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Abstract

Background: Preterm birth is a leading cause of perinatal mortality and long-term health consequences. Epigenetic
mechanisms may have been at play in preterm birth survivors, and these could be persistent and detrimental to
health later in life.

Methods: We performed a genome-wide DNA methylation profiling in adult twins of premature birth to identify
genomic regions under differential epigenetic regulation in 144 twins with a median age of 33 years (age range 30–36).

Results: Association analysis detected three genomic regions annotated to the SDHAP3, TAGLN3 and GSTT1
genes on chromosomes 5, 3 and 22 (FWER: 0.01, 0.02 and 0.04) respectively. These genes display strong
involvement in neurodevelopmental disorders, cancer susceptibility and premature delivery. The three identified
significant regions were successfully replicated in an independent sample of twins of even older age (median age 66,
range 56–80) with similar regulatory patterns and nominal p values < 5.05e−04. Biological pathway analysis detected
five significantly enriched pathways all explicitly involved in immune responses.

Conclusion: We have found novel evidence associating premature delivery with epigenetic modification of important
genes/pathways and revealed that preterm birth, as an early life event, could be related to differential methylation
regulation patterns observable in adults and even at high ages which could potentially mediate susceptibility to age-
related diseases and adult health.
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Background
Preterm birth (PTB) or premature birth is defined as birth
before 37 weeks of pregnancy. With a prevalence estimated
from 5 to 18% in singleton pregnancies across 184 coun-
tries according to the World Health Organization and over
50% in twin pregnancies in the USA [1], PTB is a leading
cause of perinatal mortality as well as long-term morbidity
and health consequences. Survivors of PTB were subject to
adaptive mechanisms that might be deleterious later in life,
and are more susceptible to early on-set chronic diseases
[2] including cardiovascular disease [3], metabolic disorders
[4], respiratory complications [5] and mental and cognitive

impairments [6]. Despite the strong epidemiological
evidence, the molecular mechanisms and etiology behind
these phenotypes have been poorly understood. Preterm
infants are exposed to various stressful conditions in the
peridelivery period, a critical stage for their organ develop-
ment. Molecular mechanisms including epigenetic modifi-
cation may have been involved in the adaptation to adverse
environment which, in the long-run, could be detrimental
to health [7–9]. It has been hypothesized that epigenetic
modifications such as DNA methylation induced by PTB
may lead to long-term consequences and increased suscep-
tibility to adult-onset diseases [10–12].
Advantaged by the emerging new technology in genomic

analysis of DNA methylation, epigenome-wide association
studies (EWAS) have been done to look for DNA methyla-
tion markers of PTB in neonates [13–16] and have
reported differentially methylated sites implicated in
neural function [16], or with increased risk for adverse
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health outcomes later in life [13]. Notably, PTB-associated
methylation patterns were also investigated in adolescents
by Cruickshank et al. [14] and Simpkin et al. [15] in their
longitudinal samples. Although relatively large numbers of
CpG sites were found significantly differentially methyl-
ated in association with PTB at birth, they are largely re-
solved in adolescents in both studies. Nevertheless,
persistent methylation differences were identified at ten
CpG sites in the study by Cruickshank et al. [14] reflecting
a lasting epigenetic effect of PTB.
The fact that PTB is associated with an increased risk of

chronic diseases in adults suggests that it is of high import-
ance to focus on the epigenetic signature of PTB that me-
diates the long-term health consequences. Given the high
prevalence of PTB in twin pregnancies, epigenetic analysis
of PTB in twins is therefore especially important and valu-
able for the health of the twin population and for the gen-
eral population as well. Using relatively large numbers of
adult twin samples for discovery (144 twins) and replica-
tion (350 twins), we conducted an epigenomic profiling of
the DNA methylome to look for genomic sites and regions
under epigenetic regulation in association with PTB in
adult subjects.

Methods
The discovery samples
The discovery samples in this study consisted of 72 pairs
of identical twins (144 individuals, 78 males and 66
females) aged 30 to 36 years with a median age of 33
(Table 1). Gestational ages were collected from the Danish
Medical Birth Registry (DMBR) established in 1973. The
median of gestational age was 39 weeks with a minimum
of 33 and a maximum of 42 weeks. A total of 26 twins had
their gestational ages < 37 weeks. The samples formed a
subset (those born after 1973 when gestational age was

recorded by DMBR) of 150 pairs of identical twins dis-
cordant for birthweight used in an EWAS by Tan et al.
[17]. Figure 1 displays the samples by plotting individual
gestational age against birthweight. There is a moderate
correlation of 0.52 between gestational age (PTB indicated
by empty spots) and birthweight. Although no significant
association was found between birthweight and DNA
methylation [17], we adjusted for individual birthweight in
all our analyses.

Blood sampling and DNA extraction
Blood sampling and DNA preparation were described by
Tan et al. [17]. In brief, ethylene di-amine tetra acetic acid
(EDTA)-anticoagulated blood samples were collected. The
blood was centrifuged at 1000g for 10 min, and buffy-coat
was frozen in aliquots at − 80 °C. DNA was isolated from
the buffy-coats using the salt precipitation method applying
either a manual protocol or a semi-automated protocol
based on the Autopure System (Qiagen, Hilden, Germany).
Bisulphite treatment of 500 ng template genomic DNA was
carried out with the EZ-96 DNA methylation kit (Zymo
Research, Orange County, USA) following the manufac-
turer’s protocol.

DNA methylation data
Genome-wide DNA methylation was analysed using the
Illumina Infinium HumanMethylation450 Beadchip
assay (Illumina, San Diego, CA, USA) at Leiden Univer-
sity Medical Center or at GenomeScan B.V., Leiden, The
Netherlands. The array interrogates more than 485,000
CpG sites across and beyond gene and CpG island re-
gions in the human genome. The laboratory experiment
was conducted according to the array manufacturer’s

Table 1 Descriptive statistics for the discovery and replication
samples

Variables Discovery Replication

Age, year

Median 33 66

Range 30–36 56–80

Gestational age, week

Median 39 0 (weeks before term)

Range 33–42 0–8 (weeks before term)

Report method DMBR Midwife

Sample size

Male 78 192

Female 66 158

Total 144 350

PTB 26 40 (more than 3 weeks before term)

DMBR Danish Medical Birth Registry

Fig. 1 Scatter plot displaying the samples by gestational age and
birthweight. PTB subjects tend to have low birthweight with a
moderate correlation of 0.52
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instructions. Twins of each pair were processed together on
the same array to minimize batch effect. The quality of
DNA methylation data was controlled by calculating a de-
tection p value defined as the proportion of samples report-
ing background signal levels for both methylated and
unmethylated channels. The detection p was calculated
using the free R package minfi (http://bioconductor.org/
packages/release/bioc/html/minfi.html). Probes with detec-
tion p > 0.05 were dropped from subsequent analysis. In
addition, we also removed CpG probes harbouring SNPs
considering potential disruption on their methylation levels
by heterozygous SNPs. As usual, we also dropped methyla-
tion data on sex chromosomes to focus on autosomal CpG
sites. A total of 473,864 CpGs were available for subsequent
analysis. Data normalization was done using the
subset-quantile within-array normalization (SWAN) [18]
implemented inminfi. At each CpG site, the DNA methyla-
tion level was summarized by calculating a “beta” value de-
fined by the Illumina’s formula as β =M/(M+U+ 100),
where M and U are methylated (M) and unmethylated (U)
signal intensities measured at the CpG site. We further re-
moved CpGs with β < 0.05 [19] leaving 427,555 CpGs for
statistical analysis. Both raw and processed DNA methyla-
tion data for the discovery samples have been deposited to
the NCBI GEO database (http://www.ncbi.nlm.nih.gov/geo)
under accession number GSE61496.

The replication samples
The replication sample was comprised of 175 pairs of
identical twins (350 individuals, 192 males and 158 fe-
males) aged 56 to 80 years with a median age of 66
(Table 1). The estimated weeks before term birth were
provided by midwives with a range from 0 to 8 weeks.
Preterm birth was defined as birth at least 3 weeks be-
fore term. A total of 40 twins were found as preterm
births. Blood sampling, DNA extraction and methylation
analysis were performed as described for the discovery
samples. The methylation data were also normalized
using the Subset-quantile Within Array Normalization
(SWAN) [18]. Methylation “beta” values were likewise
calculated using the Illumina’s formula.

Estimating and adjusting cell composition
Cell composition in whole blood can change with age.
Although the age range of our discovery samples was
relatively short, that of the replication samples was
24 years (Table 1). For the discovery samples, we con-
trolled for this issue by estimating and correcting for cell
composition in each individual. We estimated cell com-
position for six blood cell types: CD8T, CD4T, natural
killer cell, B cell, monocyte and granulocyte based on
our measured DNA methylation data from whole blood
using an approach proposed by Houseman et al. [20],
using the R package minfi. For the replication samples,

blood leukocyte subtypes (monocytes, lymphocytes, ba-
sophils, neutrophils and eosinophiles), counted using a
Coulter LH 750 Haematology Analyser, were available.
Missing blood cell counts were imputed by a modified
version of the method supplied by PredictCellComposi-
tion (www.github.com/mvaniterson/predictcellcomposi-
tion). The effect of cell composition was then adjusted
for by including the estimated proportion of each cell
type as covariates in the regression analyses.

Data analysis
The association between DNA methylation and PTB was
investigated on both single CpGs and genomic regions
through fitting linear models that regressed the level of
DNA methylation on PTB status adjusting for sex, birth-
weight and cell compositions. Before fitting the models,
DNA methylation β-values were transformed into M
values using logit transformation to ensure normal or
approximately normal distribution.

Single-CpG-based analysis
We applied a linear regression model with a robust sand-
wich variance estimator to regress the methylation M
values on PTB status (preterm coded as 1 and term coded
as 0), sex, birthweight and estimated cell compositions.
The sandwich variance estimator was introduced to take
into accounts the intra-pair twin correlation on DNA
methylation. By estimating and testing the regression coef-
ficient for PTB, we were interested in identifying differen-
tially methylated CpG probes (DMPs) of PTB. The model
was fitted using the clubSandwich package in R (https://
cran.r-project.org/web/packages/clubSandwich). P values
were adjusted for multiple testing by calculating the false
discovery rate [21] (FDR) with genome-wide significance
defined as FDR < 0.05.

Multiple-CpG-based analysis
On top of the single-CpG-based analysis, we further ex-
tended our analysis to multiple CpGs to look for differ-
entially methylated genomic regions (DMRs) in
association with PTB. This was done using the bum-
phunter approach introduced by Jaffe et al. [22] imple-
mented in the R package minfi. The methylation M
values were first regressed on sex, birthweight and esti-
mated cell compositions. The residuals from the regres-
sion and PTB status were then submitted to the
bumphunter() function in minfi. The approach assumes
that the locus-specific estimates of regression coeffi-
cients (βs) are smooth along the strand of a chromo-
some and applies the loess smoothing technique to
smooth coefficient βs within a pre-defined chromosomal
region (300 base pairs in our analysis). After smoothing,
the 99th percentile of the smoothed βs can be calculated
to obtain upper and lower thresholds. These thresholds
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are then used to define hyper- or hypo-methylated
DMRs with smoothed peaks above or below the thresh-
olds. For each DMR identified, a sum statistic is calcu-
lated by taking the sum of the absolute values of all the
smoothed βs within that region. The sum statistic is then
used to rank all DMRs with the top-most important
DMR having the highest sum statistic value. Statistical
significance of the DMRs is assessed by computer per-
mutation (we set 1000 replications) in combination with
correction for multiple testing to obtain family-wised
error rate (FWER) [22].

Biological pathway analysis
Advantaged by the multiple-CpG-based analysis that out-
puts genomic locations of the identified DMRs, biological
pathway analysis was conducted by submitting the chromo-
somal coordinates of the detected DMRs to the Genomic
Regions Enrichment of Annotations Tool (GREAT) at
http://bejerano.stanford.edu/great/public/html/ to analyse
the functional significance of cis-regulatory regions identi-
fied by localized measurements of DNA binding events
across an entire genome [23] using the Genome Reference
Consortium Human Build 37 (GRCh37) as the RefSeq
database. GREAT incorporates annotations from 20 ontol-
ogies and associates genomic regions with genes by defining
a ‘regulatory domain’ for each gene such that all
non-coding sequences that lie within the regulatory domain
are assumed to regulate that gene. The ‘two nearest genes’
was assigned as the association rule from genomic regions
to genes, which extends each gene’s regulatory domain
from its transcription start site (TSS) to the nearest up-
stream and downstream TSS, up to 1 MB in each direction.
Both the binomial test over genomic regions and the hyper-
geometric test over genes were performed to provide an
accurate picture of annotation enrichments [23].

Genomic plotting
Visualization and annotation of genomic segments host-
ing regions under differential methylation were realized
by integrative plotting using R package Gviz [24]. Infor-
mation on genomic annotation was taken from the
UCSC hg19 assembly.

Results
Discovery EWAS
We first performed an EWAS on the 144 discovery sam-
ples using regression analysis on each of the 473,864
CpGs after filtering, measured using the Illumina Infi-
nium HumanMethylation450 Beadchip assay (see the
‘Methods’ section for details). From the volcano plot
(Fig. 2) and Manhattan plot (Additional file 1: Figure
S1), it can be seen that no CpG reached genome-wide
significance level of FDR < 0.05 for the effect of PTB
(Additional file 2: Table S1). We continued our discovery

EWAS by performing genomic region-based analysis
using the bumphunter function in the free R package
minfi (see the ‘Methods’ section for detail). By focusing
on regions with a mean methylation difference of over
10% between PTB and term births, we found a list of
16,508 regions (Additional file 3: Figure S2) and among
them 2651 regions with p value < 0.05 (Additional file 4:
Table S2). Table 2 shows the top six regions with FWER
< 0.1, three of them with FWER < 0.05. Among the top
three DMRs, the most significant was annotated to the
promotor region of SDHAP3 gene on chromosome 5 at
p15.33 exhibiting a clear pattern of hypomethylation
(Figs. 3a and 4a); the second most significant DMR was
hypermethylated in the gene body (second or third in-
tron) of TAGLN3 on chromosome 3 at q13.2 (Figs. 3b
and 4b); and the third DMR was hypermethylated in the
promotor region of the GSTT1 gene on chromosome 22
at q11.23 (Figs. 3c and 4c). Of the three less significant
DMRs with FWER < 0.1, two were hypomethylated in
the promotor region of the DUSP22 and NFYA/
LOC221442 genes on chromosome 6 (Fig. 5a, b), and
one was hypermethylated in the promotor of mir886 on
chromosome 5 (Fig. 5c). In Additional file 5: Table S3,
we show the detailed information on statistical estimate
and biological annotations for single CpGs in each of the
DMRs in Figs. 3, 4 and 5 (Table 2). CpGs in each DMR

Fig. 2 Volcano plot displaying minus log scaled p value with base
10 from single CpG site-based EWAS plotted against regression
coefficient of PTB. The top red dots are four CpGs
with 0.1 < FDR < 0.2
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show similar direction of effect and tend to have low
nominal p values that may, however, not reach statistical
significance individually.

Functional analysis of significant DMRs
To study the biological functions of the 2651 regions
with p < 0.05 (Additiona file 5: Table S2), we used the
online annotation tool GREAT (see the ‘Methods’ sec-
tion) for exploring the cis regulatory regions of nearby
genes, making use of the Molecular Signatures Database
(MSigDB) which is one of the most widely used and
comprehensive databases of gene sets for performing
gene set enrichment analysis. The analysis identified five
MSigDB pathways, all involved in immune responses

(Table 3). Both the binomial test over genomic
regions and the hypergeometric test over genes
showed very high significance for the five pathways as
indicated by their FDRs (FDR < 8.13e−28 for binomial
test; FDR < 9.37e−03 for hypergeometric test).

Replication of top significant DMRs
Using the old twin samples, we performed independent
replication analysis of the six DMRs in Table 2. For each
DMR, the same set of CpGs as in the discovery stage
was selected according to genomic location. Differential
methylation between PTB and term birth replication
samples was estimated in the same manner as for the
discovery analysis (adjusting for age, sex and cell

Table 2 Characterizations of the six identified DMRs with FWER < 0.1

DMR Chr Start End Discovery Replication

Value p value FWER Value p value Linked genes Gene region Location to CGI

1 5 1,594,282 1,594,863 − 0.505 4.46E−07 0.01 − 0.157 1.90E−04 SDHAP3 Body, TSS200,
TSS1500

Island

2 3 111,730,545 111,730,545 1.571 7.92E−07 0.02 0.891 8.88E−05 TAGLN3 Body NA

3 22 24,384,159 24,384,573 0.455 2.28E−06 0.04 0.184 5.03E−04 GSTT1 1stExon, 5′UTR, TSS200 Island

4 6 291,687 292,596 − 0.453 4.26E−06 0.08 0.311 2.55E−05 DUSP22 1stExon, 5′UTR,
TSS200, TSS1500

Island, N-Shore

5 6 41,068,646 41,068,752 − 0.512 4.46E−06 0.08 0.382 1.70E−05 NFYA,
LOC221442

3’UTR Island

6 5 135,415,258 135,416,613 0.271 4.90E−06 0.10 0.197 8.68E−06 MIR886 Body, TSS200,
TSS1500

Island, N-Shore,
S-Shore

Fig. 3 The detected differential DNA methylation patterns and corresponding genomic annotations in the three discovery DMRs with FWER<
0.05, on chromosome 5 (a), chromosome 3 (b), and chromosome 22 (c) and their corresponding replication results (d–f). The red line is the
smooth curve for the difference in methylation (the regression coefficient of PTB) between preterm and term birth subjects

Tan et al. Clinical Epigenetics  (2018) 10:87 Page 5 of 10



composition). Figure 3d–f displays the replicated differ-
ential methylation patterns corresponding to the three
discovery-stage DMRs in Fig. 3a–c. As shown in Fig. 3,
the three DMRs with FWER < 0.05 were all nicely repli-
cated with nearly the same patterns. Table 2 shows very
low nominal p values for the replication DMRs: 1.9e−04,
8.88e−05 and 5.03e−04 respectively.
In Fig. 5d–f, we show the replication results for the

three less significant discovery DMRs with 0.05 < FWER <
0.1. Interestingly, although a similar methylation pattern
was replicated for the DMR on chromosome 5, the other
two DMRs on chromosome 6 were replicated with again
similar patterns but opposite directions. The correspond-
ing patterns in the replication samples were not random

patterns considering their very low nominal p values
(2.55e−05, 1.7e−05 and 8.68e−06 respectively) (Table 2).

Discussion
We have performed the first genome-wide association
study on the epigenetic effect of preterm birth in adults.
Cruickshank et al. [14] investigated PTB-related epigen-
etic changes at birth and at 18 years of age and reported
no genome-wide significant finding in their samples
from 18-year-olds. Likewise, our analysis did not identify
any CpG sites reaching genome-wide significance in the
discovery samples of young adults. The highly valuable
findings in this study come from genomic region-based
association analysis that jointly tested the association of

a

b

c

Fig. 4 Genomic regions hosting the significant discovery DMRs (indicated by the red circles) on chromosomes 5 (a), 3 (b) and 22 (c) plotted
against the CpG sites in Fig. 3 and corresponding gene annotations
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groups of adjacent CpGs that form DMRs. As shown in
Table 2, multiple genomic regions were found as differ-
entially methylated in association with PTB. The results
indicate that, as an early life event, PTB could impose
differential epigenetic patterns that can be detected in
the DNA methylome of adult subjects in their thirties as
in the discovery samples and even at old ages as in the
replication samples.
Among the genes linked to the most significant DMRs

in Table 2, SDHAP3 has very recently been implicated in
smoking, as significantly decreased methylation at the
CpG island within the promoter region of SDHAP3 on
chromosome 5 was reported in smoking-exposed foe-
tuses [25]. The PTB associated methylation pattern as
shown in Figs. 3a and 4a points to the same direction
and genomic location although maternal smoking infor-
mation is not available in our study. A differential DNA

methylation pattern was also found in SDHAP3 when
comparing autistic brains and control [26]. The second
most significant DMR is in the gene body of TAGLN3
(Fig. 4b). This gene (also known as NP22, encoding a
novel cytoskeleton-associated protein) is differentially
expressed in human alcoholic brain [27] and in the an-
terior cingulate cortex of schizophrenia [28].
Perhaps, the most interesting DMR found in this study

is the third DMR in Table 2. This DMR sits in the pro-
motor region of GSTT1 (glutathione S-transferases gene
theta 1) on chromosome 22 (Fig. 4c). Polymorphisms in
the GST genes are partially responsible for the variability
in GST enzymatic activity across individuals. Maternal
genetic variations (the null genotype or homozygous de-
letion) in GSTT1 have been intensively associated with
an increased risk of preterm delivery and low birth-
weight, alone [29, 30] or in combination with smoking

Fig. 5 Differential DNA methylation patterns in three discovery DMRs with 0.08 < FWER< 0.1, on chromosome 6 (a, b) and chromosome 5 (c) and
their corresponding replication results (d–f). The red line is the smooth curve for the difference in methylation (the regression coefficient of PTB)
between preterm and term birth subjects

Table 3 MSigDB Pathways enriched by DMRs with nominal p < 0.05 from GREAT analysis

Binomial model Hypergeometric model

Term Name Rawp value FDR Fold
enrichment

Exp. Obs.
Gene Hits

Rawp value FDR Fold
enrichment

Exp. Obs.Gene
Hits

TotalGenes

Antigen processing and
presentation

1.33e−55 1.76e−52 12.28 6.27 77 3.55e−5 9.37e−3 2.10 13.79 29 80

Graft-versus-host disease 5.65e−53 3.73e−50 14.46 4.63 67 2.17e−6 9.56e−4 2.98 6.38 19 37

Type I diabetes mellitus 1.52e−50 6.72e−48 10.20 7.65 78 1.24e-7 1.63e−4 3.11 7.07 22 41

Allograft rejection 7.25e−50 2.40e−47 12.55 5.42 68 7.10e-7 4.69e−4 3.15 6.03 19 35

Viral myocarditis 4.92e-30 8.13e−28 5.13 15.02 77 9.64e-6 3.18e−3 2.30 11.72 27 68
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[31–33]. The interaction between GSTs and smoking
shows the involvement of epigenetic mechanism that
links maternal behaviour and genetic susceptibility in
contributing to adverse pregnancy outcomes. The associ-
ation between GST genetic variation and PTB has been
observed not only in the mother but also in the child
[34]. In fact, Bustamante et al. [35] found that the child
genotype is responsible for the effect after adjusting for
maternal genotype. As our observation is based on PTB
adults, our result is in line with their conclusion but
from an epigenetic perspective. Most importantly, the
latter suggests that environmental factors could also be
involved in the association between GSTT1 and PTB
through the epigenetic mechanism. Taken together, both
genetic and epigenetic variations in the child can be as-
sociated with PTB. The coherence between genetics and
epigenetics here is sensible because DNA methylation at
the promotor region turns the gene off, which is equiva-
lent to a deletion or the null genotype of the gene.
As an extra effort, we explored the transcriptional pro-

files of the genes linked to significant DMRs. Gene ex-
pression data on two genes, TAGLN3 and GSTT1, were
available from the Agilent Human Gene Expression
Microarray (v3) applied to the same discovery samples.
After adjusting for covariates, no expression difference
was found for TAGLN3 between term birth and PTB (p
= 0.639) while a borderline significance (p = 0.059) for
the down-expression of GSTT1 in PTB (Additional file 6:
Figure S3). Although the expression of GSTT1 can also
be regulated by other mechanisms or influenced by dele-
tion of the gene in PTB subjects, the reduced expression
level in PTB group provides alternative evidence in sup-
port of DNA methylation analysis.
Among the three less significant DMRs in Table 2, the

last one on chromosome 5 is replicated by a similar pat-
tern in the old twins (Fig. 5f). The CpGs in this region are
hypermethylated in the promotor region and gene body of
mir886, a noncoding RNA repressed in cancer [36, 37].
The two DMRs on chromosome 6 display significant pat-
terns (p values 2.55e−05 and 1.70e−05) in the replication
samples but with opposite directions as compared to the
discovery DMRs (hypomethylation in the discovery sam-
ples, and hypermethylation in the replication samples)
which could possibly suggest age-dependent effects. The
DMR located on chromosome 6 from bp 291,687 to
292,596 covers the promotor region of the DUSP22 gene.
Epigenetic alteration of this gene has been shown to medi-
ate Alzheimer’s disease [38] and dementia [39]. Interest-
ingly, hypomethylation of the DUSP22 promotor has been
reported to correlate with duration of service in fire-
fighters [40]. The observed epigenetic modification could
result from exposure to complex mixtures of toxic sub-
stances from burning and overheated materials. Although
the smoking status of mothers of our twins is not

available, the finding among the firefighters could resem-
ble smoking-exposed foetuses. The DMR located from bp
41,068,646 to 41,068,752 on chromosome 6 is at the 3′
UTR of the NFYA (nuclear transcription factor Y) gene.
As a transcription factor, NFYA binds to the CAAT box in
promotors of many genes in eukaryotes and functions as a
regulator of their overexpression in several types of cancer
[41]. Note that the same gene has been found to be per-
sistently hypermethylated by PTB in an epigenome-wide
association study on both newborn and 18-year-old sam-
ples [14]. In brief, the genes covered by these less signifi-
cant DMRs are implicated in neurodegenerative disorders
and risk of cancer as well.
PTB newborns have immature immune systems with

reduced innate and adaptive immune function [42]. It is
interesting to see that four of the five pathways in Table 3
overlap with pathways deduced from genes linked to
CpGs showing significant correlation in maternal and
PTB fetal methylation [43], and that all the five pathways
appeared in the enriched functional pathways from
genes with copy number variations in common miscar-
riage [44]. Results from our biological pathway analysis
reconfirm the importance of the immune system in PTB
but in adult samples. Meanwhile the overlap in bio-
logical pathways could also suggest the broad involve-
ment of immunity in labour complications in general.
Most importantly, the immune implication of PTB could
persist into adult life and even old ages. The high in-
volvement of the immune system in PTB as revealed by
region-based analysis can also be seen from the Manhat-
tan plot for DMRs (Additional file 3: Figure S2) when
compared with the Manhattan plot for single-CpG sites
(Additional file 1: Figure S1). The former displays a
clearer enrichment pattern of DMRs in the major histo-
compatibility complex (MHC) region on chromosome 6.
The fact that the significant DMRs were identified and

replicated in independent and much older samples has a
twofold significance. First, it reveals functional genes dif-
ferentially regulated in association with PTB through
epigenetic mechanism; the latter could serve to link PTB
with maternal environmental exposure or lifestyle fac-
tors to provide clue for prevention of PTB. Second, and
also most importantly, the altered DNA methylation pat-
terns observed in our discovery young adults persist in
old subjects of up to 80 years of age, suggesting that
some of the PTB-associated epigenetic modifications can
be long-lasting or perhaps persistent throughout the en-
tire life. In summary, our genomic region-based analysis
of the DNA methylome identified epigenetic fingerprints
of premature birth in young adult subjects, consistently
replicable in old adults. Functional annotation of the
significant methylation patterns associated with PTB
revealed genes involved in adverse pregnancy outcomes,
in neurodevelopmental disorders and in cancer
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susceptibility, providing epigenetic evidence of
long-term effects of early life events in support of the
developmental origin of disease and health.
Finally, it should be kept in mind that our significant

findings are based on twins. Even though findings from
this study are highly relevant to PTB in general (e.g. the
GSTT1 gene), generalization of our results should be
done with caution because the aetiology of PTB in twins
could involve risk factors specific for twin pregnancies
[45], such as uterine overdistention [46]. Further replica-
tion studies using twin and non-twin samples are
warranted for validation, justification and generalization
of our findings.

Conclusions
This study provides novel evidence for PTB-associated
epigenetic regulation in important genes/pathways and
meanwhile reveals that premature delivery, as an early
life event, could be related to differential methylation
regulation patterns observable in adults and even at high
ages which could potentially mediate susceptibility to
age-related diseases and adult health.
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