition of CA 19-9 to the two-gene
methylation panel did not show any further improvement.
We report a sensitivity and specificity of 87.2% and

95.8% when considering the status of ADAMTS1, and
64.1% and 93.7% in the case of BNC1. When considering
the combination gene panel (ADAMTS1 and/or BNC1),
the sensitivity and specificity increased to 97.4% and
91.6% respectively. The high positivity (87.5%) observed
in patients with pancreatitis suggests that these markers
would be most useful in cases in which chronic pancrea-
titis can be excluded. Validation investigations in the fu-
ture should focus on identifying patient populations for
whom this panel may not be as predictive, such as those
with a history of pancreatitis.
In a previously published study, we had shown that

considering both markers results in an overall sensitivity
and specificity of 81% and 85% respectively. In this
follow-up study, we have continued to optimize our
panel, replacing SYBR green with a more specific Taq-
Man probe results in improvements in both sensitivity
(97.4%) and specificity (91.6%). Also, testing our methy-
lation panel on a larger control cohort was helpful in
validating the sensitivity and specificity of the two-gene
biomarker panel.
Due to its relatively low incidence rate compared to

other types of cancer, population-based screening of
pancreatic cancer is not reasonable or cost-effective.
However, recent publications have shown benefits from
screening specific high-risk populations [51–53]. Eight to
10% of patients with a family history of pancreatic cancer
or a germline mutation would be candidates for screening
along with patients who are long-term smokers [54–59].
Current diagnostic strategies include invasive techniques,
offering endoscopic ultrasound screening of selected
high-risk groups, or methods that involve extensive use of
radiation-based screening [60].

The reduction in lung cancer mortality after using com-
puted tomographic scan (CT scan) for the screening of
in-risk population has already been shown by National
Lung Screening Trial Research Team [61]. Non-invasive
tests which use blood-based biomarkers, such as our sug-
gested one, could be very helpful for the screening of
asymptomatic patients, as it reduces the necessity of per-
forming more invasive and expensive tests or biopsies.
Additionally, accurate blood-based biomarkers can be

used for following up of previously diagnosed or suspi-
cious pancreatic cancer cases [62, 63]. A recently pub-
lished study evaluated cancer cell-derived exosomes as a
biomarker for pancreatic cancer with promising results
[64]. However, this study did not describe the character-
istics of the control group, which is essential in deter-
mining whether it is representative of the test group
from other aspects besides the pancreatic cancer. Fur-
thermore, the previous study included a large number of
stage IV patients (21.4%), but a small number of stage I
patients (2.6%), which is the stage at which intervention
would be most beneficial and therefore should be the
focus of a biomarker study [64, 65].
Our study now identifies a two-gene panel with highly

promising sensitivity and specificity for detection of
earliest stages of pancreatic cancer (sensitivity 97.4% and
specificity 91.6%) with an AUC 0.95 (CI 0.91–0.98) as
compared to the sensitivity of 55.9% for CA 19-9. The
recent FDA approval of DNA methylation-based bio-
markers in colorectal cancer highlights the feasibility of
our approach as an economical mode of screening
high-risk patients.

Materials and methods
Clinical samples
The Institutional Review Boards of Johns Hopkins Univer-
sity approved the present study. A total of 142 samples were
used for this study (Table 1). Patients with cancer undergo-
ing surgical resection for infiltrating ductal adenocarcinoma
of the pancreas were enrolled and blood samples were col-
lected prior to incision (n = 39). A control group (n = 95) of
volunteers was analyzed. The control cohorts enrolled in
this study were age-matched patients attending an out-
patient clinic for chronic diseases such as diabetes mellitus
and hypertension. The exclusion criteria for controls in-
cluded any history of malignancy and an age of less than 21
years old. In addition, we included eight patients who
underwent pancreatic resection due to complicated and
long-standing chronic pancreatitis (median years with dis-
ease prior to surgery, 84months) (Table 1). All cohorts were
consented and clinical information was obtained as per
HIPAA regulations, including pre-operative CA19-9 level
for cancer cases (in some cases, the data were not available
and this is indicated in respective tables, and available total
number were used for calculations). In addition, blood
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samples were collected and analyzed as per the institutional
IRB protocol (NA00033085).

DNA extraction and bisulfite conversion
The blood specimens were collected using the standard
operating procedures, processed using Ficoll-paque (GE
health-care), frozen within 2 h of collection, and stored
at − 80 °C until utilized. Samples were collected before
any surgery or chemotherapeutic treatment. All samples
were collected with full institutional IRB approval from
the involved centers and informed consent from all indi-
viduals who donated blood samples. Plasma obtained
after centrifugation was aliquoted into multiple aliquot
tubes and stored at − 80 °C. cfDNA was isolated from 2
mL of plasma using novel MOB method as described
previously [66, 67]. In brief, MOB is a single-tube pro-
cessing technique that employs silica-coated magnetic
beads for both DNA extraction and bisulfite treatment
that results in significant improvements in amplifiable
bisulfite-converted DNA over conventional techniques
[28, 29, 66].

Quantitative methylation-specific PCR
We designed our QMSP experiments based on the mini-
mum information for publication of quantitative real-time
polymerase chain reaction (PCR) experiment (MIQE) guide-
lines [68]. Sensitive and specific TaqMan probe-based
methods (IDT Inc.) were used for methylation analysis. Pri-
mer 3 and Meth Primer programs were used to design all
our primers and probes (IDT Inc.). All primer sequences
used in the evaluation are listed in Additional file 1: Table S2
and Table S3). Quantitative real-time methylation-specific
PCR (QMSP) using StepOnePlus™ Real-Time PCR System
(Thermo Scientific) quantified bisulfite-converted cfDNA.
The PCR mixture consisted of 2 μl of bisulfite-converted
DNA, 200 nM of sense and anti-sense oligonucleotides, 100
nM probe, 100 nM of fluorescein reference dye (Life Tech-
nologies), 1.67mM dNTPs (Thermo Scientific), and 1μl of
Platinum Taq® DNA Polymerase (Invitrogen). The master
mix contained 16.6mM (NH4)2SO4, 67mM Tris pH 8.8, 6.7
mM MgCl2, and 10mM β-mercaptoethanol in nuclease-free
water. Amplification was performed on bisulfite-converted
cfDNA with platinum Taq (Invitrogen) in a total volume of
25 μl reaction. Amplification consisted of an initial activation
for 10min at 95 °C, followed by 45 cycles of melting at 95 °C
for 30 s, annealing at 60 °C for 30 s, and extension at 72 °C
for 30 s. All reactions were performed in triplicates using
non-template or water samples as negative controls
and CpG methylated Jurkat genomic DNA (IVD) as
positive controls (Life Technologies). The quantitative
methylation-specific assays were normalized to the
levels of the housekeeper gene β-actin. All reactions
were performed in triplicate and mean values were
considered for statistical analyses.

Statistical analysis
Stata/MP 14.2 (StataCorp, College Station, Texas) was
used for all statistical analysis. Wilcoxon rank-sum test
was used to assess the statistical significance of methyla-
tion level differences between cancer and control groups.
Data was analyzed using ROC analysis using 2−ΔCt values
to determine the performance of individual markers which
were used for combined detection analysis as described
elsewhere [16]. The area under the curve obtained from a
ROC curve analysis was used to test the biomarker accur-
acy. Sensitivity and specificity for each gene was calculated
separately and in combination using the cutoff values ob-
tained from the ROC curve.

Additional file

Additional file 1: Table S1. Surgical information. Table S2. Oligonucleotides
probe sequences. Table S3. Oligonucleotides primer and probe
design. (DOCX 36 kb)
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