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Abstract

Background: Most research into myocardial infarctions (MIs) have focused on preventative efforts. For survivors, the
occurrence of an MI represents a major clinical event that can have long-lasting consequences. There has been
little to no research into the molecular changes that can occur as a result of an incident MI. Here, we use three
cohorts to identify epigenetic changes that are indicative of an incident MI and their association with gene
expression and metabolomics.

Results: Using paired samples from the KORA cohort, we screened for DNA methylation loci (CpGs) whose
change in methylation is potentially indicative of the occurrence of an incident MI between the baseline and
follow-up exams. We used paired samples from the NAS cohort to identify 11 CpGs which were predictive in
an independent cohort. After removing two CpGs associated with medication usage, we were left with an “epigenetic
fingerprint” of MI composed of nine CpGs. We tested this fingerprint in the InCHIANTI cohort where it moderately
discriminated incident MI occurrence (AUC = 0.61, P = 6.5 × 10−3). Returning to KORA, we associated the epigenetic
fingerprint loci with cis-gene expression and integrated it into a gene expression-metabolomic network, which revealed
links between the epigenetic fingerprint CpGs and branched chain amino acid (BCAA) metabolism.

Conclusions: There are significant changes in DNA methylation after an incident MI. Nine of these CpGs show consistent
changes in multiple cohorts, significantly discriminate MI in independent cohorts, and were independent of medication
usage. Integration with gene expression and metabolomics data indicates a link between MI-associated epigenetic
changes and BCAA metabolism.

Keywords: Myocardial infarction, DNA methylation, Epigenetics, Fingerprint, Epigenetic fingerprint, Metabolites,
Branched chain amino acid metabolism, Systems biology

* Correspondence: ward-caviness.cavin@epa.gov
†Cavin K. Ward-Caviness, Golareh Agha and Brian H. Chen contributed
equally to this work.
1Institute of Epidemiology II, Helmholtz Zentrum München, Ingolstädter
Landstraβe 1, 85764 Neuherberg, Germany
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ward-Caviness et al. Clinical Epigenetics          (2018) 10:161 
https://doi.org/10.1186/s13148-018-0588-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-018-0588-7&domain=pdf
http://orcid.org/0000-0002-6322-4349
mailto:ward-caviness.cavin@epa.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
A myocardial infarction (MI) is characterized by the rup-
ture of a vulnerable plaque into the interior of a coron-
ary vessel resulting in a clotting cascade that obstructs
blood flow [1, 2]. Even in the modern era, approximately
5% of MI survivors will experience a recurrent MI
within 5 years [3]. For MI survivors, the physiological ef-
fects of a MI are widespread and persistent and include
anatomical alterations such as ventricular remodeling
[4–6]. Additionally, rates of impaired glucose tolerance
and diabetes may be high among MI survivors [7, 8],
even those without diabetes prior to the MI [7]. Post-MI
diabetes is associated with elevated rates of MI recur-
rence, stroke, and death [8]. Thus, understanding
MI-induced molecular alterations and their potential
impact on metabolism and vascular physiology may help
reduce post-MI co-morbidities and lower event rates.
Epigenetics, particularly DNA methylation, is a promis-
ing source of molecular data for understanding MI-in-
duced molecular changes.
DNA methylation is the most commonly studied epi-

genetic mark and is typically an assessment of the
frequency with which a methyl group is added to the
cytosine in a cytosine-phosphate-guanine (CpG) di-
nucleotide. This methyl addition at a CpG locus is a
stable, yet modifiable, alteration to DNA with direct
implications for gene expression and regulation [9]. Al-
though methylation can occur at other dinucleotides,
this is mostly restricted to pluripotent cells [10]. DNA
methylation at CpG dinucleotides has been associated
with MI [11–13], and methylation differences have been
observed in healthy versus atherosclerotic tissue from
the same individual [14]. Yet, little research has charac-
terized the methylation differences that can occur after
an incident MI, and their downstream implications.
Here, we used paired samples from the Cooperative
Health Research in the Region of Augsburg (KORA) co-
hort to first identify epigenetic loci that showed methyla-
tion changes when comparing pre- and post-MI
epigenetic profiles. From these loci, we used KORA and
an independent cohort to develop and an “epigenetic
fingerprint” of MI, which comprised those loci whose
change in methylation is indicative of an incident MI.
This epigenetic fingerprint was then evaluated in a third
cohort of individuals not used for its development. Fi-
nally, we used gene expression and metabolomics data
collected in KORA to understand the impact of the
epigenetic fingerprint loci on cis-gene expression and
peripheral blood metabolites.

Results
Table 1 contains the clinical covariates for all partici-
pating cohorts. To develop the epigenetic fingerprint,
we only used loci with methylation data available at

both samples for all individuals after all quality control
procedures. This high stringency substantially reduced
the number of CpGs from the Illumina Infinium Hu-
man Methylation 450 K BeadChip array to 24,057
CpGs available for analysis. Of these, 435 CpGs had an
FDR P < 0.15 in the initial discovery analysis which was
designed to be an inclusive analysis to avoid screening
out potentially predictive CpGs (N = 435, Add-
itional file 1: Table S1). We retained 174 of these 435
CpGs which has non-zero betas in the elastic net
model run on KORA data (Additional file 1: Table S2).
To further refine the predictive model, we used a sec-
ond elastic net model in Normative Aging Study
(NAS), and of the 174 CpGs from KORA, retained
those 11 CpGs with non-zero betas in the NAS (Add-
itional file 1: Table S3). The difference in methylation
between baseline and follow-up for these 11 CpGs sig-
nificantly discriminated (P < 0.05) occurrence of MI in
KORA, NAS, and Invecchiare nel Chianti
(InCHIANTI), an independent cohort not used to se-
lect the CpGs (Additional file 1: Table S4).
Usage of medication is commonly prescribed after an

MI closely correlated with the occurrence of an incident
MI (Additional file 1: Table S5). Using KORA F4, we
tested for associations between these 11 CpGs and the
usage of seven classes of medications commonly pre-
scribed after a MI. After a correction for the 77 tests
performed, two CpGs were associated with medication
usage in KORA F4: one with the stoppage of diuretics
(cg19569340) and one with the stoppage of anti-platelet
medications (cg02628823, Additional file 1: Table S6).
Thus, our final epigenetic fingerprint was composed of
nine CpGs (Table 2). These nine CpGs significantly
discriminated incident MI occurrence in both KORA
and NAS, and this discrimination was independently
evaluated in InCHIANTI (Fig. 1, Table 3).

Association with gene expression
We associated each of the epigenetic fingerprint CpGs
with gene expression in KORA F4 using 713 samples.
Given the power to detect associations, we only exam-
ined cis-gene expression (1Mb window) and examined
both nominal (P < 0.05) associations and those signifi-
cant after a Bonferroni correction for the number of
genes within each 1Mb window (14–87 genes,
Additional file 1: Table S7). In an age, sex, and technical
factor-adjusted model, five epigenetic loci were at least
nominally associated with cis-gene expression, with
cg100703091 significantly associated with gene expres-
sion probes for 24-dehydrocholesterol reductase
(DHCR24) and transcription elongation factor A N-ter-
minal and central domain containing 2 (TCEANC2)
(Table 4). We examined the Biobank-based Integrative
Omics Studies (BIOS) consortium QTL browser for

Ward-Caviness et al. Clinical Epigenetics          (2018) 10:161 Page 2 of 13



Table 1 Clinical covariates for KORA, NAS, and InCHIANTI

a. Clinical covariates at baseline and follow-up exams

KORA NAS InCHIANTI

Baseline Follow-up Baseline Follow-up Baseline Follow-up

N 1103 1103 344 344 443 443

N MI – 13 – 14 – 50

Time to MI—years; mean (SD) – 4.08 (2.2) – 2.76 (1.3) – 6.47 (2.9)

FU time—years; mean (SD) – 7.10 (0.22) – 8.52 (3.2) – 9.12 (0.21)

Age—years; mean (SD) 54.5 (8.87) 61.5 (8.9) 70.9 (6.6) 74.5 (6.6) 61.7 (16.2) 70.8 (16.2)

Males—N (%) 558 (50.6%) 558 (50.6%) 100% 100% 206 (46.5%) 206 (46.5%)

BMI—kg/m2; mean (SD) 27.7 (4.5) 28.1 (4.8) 28.1 (4.1) 27.7 (4.1) 27.0 (3.9) 27.0 (4.3)

Current smokers—N (%) 212 (19.2%) 161 (14.6%) 17 (4.94%) 16 (4.65%) 89 (20.1%) 45 (10.2%)

Former smokers—N (%) 417 (37.8%) 469 (42.5%) 220 (64.0%) 222 (64.5%) 105 (23.7%) 151 (34.1%)

LDL-C—mg/dL; mean (SD) 144 (40.1) 140 (35.8) – – 135 (35.9) 124 (31.8)

HDL-C—mg/dL; mean (SD) 57.5 (16.9) 56.2 (14.8) 51.3 (14.1) 50.6 (13.5) 56.1 (14.2) 56.5 (15.2)

Hypertension—N (%) 484 (44.2%) 522 (47.4%) 209 (60.8%) 232 (67.4%) 221 (49.9%) 247 (55.8%)

Type 2 diabetes—N (%) 39 (3.54%) 105 (9.53%) 36 (10.5%) 48 (14.0%) 38 (8.6%) 49 (11.1%)

b. Clinical covariates at baseline for individuals who did not develop an MI (controls) vs those who did (cases)

KORA NAS InCHIANTI

Controls Cases Controls Cases Controls Cases

N 1090 13 330 14 393 50

Age—years; mean (SD) 54.4 (8.9) 58.9 (7.2) 70.9 (6.5) 69.3 (8.4) 60.9 (16.7) 67.8 (9.4)

Males—N (%) 548 (50.3%) 10 (76.9%) 100% 100% 181 (46.1%) 25 (50.0%)

BMI—kg/m2; mean (SD) 27.7 (4.4) 31 (7.1) 28.0 (4.1) 29.0 (4.0) 26.9 (3.9) 27.3 (3.46)

Current smokers—N (%) 208 (19.1%) 4 (30.8%) 16 (4.84%) 1 (7.14%) 80 (20.4%) 9 (18.0%)

Former smokers—N (%) 412 (37.8%) 5 (38.5%) 210 (63.6%) 10 (71.4%) 88 (22.4%) 17 (34.0%)

LDL—mg/dL; mean (SD) 144 (40.2) 144 (36.7) – – 134 (35.9) 144 (34.6)

HDL—mg/dL; mean (SD) 57.7 (16.8) 42 (11.7) 51.7 (14.1) 41.7 (8.5) 56.0 (14.3) 57.6 (13.2)

Hypertension—N (%) 476 (44%) 8 (61.5%) 201 (60.9%) 8 (57.1%) 187 (47.6%) 34 (68.0%)

Type 2 diabetes—N (%) 37 (3.4%) 2 (15.4%) 32 (9.70%) 4 (28.6%) 31 (7.9%) 7 (14.0%)

c. Clinical covariates at follow-up for individuals who did not develop an MI (controls) vs those who did (cases)

KORA NAS InCHIANTI

Controls Cases Controls Cases Controls Cases

N 1090 13 330 14 393 50

Time to MI—years; mean (SD) – 4.08 (2.2) – 2.76 (1.3) – 6.47 (2.9)

FU time—years; mean (SD) 7.1 (0.22) 7.2 (0.38) 8.8 (2.97) 2.8 (1.3) 9.1 (0.21) 9.1 (0.21)

Age—years; mean (SD) 61.4 (8.9) 65.9 (7.2) 74.5 (6.5) 73.3 (8.2) 70.0 (16.7) 76.9 (9.5)

Males—N (%) 548 (50.3%) 10 (76.9%) 100% 100% 181 (46.1%) 25 (50.0%)

BMI—kg/m2; mean (SD) 28.1 (4.71) 32.6 (7.24) 27.7 (4.1) 28.3 (4.2) 27.0 (4.35) 27.0 (3.72)

Current smokers—N (%) 159 (14.6%) 2 (15.4%) 15 (4.6%) 1 (7.1%) 42 (10.7%) 3 (6.0%)

Former smokers—N (%) 462 (42.4%) 7 (53.8%) 212 (64.2%) 10 (71.4%) 128 (32.6%) 23 (46.0%)

LDL-C—mg/dL; mean (SD) 140 (35.8) 111 (16.8) – – 123 (31.9) 127 (31.4)

HDL-C—mg/dL; mean (SD) 56.4 (14.8) 41.5 (10.2) 51.1 (13.6) 40.3 (6.0) 56.4 (15.3) 57.3 (14.6)

Hypertension—N (%) 513 (47.2%) 9 (69.2%) 219 (66.3%) 13 (92.9%) 216 (55.0%) 31 (62.0%)

Type 2 diabetes—N (%) 98 (9.0%) 7 (53.8%) 43 (13.0%) 5 (35.7%) 44 (11.2) 5 (10.0%)

Summary given as mean (SD) for continuous variables: time to myocardial infarction (time to MI), follow-up time (FU time), age, body mass index
(BMI), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). Summary given as the number and percentage
responding positively for binary variables: males, current smokers, former smokers, hypertension, and type 2 diabetes
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potential replication of the associations (https://genenet-
work.nl/biosqtlbrowser/) [15, 16]. BIOS only reported
genome-wide significant, independent associations and
did not have overlap with our results.

Multi-omic pathway visualization
In order to visualize the metabolic pathways associated
with our epigenetic fingerprint, we integrated the
CpG-gene expression associations (P < 0.05) with a pub-
lished Spearman correlation-based gene expression-
metabolomics network [17]. Accounting for multiple
probes per gene, 3000 associations were examined.
There were 12 FDR significant associations, two of
which were Bonferroni significant after a multiple-test-
ing correction (Fig. 2, Additional file 1: Table S8). Three
epigenetic fingerprint CpGs accounted for all genes with
suggestive metabolite associations. Heat shock protein
family B (small) member 11 (HSPB11) was the most rep-
resented gene in the network, with seven suggestive me-
tabolite associations, six of which were FDR significant.
The majority of the network centered on two

“hubs” linked by the metabolite lactate. One hub has
HSBP11 at the center, and the other hub has
6-phosphogluconolactonase (PGLS) at its center. The
PLGS hub has an additional branch that incorporates
FCH domain only 1 (FCHO1) and nucleoredoxin like 1
(NXNL1) while all members of the HSPB11 hub directly
connect to that gene. Besides the “twin-hub” main body
of the network, there is one disconnected section repre-
senting the cg21609024–enoyl-CoA hydratase domain
containing 2 (ECHDC2) association. ECHDC2 had an
FDR significant association with mannose and a suggest-
ive association with caparic acid (caparate (10:0)).

Discussion
Epigenetic changes to DNA have a profound impact on
cellular regulation and health. Environmental exposures,
such as smoking [18–21] and air pollution [22, 23], may
cause changes to the epigenome, and aberrant DNA
methylation changes may be a risk factor for outcomes
such as obesity [24], diabetes [25, 26], and cardiovascular
disease (CVD) [11, 27, 28]. What is less understood is
how changes in health status can produce long-term
alterations in the epigenetic profile and the subsequent
implications for the downstream regulation of gene ex-
pression and biochemical pathways. Here, we have
shown that the occurrence of an incident MI is associ-
ated with a broad array of epigenetic changes and that a
subset of the loci, whose change in methylation is associ-
ated with incident MI, compose an “epigenetic finger-
print” of MI that generalizes across populations from
various geographic regions and ethnicities. The complete
map of epigenetic changes as a result of an incident MI
is likely to be highly personalized and heterogeneous
and will depend on factors such as the timing of the MI
(early vs late life), the epigenetic profile of the individual
at the time of MI, the risk factors that contributed to the
MI, and even the triggering mechanism of the MI. How-
ever, we believe the epigenetic loci highlighted by our
analyses represent a picture of some of the epigenetic
changes that may result from an MI occurrence.

Epigenetic loci which compose the epigenetic fingerprint
There were nine epigenetic loci which composed the
epigenetic fingerprint and provided substantial discrim-
ination in the occurrence of a first MI (Table 2). These
nine loci were not associated with MI risk in either of
two recent epigenome-wide association studies for MI
[11, 13]. The nine CpGs were annotated to eight genes
based on their location. Of these eight genes, two are
known to be associated with cardiovascular disease:
low-density lipoprotein receptor-related protein 8
(LRP8) and potassium calcium-activated channel sub-
family N member 1 (KCNN1). Low-density lipoprotein
concentration is a known risk factor for MI with
growing evidence for a causal association with vascular
disease [29–31]. LRP8 has been implicated as a diagnostic
marker for familial and early-onset CVD [32]. KCNN1 is a
calcium-activated potassium channel expressed in heart
and other tissues. Blocking the homolog of this channel in
rats can reduce ventricular fibrillation and ventricular
tachycardia during induced acute myocardial infarction
[33]. KCNN1 is also involved in the electrical remodeling
of the heart during chronic atrial fibrillation [34].
DHCR24 and alkB homolog 1, histone H2A dioxygenase

(ALKBH1) were also annotated to epigenetic fingerprint
CpGs. DHCR24 encodes a reductase that catalyzes the
final step in cholesterol biosynthesis, the conversion of

Table 2 The 9 CpGs that composes the epigenetic fingerprint
of MI

CpG CHR BP (Mb) Gene/
Locus

Relation to
island (UCSC)

Enhancer DHS

cg23541257 1 53.8 KCNN1 South shelf

cg08193363 1 55.35 FRY North shore Yes

cg21609024 1 145 LRP8

cg10073091 1 171 DHCR24 North shore

cg07311024 6 166 GLIPR1L2 Island Yes

cg23074119 12 75.79 ALKBH1

cg11955541 13 32.61 PDE4DIP Island Yes Yes

cg00699486 14 78.17

cg03458344 19 18.1 C1orf129

Annotations to genes are based on physical proximity. Annotations are based
on location and provided in the manifest file for the 450 K methylation array
by Illumina
BP base pair location of the CpG, CpG methylation probe, DHS DNase I
hypersensitivity site, Mb megabases, UCSC University of California, Santa Cruz
genome browser-based annotation
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desmosterol to cholesterol [35], and the mutations in
DHCR24 cause accumulation of desmosterol [36].
Methylation at DHCR24 is associated with body mass
index [24, 37]. Desmosterol accumulation underlies
many of the downstream responses to foam cell forma-
tion [38], which are causally implicated in MI. DHCR24
also has roles in response to both acute and chronic
oxidative stress [39], and methylation in DHCR24 is regu-
lated by low-density lipoprotein cholesterol and associ-
ated with DHCR24 gene expression [40]. Mendelian
randomization analyses indicate that methylation in
DHCR24 may be causally regulated by low-density
lipoprotein cholesterol levels in blood [40]. Thus, it is
possible that post-MI methylation changes in DHCR24
are driven by changes in blood lipids. ALKBH1 encodes
for a response protein to DNA alkylation damage and
specifically modifies the methylation and, therefore,
regulation of histone H2A [41].

Of the remaining three epigenetic fingerprint CpGs,
one was annotated to GLI pathogenesis related 1 like 2
(GLIPR1L2), which is associated with immune system
cells and macrophage differentiation [42], and is regu-
lated by DNA methylation [43]. One was annotated to
phosphodiesterase 4D interacting protein (PDE4DIP),
which is associated with large vessel stroke [44], and the
final CpG was annotated to FRY microtubule binding
protein (FRY), which is associated with microtubule
regulation/spindle formation [45].

Association of fingerprint loci with gene expression
To understand the transcriptional regulatory potential
of our epigenetic fingerprint loci, we associated each
CpG loci with the expression of genes within 1Mb
(Table 4). The CpG site cg00699486 did not have a
location-based annotation in the Illumina annotation
files, but was nominally associated with the expression
of phosphodiesterase 10A (PDE10A), a gene linked to
vascular remodeling [46]. Only cg10073091 (DHCR24)
and cg23074119 (ALKBH1) were associated with the
expression of the genes to which they were annotated
based on proximity. Cg10073091 was the only locus to
be associated with gene expression (DHCR24 and
TCEANC2) after a multiple-test correction and was
also nominally associated with TCEANC2 and HSPB11
expression. Cg1007391 is located in the first exon of
DHCR24 and overlaps with transcription factors linked
to the vasculature, inflammation, and hypoxia such as
STAT3 and ELF-1 [47–49], which may account for its
multiple associations.

Integration with metabolomics data
To understand the biochemical impact of epigenetic
changes associated with incident MI, we linked our
epigenetic fingerprint-gene expression associations
with a published network of transcriptome-metabo-
lome associations [17]. Three epigenetic fingerprint
loci were linked to metabolites via transcriptomic
regulation. When considering all suggestive (P < 0.001)
transcriptome-metabolome associations, these three
CpGs linked to two distinct sub-networks. The larger
sub-network was composed of two hubs centered on
HSPB11 and PGLS with lactate linking the two (Fig. 2).
The network hub centered on PGLS contained mul-
tiple metabolites linked to branched chain amino acid
(BCAA) metabolism. BCAAs are associated with obes-
ity [50], insulin resistance [51, 52], diabetes [53],
cardiovascular disease [54, 55], and mortality [56].
PGLS was also significantly associated with hippurate,
a metabolite produced by microbial metabolism in the
gut. Hippurate is often used as a marker for renal func-
tion and has been associated with diabetes, blood pres-
sure, and atherosclerosis, though these associations are

InCHIANTI: AUC = 0.61

Fig. 1 Receiver operating characteristic (ROC) curves for the
epigenetic fingerprint. The ROC curve for InCHIANTI for the
epigenetic fingerprint. The fingerprint was developed in KORA and
NAS and independently evaluated (replicated) in InCHIANTI where is
significantly discriminated MI occurrence (P = 6.5x10-3). AUC area
under the curve; FPR false positive rate; TPR true positive rate

Table 3 Model statistics for the epigenetic fingerprint for KORA,
NAS, and InCHIANTI

N N MI AUC P (AUC)

KORA 1103 13 1.00 2.7 × 10−10

NAS 344 14 0.94 1.3 × 10−08

InCHIANTI 443 50 0.61 6.5 × 10−03

The epigenetic fingerprint was developed in KORA and NAS and
independently evaluated in InCHIANTI. Area under the curve (AUC) is based on
logistic regression models
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possibly secondary to renal dysfunction [57, 58]. PGLS
encodes for 6-phosphogluconase, which is differentially
expressed in the pancreas of diabetic mice as com-
pared to wildtype mice [59].
HSBP11 sits at the center of the other network hub

and had the most FDR significant associations (6). Pro-
line is associated with immune function in the gut [60]
and is metabolized by the gut microbiome to produce

ornithine and arginine [60]. Ornithine and arginine are
associated with atherosclerosis [61, 62] and CVD [63,
64]. Mutual association with lactate linked the PGLS and
HSPB11 hubs, and HSPB11 was also linked to a BCAA
metabolite (4-hydroxyphenyllactate). In a study compar-
ing obese and lean humans, proline, lactate, and BCAAs
were all elevated in the obese individuals [50], and,
like the BCAAs, lactate is linked to insulin resistance

Table 4 Integration of epigenetic fingerprint loci with gene expression

Chrom GEX Probe CpG BP Annotated gene Beta SE P Probe gene

1 ILMN_1725510 cg10073091* 55.35 DHCR24 − 1.76 0.51 0.0006 DHCR24

1 ILMN_1673544 cg10073091* 55.35 DHCR24 2.37 0.73 0.0012 TCEANC2

1 ILMN_1681340 cg10073091 55.35 DHCR24 − 4.29 1.54 0.0055 HSPB11

19 ILMN_1654571 cg23541257 18.10 KCNN1 − 1.52 0.63 0.02 FCHO1

19 ILMN_1742917 cg23541257 18.10 KCNN1 1.00 0.45 0.03 NXNL1

14 ILMN_1758038 cg23074119 78.17 ALKBH1 − 25.80 11.89 0.03 ALKBH1

1 ILMN_1671568 cg21609024 53.80 LRP8 2.02 0.94 0.03 ECHDC2

19 ILMN_1797005 cg23541257 18.10 KCNN1 − 1.36 0.64 0.03 PGLS

6 ILMN_2121272 cg00699486 166.14 − 0.42 0.21 0.04 PDE10A

Beta effect estimate for gene expression—methylation association, BP chromosomal location of the CpG, P unadjusted P value, SE standard error
Of the nine epigenetic fingerprint loci, five were at least nominally associated (P < 0.05) with cis-gene expression (1 Mb window). Two, marked with an asterisk (*),
were associated after adjusting for the number cis-genes, i.e., genes within 1 Mb. Annotated gene refers to the proximity-based annotation of the methylation
probe (CpG) to a gene by Illumina. Probe gene refers to the gene associated with the gene expression (GEX) probe

Fig. 2 Integration of gene expression and metabolomics networks into the epigenetic fingerprint loci. Black diamonds represent epigenetic loci,
blue rectangles represent metabolites, and purple ellipses represent genes. Red edges indicate negative associations/correlations and green
positive. Thicker edges represent the 12 FDR significant metabolite–gene expression correlations. For improved visualization all metabolite-gene
expression associations with P < 0.001 are represented
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[50–53, 65]. High rates of diabetes and glucose intoler-
ance have been reported amongst MI survivors [7, 8], a
trend that has been increasing over time [66]. Even indi-
viduals without diagnosed diabetes prior to MI have high
rates of impaired glucose tolerance and diabetes after an
MI [7]. Thus, the component of the epigenetic fingerprint
encompassing cg23541257 and cg10073091, and their
downstream transcriptomic and metabolomic associa-
tions, may reflect post-MI epigenetic regulation related
to obesity, insulin resistance, and diabetes.
Of the remaining metabolites, only mannose had a

previously reported association with CVD or MI.
ECHDC2 was significantly associated with mannose, a
water-soluble fiber that may have protective effects for
MI [67]. ECHDC2 encodes for a mitochondrial protein
involved in mediating susceptibility to myocardial ische-
mia/reperfusion injury in rats and was shown to increase
BCAA metabolism in rats [68].

Limitations
The primary limitation of this study is the low numbers
of incident MI events. With fewer than 20 incident MI
events in each KORA and NAS, the epigenetic finger-
print was developed based on limited event observations.
In post hoc power calculations for the initial, screening,
EWAS highlight this with many observed effects below
the traditional 80% power cutoff (Additional file 1:
Figure S1). However, our multi-staged design still
allowed for the removal of CpGs that do not contribute
to prediction, and the epigenetic fingerprint provided
significant discrimination in an independent cohort, with
a larger number of events than either KORA or the
NAS. A related limitation is the varying follow-up times
for the studies and event rate for the cohorts. This could
introduce variability which might obscure some CpGs
that may have improved our MI discrimination models.
However, the varying follow-up times helps insure that
the CpGs in the final model are those whose post-MI
alterations in methylation are stable over varying
follow-up time windows. Showing replicability across
cohorts with varying incidence rates, which may occur
due to sampling decisions or underlying clinical
conditions, helps to demonstrate the robustness of the
results. Another limitation of this study is that the vast
majority of the CpGs from the 450 K array were missing
in > 1 individuals in KORA and thus not used. Though
this restriction insured only the highest quality CpGs
were used, insured all CpGs could participate in the
elastic net model, and improved power in the EWAS, it
does mean that CpGs that possibly significantly discrim-
inate MI were excluded. Future studies may consider
imputation or sequencing methods to improve CpG
availability. Another limitation is that we cannot dis-
count the possibility that some of the MI fingerprint

discrimination is driven by the effect of lifestyle changes.
Though the EWAS did adjust for changes in BMI,
physical activity, smoking, and alcohol consumption, it
is still possible that unmeasured confounding from
lifestyle changes such as diet or occupation remains.
Another limitation of this analysis is the generalizability.
Both KORA and InCHIANTI contained only European
ancestry individuals, and while NAS contained some
non-European ancestry individuals, the proportion was
extremely small. It would be beneficial for future studies
to test these epigenetic loci to see if they change in
methylation discriminates between individuals with and
without an incident MI in ethnically diverse cohorts.
The DNA methylation-gene expression associations
observed in KORA were not observed in results
published in the BIOS consortium QTL browser
(https://genenetwork.nl/biosqtlbrowser/) [15, 16]. The
browser only reported the independent results with FDR
corrected P < 0.05; thus, our results may simply not have
achieved this stringent statistical cutoff. Additionally,
epigenetic differences between BIOS and KORA, due to
lifestyle or exposure history, may account for the lack of
overlap between the results. Leukocyte DNA methyla-
tion may not reflect methylation with cardiac tissue;
however, it may be a proxy for methylation there or
reflect systemic changes indicative of a recent MI.
Additionally, because the elastic net model prunes sets
of highly correlated predictors at random, the selected
loci may only be proxies for those whose change is truly
due to the occurrence of an incident MI. Finally, with
only one time point after the occurrence of the incident
MI, we are unable to determine the rate of change of the
epigenetic fingerprint loci after an MI. Whether these
epigenetic changes occur immediately and then remain
stable or occur slowly and continue to diverge after an
incident MI is a topic for future investigations in cohorts
with three or more methylation assessments.

Conclusion
Incident MI is significantly associated with changes in
methylation at multiple CpGs, nine of which compose an
epigenetic fingerprint representing stable, medication-inde-
pendent, MI-associated alterations in the epigenetic profile.
The loci that composed the epigenetic fingerprint were as-
sociated with the expression of genes related to cholesterol
metabolism (DCHR24) and vascular remodeling (PDE10A).
By integrating the epigenetic-transcriptomic associations
with metabolomics data, we were able to visualize an inte-
grated ‘omics network revealing the potential biochemical
effects of these epigenetic loci. Three of the nine loci were
incorporated into this integrated ‘omics network, each of
which linked to a gene or metabolite implicated in BCAA
metabolism. The most connected genes, PLGS and
HSPB11, were also linked to gut microbiome associated
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metabolites. Taken together, this multi-omic network
suggests that epigenetic changes after an incident MI may
be linked to BCAA metabolism and possibly inform on the
development impaired glucose tolerance and diabetes
secondary to MI.

Methods
Study cohorts
To develop the epigenetic fingerprint, we used paired
samples from the KORA S4 and KORA F4 cohorts.
KORA S4 is the baseline examination of individuals liv-
ing in the Augsburg region, Germany, with examinations
conducted from 1999 to 2001 [69]. KORA F4 is a
follow-up survey of KORA S4 and was conducted from
2006 to 2008 [70]. After removing individuals with
previous MI at the KORA S4 enrollment, there were
1103 individuals with paired methylation data from KORA
S4 (i.e., “baseline”) and KORA F4 (i.e., “follow-up”).
Methylation at both time points was assessed via the
Illumina Infinium HumanMethylation450k platform. MI
events were assessed for all KORA participants via their
enrollment in the Augsburg MI registry [71]. There were
13 incident MI occurrences between baseline and
follow-up.
We refined the epigenetic fingerprint in the Norma-

tive Aging Study (NAS) [72] and replication was per-
formed in the Invecchiare nel Chianti (InCHIANTI)
cohort [73]. NAS is an ongoing longitudinal study
established in 1963. Men free of any known chronic
disease or medical conditions and aged 21–80 were
recruited at baseline and followed-up with medical
examinations every 3–5 years. Examinations included
medical and lifestyle questionnaires as well as physical
exams and blood collection for laboratory tests.
Methylation was assessed using the Illumina Infinium
HumanMethylation450k platform. There were 344
NAS participants, 333 of which were of European an-
cestry. We observed 14 incident MI events in NAS,
with all but one occurring in European ancestry
individuals.
InCHIANTI is a population-based cohort selected

from residents of the Chianti region of Tuscany, Italy.
Individuals aged 20 and older were recruited and
assessed at both a baseline (1998–2000) and 9-year
follow-up (2007–2009) examination. As in KORA and
NAS, methylation was assessed using the Illumina
Infinium HumanMethylation450k platform. MI was
assessed using questionnaires at both baseline and
follow-up examinations, and events adjudicated using
data from hospital records, electrocardiogram diagnos-
tics, and cardiac enzyme assays. Individuals with preva-
lent MI at baseline were excluded. This left 443
InCHIANTI participants for analysis; 50 had an incident
MI during follow-up.

Only incident MIs that occurred between the baseline
and follow-up examinations were treated as events. All
studies received written and informed consent from all
participants at all time points and were approved by
their respective ethical boards. Complete descriptions of
all studies appear in the Additional file 1, and clinical
covariates for all cohorts can be found in Table 1.

Normalization and technical factors for methylation data
In KORA, the methylation beta values were normalized
using a beta-mixture inter-quartile (BMIQ) normalization
[74] after background correction. To adjust for technical
factors, 20 principal components derived from the control
probes on each chip were used [75]. Estimated cell counts
[76] were also included in the analysis to adjust for
heterogeneity in cell composition. This normalization,
technical factor adjustment, and inclusion of the esti-
mated cell counts match previous analyses of KORA
methylation data [24, 77].
NAS also used BMIQ normalization after back-

ground correction to normalize the methylation probe
values. To adjust for technical factors, variables for
the plate and position of the chip, row, and column
were included in each analysis as well as estimated cell
counts [76]. InCHIANTI used the background correc-
tion and dye-bias equalization method as implemented
in noob in the minfi R package [78, 79], and probes
were normalized using the approach implemented in
dasen in the wateRmelon R package [80]. Technical
factors adjusted for in the InCHIANTI models were
estimated cell counts [76], batch, slide, and array. Full
details on the design, methylation assessment and
normalization, and technical factor adjustment can be
found in the Additional file 1.

Development of the epigenetic fingerprint
We developed the epigenetic fingerprint via a
multi-step process in the KORA and NAS cohorts. In
the first step, we used an epigenome-wide association
study (EWAS) in KORA to determine CpGs whose
change in methylation from baseline to follow-up is
associated with an incident MI occurring during this
time interval. We used a generalized estimating equa-
tion (GEE) model to estimate the degree to which
change in methylation (from a defined baseline of 0 to
the observed difference) is influenced by the occurrence
of an incident MI between baseline and follow-up while
accounting for covariates at both baseline and
follow-up and for the within individual correlation
between covariates. The use of the GEE model in this
scenario could shrink the standard errors, which would
inflate the number of false positives. However, this is
explicitly accounted for in the multi-stage design by
which we allow for false positives in the first stage to
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maximize inclusion of potentially predictive CpGs.
False positives are removed by the use of penalized re-
gression, elastic net model, in two independent cohorts
before the final model is determined. False positive
CpGs which are not predictive of the outcome would
be eliminated by the elastic net when applied to an
independent cohort not used in the CpG discovery.
Prior to calculating the change in methylation over
time, the methylation β values were adjusted for cohort
specific technical factors including estimated cell
counts [76]. The residuals from this regression were
used to estimate the follow-up—baseline methylation
difference (ΔCpG). At baseline, ΔCpG was defined as 0
(Additional file 1).
We associated ΔCpG in KORA with a binary indica-

tor for the occurrence of an incident MI between the
two samplings using a single adjustment model which
adjusted for age, sex, body mass index (BMI), type 2
diabetes, hypertension, physical activity, pack-years of
smoking, and alcohol consumption (g/day) both at
baseline and follow-up. Physical activity was a binary
variable indicating if the individual considered
themselves to be active or not. Pack-years of smoking
was defined as the packs of cigarettes smoked per day
(1 pack = 20 cigarettes) times the years spent smoking.
In order to be able to calculate the methylation differ-
ence for each individual and each methylation locus,
we restricted the EWAS to those CpGs with no
missing values (N = 24,057). This allowed any CpGs
identified in the EWAS to be carried forward into the
elastic net model, which does not allow for missing
values in the predictors. We created the epigenetic
fingerprint from those CpGs with a false discovery rate
(FDR) [81] P < 0.15. We used a liberal FDR cutoff at
this stage to maximize inclusion of CpGs that showed
even a weakly suggestive level of association, while
acknowledging the potential inclusion of many “false
positive” CpGs which were to be eliminated using an
elastic net model in the next stage of analysis. We
used the longpower package in R to conduct a post
hoc power analysis which accounted for the disparity
in observed MI events versus total samples as well as
the correlation of the CpGs between examinations and
among those who had an MI versus those who did not
(Additional file 1: Figure S1). The expectation of low
power in this initial, screening, EWAS is a primary
motivation for the use of a penalized regression
method (elastic net) in an independent sample to
down weight predictors that initially arose due to
noise and low power. Those CpGs that did not
contribute to the fingerprint discrimination would be
excluded in the elastic net model.
We used an elastic net model (logit link) implemented

in KORA for the initial selection of the epigenetic

fingerprint CpGs from those with FDR P < 0.15 in the
EWAS. Given that the model would be overfit, we re-
fined the elastic net using independent samples from
NAS, by estimating a second elastic net model using
only those CpGs with non-zero coefficients from the
initial KORA elastic net model. We assessed the
predictive power of these models via the area under the
receiver operating characteristic curve (AUC) [82, 83].
As these epigenetic loci could be associated with
post-MI medication usage [84, 85], we used KORA to
associate each medication type commonly prescribed
post-MI with the CpGs retained in the NAS elastic net
model. The CpGs in the model had already been
assessed for associates with MI independent of age, body
mass index, smoking, alcohol consumption, type 2
diabetes, and hypertension in the EWAS; thus, those
confounders were not retested here. We used ΔCpG as
our outcome and tested each locus in the epigenetic
fingerprint for associations with the use of seven
commonly prescribed medication types: beta-blockers,
ACE-inhibitors, diuretics, angiotensin receptor blockers,
calcium channel blockers, statins, and anti-platelet med-
ications [86, 87]. We encoded each medication as a fac-
tor variable and tested for epigenetic differences
associated with either stopping or starting the medica-
tion. A Bonferroni correction was used to determine
medication-associated CpGs, and any associated CpGs
were removed from the CpGs that composed the epi-
genetic fingerprint. We used a Bonferroni correction to
reduce the probability of removing epigenetic loci not
truly associated with medication usage.
Thus, the final epigenetic fingerprint loci were com-

posed of those CpGs retained in NAS but not associated
with medication usage. The discrimination of this final
list of CpGs was retested via logistic regression in
KORA and NAS, to allow for reweighting of the coeffi-
cients after removing medication-associated CpGs. The
independent out-of-sample discrimination of the epigen-
etic fingerprint was evaluated, using logistic regression, in
InCHIANTI.
All analyses were performed in R [88]. Generalized es-

timating equations used in the EWAS were implemented
in geepack [89], and the elastic net models used were
implemented in glmnet [90]. The packages ROCR [91]
and verification were used for plotting and calculating
statistics associated with receiver operating characteristic
(ROC) curves.

Association of epigenetic fingerprint with gene
expression and integration with metabolomics networks
As regulation of gene expression is a primary conse-
quence of DNA methylation, we associated each of
the CpGs that composed the epigenetic fingerprint
with gene expression in KORA F4. Gene expression
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was assessed on the Illumina HumanHT-12v3 array.
A total of 713 individuals had both methylation and
gene expression in KORA F4. We associated each
epigenetic fingerprint CpG with the gene expression
of all genes within 1Mb of the loci (cis-genes). We
adjusted for age and sex in the models as well as estimated
cell counts and technical factors. As a multiple-testing
correction, we used a Bonferroni correction for the num-
ber of genes within the 1Mb window for each CpG.
We created a multi-omics network model by integrating

the CpG-gene expression associations with integrated
metabolomics data using gene expression-metabolomics
associations based on KORA F4 data. The KORA F4 data
came from a published Spearman correlation-based blood
metabolome-transcriptome network [17]. We extracted
the relevant gene expression probes and metabolites from
this network, removing any metabolites of unknown
structure. Based on the reported Spearman correlation,
we calculated the P values and used an FDR correction to
determine significant associations. Finally, we used
Cytoscape® [92] to integrate all suggestive (P < 0.001) gene
expression-metabolomics associations with any nominal
(P < 0.05) methylation-gene expression associations. Both
P value cutoffs were selected to allow for better
visualization of the implicated pathways with a more strin-
gent cutoff used for the gene expression-metabolomics
data to account for the larger number of tests. A diagram
of the procedure for the development of the epigenetic
fingerprint and integration with gene expression and
metabolomics data is given in Fig. 3.

Additional file

Additional file 1: Supplemental methods, Table S1. CpGs from KORA
EWAS. Those CpGs with a false discovery rate P < 0.15 in an epigenome-
wide association study in KORA using the difference in methylation
between the baseline and follow-up exams as the outcome (after
adjustment for technical factors) and the occurrence of an MI as the
predictor while adjusting for clinical covariates (at both baseline and
follow-up) in a generalized estimating equations model. Table S2. The
174 CpGs which were retained from the initial elastic net model
performed in KORA. Table S3. Epigenetic loci with non-zero coefficients
from the NAS elastic net model. Table S4. AUC for the model fit with
the loci with non-zero betas from the NAS elastic net in KORA, NAS, and
InCHIANTI. Table S5. Medication usage in KORA at baseline and follow-
up. We divide out the medication usage in KORA at (a) baseline and (b)
follow-up for those individuals who did not develop and incident MI
during the observation time (MI free) vs those that did (MI cases).
Table S6. Association between 11 epigenetic fingerprint loci and
medications. Associations were performed relative to both starting and
stopping six classes of medications: diuretic, beta-blockers, anti-platelet,
calcium channel blocker, statins, ACE-inhibitor, and angiotensin inhibitor.
Table S7. Count of the genes within 1 Mb of each epigenetic fingerprint
loci. Table S8. Integration of methylation, gene expression, and
metabolomics for the suggestive (P < 0.001) gene expression-metabolite
associations. Figure S1. Post hoc power estimations for the observed ef-
fects at our FDR cutoff of 0.15 for the initial screening EWAS. (ZIP 196 kb)
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