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Abstract

human kidney tissue samples (controls, n = 32, p < 0.001).

entities such as renal cancer.

Background: KIBRA has been suggested as a key regulator of the Hippo signaling pathway, regulating organ size,
cell contact inhibition, tissue regeneration as well as tumorigenesis and cystogenesis. We recently reported that
human KIBRA expression depends on a complex alternative CpG-rich promoter system. Our current study aimed at
the identification of epigenetic mechanisms associated with alterations in KIBRA expression regulation.

Results: We identified two separated methylation-sensitive CpG islands located to independent KIBRA promoter
regions. In vitro promoter methylation analysis using human neuroblastoma (SH-SY5Y) and immortalized kidney
cells (IHKE) revealed that total promoter methylation by CpG methyltransferase Sssl resulted in complete abrogation of
transcriptional activity (p < 0.001), while partial methylation by Hpall selectively repressed KIBRA core promoter activity
in kidney cells (p < 0.001). Cell culture-based experiments demonstrated that 5-azacitidine may be used to
restore KIBRA mRNA and protein levels, while overexpression of transcription factor SP1 also induced KIBRA
upregulation (all p < 0.001). Furthermore, SP1 transactivation of KIBRA transcription was largely prevented by
methylation of KIBRA regulatory elements (p < 0.001). Analysis of human kidney biopsies revealed that KIBRA
promoter methylation was associated with human clear cell renal cell carcinoma (ccRCC, n = 8 vs 16 controls,
OR = 1.921, [Cl 95% = 1.369-2.695]). The subsequent determination of KIBRA mRNA levels by real-time PCR in
a larger patient sample confirmed significantly reduced KIBRA expression in ccRCC (n = 32) compared to non-neoplastic

Conclusion: We conclude that epigenetic downregulation of tumor suppressor KIBRA may involve impaired SP1 binding
to functional methylation-sensitive KIBRA promoter elements as observed in human kidney clear cell carcinoma.
Our findings provide a pathophysiological basis for future studies on altered KIBRA regulation in clinical disease
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Background

KIBRA (WWC1), a WW and C2 domain-containing
protein has been identified as an upstream regulatory
component of the Hippo pathway (also known as
Salvador-Warts-Hippo tumor suppressor network), which
regulates cell number by modulating proliferation,
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apoptosis, and differentiation [1-4]. Initially, the Hippo
pathway has been defined in Drosophila melanogaster by
tumor suppressor gene screenings. The inactivation of
Hippo genes including Warts (Wts), Hippo (Hpo), Salva-
dor (Sav), and Mats as well as Merlin (Mer) and Expanded
(Ex) resulted in a comparable phenotype with consider-
able tissue overgrowth [5]. The Hippo pathway is highly
conserved in mammals, and the ability of the WWC pro-
teins to modulate Hippo signal transduction and thus to
inhibit cell proliferation has been proposed to be evolu-
tionarily conserved from fly to men [5, 6]. The Hippo
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pathway negatively regulates the activity of two main
downstream mediators: Yes-associated protein (YAP) and
its family member the transcriptional co-activator with
PDZ-binding motif (WWTR1/TAZ) [7-9]. Upon phos-
phorylation, YAP and TAZ promote proliferation and in-
hibit apoptosis by interaction with different transcription
factors, including TEA domain family member (TEAD)
1-4 [10]. KIBRA acts as an upstream tumor suppressor
protein that regulates Hippo signaling in conjunction with
neurofibromatosis-2 (NF2), potentially preventing YAP
and TAZ activation [1-3].

In humans, impaired Hippo signaling has been reported
in a variety of different cancers, linking deregulated Hippo
signaling to tumor initiation and progression [11-16].
Components of the Hippo pathway have, therefore, been
suggested to be the target of aberrant gene methylation
and epigenetic silencing in humans [13] as already
reported for LATS1/2 (large tumor suppressor kinases 1
and 2; human Warts homolog) [17, 18], MST1/2 (serin/
threonine protein kinase 4/3; human Hippo homolog)
[19], and KIBRA [20, 21].

Since  DNA methylation, especially at promoter-
associated CpG islands of tumor suppressors has been
recognized as a major contributor to cancer develop-
ment, we analyzed the consequences of human KIBRA
promoter methylation and determined the methylation
status of KIBRA promoters in patients with clear cell
renal cell carcinoma (ccRCC).

Results

Identification of CpG islands within functional KIBRA
promoter regions

The current analysis of CpG residues was based on our
characterization of the complex structure of the human
KIBRA promoter system [22]. This previous analysis re-
vealed that renal KIBRA gene expression is driven from a
constitutively active core promoter (Pla) and at least one
alternative promoter (P1b). Notably, the isolated alternative
promoter P1b was cell type-specific and appeared to be si-
lenced in neuronal cell lines. In the current analysis, an in
silico screen of these active promoters revealed two CpG
islands with a length of 764 bp (CpG I) and 205 bp (CpG

Page 2 of 10

II) within the KIBRA promoter regions Pla and Plb,
respectively (Fig. 1; Additional file 1: Figure S1).

KIBRA CpG | methylation and expression is associated
with ccRCC

Since ¢cRCC is the most common histological subtype
of adult kidney cancer and promoter regions of several
tumor suppressor genes have already been reported to
be frequently methylated in primary ccRCC tumor sam-
ples [23-25], we determined specific KIBRA methylation
patterns in human c¢cRCC. The methylation analysis in
human ccRCC samples was focused on CpG I, which
harbors the constitutively active core promoter (Pla) of
KIBRA. To characterize the methylation state of CpG I
(63 CG dinucleotides within Pla), we evaluated methyla-
tion patterns in 16 non-neoplastic human kidney tissue
samples (adjacent benign regions, control) and eight hu-
man c¢cRCC samples in detail by bisulfite sequencing.
ccRCC cells are arranged in compact nests, sheets, al-
veolar, or acinar structures and have clear cytoplasm
which distinguishes them microscopically from adjacent
benign regions (Additional file 1: Figure S2) [26]. How-
ever, subcellular changes including gene methylation
might also be observed in phenotypically unchanged re-
gions. Bisulfite-converted DNA of each sample was sub-
cloned and plasmid DNA of five colonies per patient
were sequenced. Using this sensitive approach, cellular
differences in the methylation state of each patient’s tis-
sue sample could be detected. Bisulfite sequencing and
dichotomous analysis revealed that KIBRA CpG methy-
lation occurred significantly more often in ccRCC sam-
ples (methylation level 73/504 [14.5%]) compared to
control samples (methylation level 76/1008 [7.5%];
p = 0.0001, OR = 1.921, [CI 95%] = 1.369-2.695). Fur-
ther analysis of “CCGG” methylation within CpG I re-
vealed that methylation also occurred significantly more
often at this specific motif in ccRCC samples (methyla-
tion level 14/72 [19.4%]) compared to controls (methyla-
tion level 12/144 [8.3%]; p = 0.0390, OR = 2.333, [CI
95%] = 1.026-5.306; Fig. 2a). Additional parametric ana-
lysis of CpG and “CCGG” methylation confirmed these
results (data not shown).
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Fig. 1 CpG islands within KIBRA promoter P1a and P1b. The alternative KIBRA promoter system composed of promoter regions P1a, P1b, P2, and
P3 and their respective transcription start sites (TSS; right-angled arrows; filled boxes represent exons) located on chromosome 5. Two CpG islands
with a length of 205 bp (CpG II, position — 3594/—3799) and 764 bp (CpG |, position — 1/— 764) within the KIBRA promoter regions P1a and P1b
were identified. Of note, Figure ST contains detailed description of CG dinucleotide rate and positions within CpG islands
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Fig. 2 KIBRA "CCGG" methylation within CpG | in ccRCC samples. a Methylation patterns of “CCGG"-motifs within CpG | in control (Ctrl) and
ccRCC samples. Each line represents one “CCGG"-motif within CpG . Filled circles indicate methylated, open circles indicate unmethylated
“CCGG"-motifs. Differences of methylation between the control (12/144 [8.3%]) and ccRCC (14/72 [19.4%]) group were significant (p = 0.039).
Analysis revealed significantly decreased mRNA KIBRA expression levels for ccRCC samples in b real-time PCR and ¢ western blot analyses.

A subsequent analysis of KIBRA tissue mRNA levels
by real-time PCR analysis revealed significantly reduced
KIBRA expression levels in ccRCC (n = 32) compared to
non-neoplastic human kidney tissue samples (n = 32,
p < 0.001, ES 0.7; Fig. 2b). Post hoc power calculation
revealed a power of 1-beta = 0.8 for the analyzed 64
samples (alpha = 0.05, two-sided ¢ test). An additional
analysis on protein level supported these findings in that
KIBRA protein was significantly decreased in ccRCC
samples (1 = 4) compared to adjacent benign tissue
samples (1 = 4, p < 0.001; Fig. 2¢).

CpG methylation leads to transcriptional KIBRA inhibition
To investigate the consequences of CpG methylation on
KIBRA expression, we inserted active KIBRA promoter re-
gions into the pCpGL-Basic reporter gene vector [27].
The pCpGL-Basic vector was chosen instead of the con-
ventional pGL3-Basic vector due to a CpG dinucleotide-
free backbone, which allows observation of methylation
effects on the inserted promoter fragments rather than de-
tecting artificial effects of reporter gene (ie., luciferase)
methylation. For each promoter region, two reporter gene
vectors were generated (Fig. 3a): Plal covering the
complete CpG I and Plall covering the proximal part of
CpG L. P1bl harbored the complete CpG II, while P1bII
did not include any CpG island and served as negative
control for methylation effects. In vitro methylation of
CpG I by methyltransferase SssI (methylation of all CG-
dinucleotides) led to total abrogation of Plal and Plall

transcriptional activity compared to the unmethylated
promoter in renal IHKE cells (Fig. 3b; p < 0.001). The
effect was also observed in neuronal SH-SY5Y cells (Fig. 3¢;
p < 0.001). Target specific methylation of “CCGG”-motifs
using Hpall led to a similar inhibition of promoter activity
in IHKE cells (Fig. 3b; p < 0.001), while residual activity
for Plal was observed in SH-SY5Y cells (Fig. 3¢
p < 0.001). Methylation of distal CpG II also led to a
significant reduction of P1bl transcriptional activity com-
pared to the active unmethylated promoter (p < 0.001).
P1bll, which served as negative methylation control, was
not affected by methylation. No difference in transcrip-
tional activity was observed after Hpall methylation of
CpG II (Fig. 3b).

KIBRA expression is induced by DNA methyltransferase
inhibitor 5-azacitidine

Since KIBRA promoter regions are partly silenced in SH-
SY5Y cells [22], we used SH-SY5Y neuroblastoma cells as
a model cell line to analyze the effects of whole genome
demethylation on KIBRA expression. Treatment of SH-
SY5Y cells with 5-azacytidine (Aza), alone or in combin-
ation with trichostatin A (TSA), an inhibitor of histone
deacetylases, resulted in a significant ~3-fold increase in
KIBRA mRNA levels compared to untreated cells (Fig. 4a;
p < 0.001). This observation was confirmed for the Aza/
TSA application on protein level by western blot (Fig. 4b;
all p < 0.01 compared to control), suggesting that pro-
moter demethylation restores KIBRA expression. Of note,
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Fig. 3 Transcriptional inhibition of KIBRA promoters by in vitro methylation. a Schematic representation of KIBRA promoters P1a and P1b, CpG
islands, and respective positions of methylated promoter constructs generated in the CpG-free pCpGL-Basic vector. b In renal IHKE cells, transcriptional
activity of promoter P1a was extensively silenced by Sssl methylation. No considerable differences were observed for transcriptional activity of control
region P1bll (without CpG island). Transcriptional activity of promoter portion P1bl was significantly decreased. Partial methylation by Hpall
also resulted in a significant decrease of Pla transcriptional activity, whereas P1bl was unaffected. ¢ Transcriptional activity of P1a was
comparably silenced by Sssl methylation in neuronal SH-SY5Y cells. Partial methylation by Hpall resulted in an increase of transcriptional
activity of promoter region P1all, whereas transcriptional activity of Plal was significantly decreased. None of the P1b promoter constructs
exerted sufficient activity in SH-SY5Y cells, independent of the methylation pattern. Figures are representative for experiments (n = 3).
Transcriptional activity was assessed as relative light units (RLU). ***p < 0.001, ns not significant

TSA alone changed the KIBRA mRNA but not the protein
expression level.

SP1 transactivation is prevented by KIBRA promoter
methylation

Based on the identified CpG islands in the functional
KIBRA promoters, we conducted an in silico analysis for
SP1 binding sites in these regions. Several conserved SP1
binding sites were detected in CpG I, while CpG II
revealed only three potential SP1 binding sites (mean con-
servation level > 80%; Fig. 5a). Subsequent overexpression
of SP1 in IHKE cells resulted in strong activation of
promoter Pla and P1b (Fig. 5¢; p < 0.001 compared to

control). This effect was also confirmed by western blot
analysis as KIBRA protein level was increased after SP1
overexpression (Fig. 5b; p < 0.001). Promoter methylation
by SssI and also Hpall significantly prevented SP1 transac-
tivation (Fig. 5d; p < 0.001). This observation suggests that
SP1 recruitment to KIBRA promoter regions is prevented
by CpG methylation.

Discussion

Recent data underlined the critical role of KIBRA as an
upstream regulator of the Hippo signaling pathway. There-
fore, decrease or loss of KIBRA expression and/or function
may have a considerable impact on tumorigenesis or tumor
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Fig. 5 SP1 transactivation is prevented by in vitro methylation. a In silico analysis revealed conserved SP1 binding sites (boxed) within CpG I. CpG
dinucleotides are underlined and “CCGG"-motifs are marked in gray. b SP1 overexpression resulted in elevated KIBRA protein levels detected by
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at the CG dinucleotide of a specific transcription factor
binding element such as SP1 consensus sites may steric-
ally interfere with binding of the transcription factor to
DNA, inhibiting transcription [36]. With regard to KIBRA
methylation, the group of Latif and colleagues recently
identified frequent epigenetic inactivation of KIBRA in B
cell acute lymphocytic leukemia and unfavorable prognos-
tic parameters in chronic lymphocytic leukemia [20, 21].
In their methylation analysis, the authors addressed a
368 bp region of KIBRA based on TSS1la (NM_015238), a
region mapping to promoter Pla.

Our in vitro methylation experiments revealed that
KIBRA expression is significantly affected by methylation
patterns of at least two CpG islands located within func-
tional promoters Pla and P1b. Transcription factor ana-
lysis revealed that SP1 is a strong activator of KIBRA
promoter activity, and KIBRA protein levels were signifi-
cantly elevated by SP1 overexpression. Upon methyla-
tion of Pla promoter elements, the activating effect of
SP1was lost. Moreover, “CCGG” methylation was suffi-
cient to prevent transcriptional stimulation by SP1. Our
results, therefore, suggest that in vivo methylation at
KIBRA CG dinucleotides of SP1 consensus sites may re-
duce the ability of SP1 to bind its DNA recognition
element potentially impairing transactivation (Fig. 6).
The role of the SP transcription factor family in different
cancers has already been highlighted [37], and there is
evidence that overactivation of SP1 occurs frequently in
a wide variety of different tumors, correlating with ag-
gressive biology and poor clinical outcome of these tu-
mors [38—40]. In ccRCC, a potential tumor suppressor
function of KIBRA might be absent even in the presence
of high SP1 expression levels if KIBRA promoter regions
are deactivated by methylation.

Alterations of KIBRA expression in ccRCC has already
been analyzed in whole-genome expression profiling
using Illumina BeadChip technology. The gene expres-
sion profiles of 101 ¢cRCC and adjacent tissue sample
pairs of the K2 series suggested KIBRA downregulation
in this series using locus-specific probes [41]. However,
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the detected signal has not been validated using real-
time PCR. Our analysis confirms KIBRA downregulation
in ¢ccRCC and provides evidence for an association of
reduced KIBRA mRNA levels with the significantly in-
creased KIBRA promoter methylation. Of note, signifi-
cantly increased KIBRA methylation in c¢cRCC was
additionally confirmed by calculation of individual
methylation grade (data not shown). Our findings pro-
vide a potential basis for future clinical studies which
should analyze if KIBRA methylation or expression can
be associated with ccRCC survival rates, tumor stage, or
size. Since ccRCC is often fatal once metastatic [42], it is
important to detect ccRCC at early stages when lesions
are small. In this respect, other studies suggested the im-
plementation of a “DNA methylation biomarker panel”
[29, 43]. If aberrant KIBRA methylation or reduced
KIBRA expression can also be detected in blood or cells
isolated from urine of ccRCC patients is currently unclear
and further studies are needed to investigate these poten-
tial correlations. If such a correlation exists, alterations in
KIBRA methylation or expression patterns might also be
useful for differential diagnosis of other RCC entities.

Limitations

ccRCC tissues exhibit substantial heterogeneity regard-
ing both histological (fractions of different tissue) and
molecular aspects (different methylation pattern of al-
leles). This aspect might be associated with the diverse
KIBRA mRNA expression levels in the analyzed control
samples. This limitation may be addressed by microdis-
section or cell sorting in subsequent analyses. Further-
more, obtained data may be limited to the analyzed
Caucasian study cohort and relatively small sample sizes.

Conclusion

We conclude that promoter methylation is a major
mechanism involved in KIBRA expression regulation.
KIBRA expression levels are reduced in ¢ccRCC and al-
terations in the balance of KIBRA/SP1 binding by pro-
moter methylation may be involved in the onset and/or
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Fig. 6 A proposed model for Hippo pathway regulation by KIBRA promoter methylation. a SP1 binds to conserved DNA recognition elements

within KIBRA promoter regions leading to enhanced KIBRA expression and Hippo pathway activation. b SP1 recruitment to KIBRA promoter regions

may be prevented by CpG methylation leading to reduced KIBRA expression and impaired Hippo pathway activation. Alterations of the
Hippo pathway due to KIBRA promoter methylation may be associated with onset or progression of renal cell carcinoma

Hippo pathway
active

Hippo pathway
inactive




Schelleckes et al. Clinical Epigenetics (2017) 9:109

progression of ccRCC. Based on these initial data, the
scope of our future studies will be the expansion of
ccRCC tissue sample numbers and patient data to cor-
relate the detected methylation levels with patient’s clin-
ical outcome. Furthermore, KIBRA expression and
methylation levels will be analyzed in cultured ccRCC
cells including Aza/TSA treatment for the reactivation
of KIBRA expression.

Methods

Sample collection and preparation

Human ccRCC samples (female =40.6%, mean age =
63 years) and adjacent benign normal kidney tissue sam-
ples (female =43.8%, mean age = 66 years) were col-
lected shortly after partial or radical nephrectomy at the
outpatient surgery center (Clinic for Urology, University
Hospital Muenster). Of note, ccRCC and control sam-
ples were obtained from different patients. All patients
gave written informed consent, and the study was ap-
proved by the ethics committee of the Medical Faculty
of the Westphalian Wilhelms-University of Miinster,
Germany (2008-030-f-S). All specimens were classified
according to the UICC (Union Internationale Contre le
Cancer) TNM staging system [44] and subclassified after
histopathological work up and hematoxylin and eosin
staining by a pathologist (Additional file 1: Table S1)
[45]. Adjacent benign normal samples were harvested
distant from the tumor and confirmed by histology to be
free of contamination with malignant cells. Tumor sam-
ples were confirmed to be enriched (>80% epithelial
cells) for cancer cells relative to stroma. Tissue samples
were snap-frozen in liquid nitrogen immediately and
stored at — 80 °C.

Tissue methylation analysis

The methylation status of KIBRA promoter regions in
human renal biopsies was analyzed by bisulfite sequen-
cing. Genomic DNA was prepared from 25 mg kidney
tissue using the Qiamp DNA Blood Mini kit (Qiagen).
Bisulfite conversion of 500 ng DNA was performed
using the EpiTect Bisulfite Kit (Qiagen) according to the
manufacturer’s protocol. PCR products were generated
by KAPA HiFi Uracil+ DNA polymerase (PEQLAB) and
CpG island-specific oligonucleotides (Additional file 1:
Table S2). For sequencing, PCR products were ligated
into the pGEM-T Easy vector (Promega) and plasmid
DNA of five colonies per patient was isolated and se-
quenced using M13 oligonucleotides. Methylation data
for CpGs or “CCGG”-motifs were treated as dichotom-
ous or calculated parametrically as individual methyla-
tion grade. A position was defined as methylated for
dichotomization, when at least one out of five CpGs or
“CCGG”-motifs was methylation positive after bisulfite
conversion and sequencing.
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Cell culture

IHKE cells were maintained in DMEM/Ham’s-F12 (Life
Technologies) enriched with 5% fetal bovine serum (FBS;
Sigma-Aldrich), 100 units/ml penicillin, 100 ng/ml
streptomycin, 2 mmol/ml L-glutamine, 10 ml/l insulin-
transferrin-sodium selenite media supplement, 1.25 g/l
NaHCO;3, 55 mg/l sodium pyruvate, 10 pg/l human epi-
dermal growth factor (all Sigma-Aldrich), and 15 mmol/l
N2hydroxyethylpiperazineN2ethanesulfonic acid (HEPES;
Merck) [46—48]. SH-SY5Y cells were maintained in
DMEM with 20% FBS, 100 units/ml penicillin, 100 ng/ml
streptomycin, and 2 mmol/ml Lglutamine. Genome
demethylation was achieved using 5 pmol/l 5-azacitidine
(Aza; Sigma-Aldrich) over 3 days with daily media
changes. Trichostatin A (TSA, 250 nmol/l; Sigma-
Aldrich) was applied for 24 h.

In vitro methylation analysis

Deletion constructs of the KIBRA 5'-flanking region have
been described elsewhere [22]. For methylation analyses,
KIBRA promoter fragments were introduced in 5'-3'-
orientation into the promoter-less, CpG dinucleotide-free
luciferase reporter gene vector pCpGL-Basic [27]. Ampli-
fication of functional promoter fragments harboring the
identified CpG islands was based on annotated TSSla
(NM_015238). In vitro methylated DNA was generated by
incubating 10 pg of vector DNA with 12 units of SssI or
Hpall methylase and 640 pM S-adenosyl-L-methionine
(all New England Biolabs) at 37 °C for 6 h. After phenol-
chloroform extraction, DNA pellets were resuspended in
H,O to a final concentration of 1 pg/pl. IHKE and SH-
SY5Y cells were transfected using JetPEI (PEQLAB) and
1 pg of methylated plasmid DNA per 24 well. The
pCpGL-CMYV vector [27] was used as control for transfec-
tion efficiency, the CpG island-free vector P1blI served as
negative control. Luciferase activities were determined
using a luciferase assay kit (Promega) and a Sirius lumin-
ometer (Berthold detection systems). For SP1 overexpres-
sion, pCMV5-SP1 or shuttle vector control pCMV5 and
methylated reporter gene plasmids were transfected in a
1:1 ratio as described previously [49]. All vectors were se-
quenced to ensure sequence accuracy and identity. Trans-
fection experiments were repeated at least three times.

Western blot

For crude protein extracts, cells or tissue were lysed in
RIPA buffer containing 1% NP40 and 0.1% sodium dode-
cyl sulfate (SDS) supplemented with “complete” protease
inhibitor cocktail (Roche). Immunodetection of cellular
extracts was performed using an anti-KIBRA (Santa Cruz
Biotechnology; 1:500), anti-SP1 (Millipore; 1:1000), and
anti-rabbit secondary antibody (GE Healthcare; 1:5000).
Sample loading was confirmed by B-tubulin detection (cell
signaling; 1:5000) and anti-mouse secondary antibody (GE
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Healthcare; 1:20,000). For the analysis of KIBRA protein
levels in randomly selected patients’ tissue samples
(n = 4), tumor or control tissue was homogenized (BAN-
DELIN Sonoplus HD2070, BANDELIN electronic GmbH
& Co. KG), pooled, and quantified by SDS page using
anti-KIBRA antibody (1:250). Sample loading was con-
firmed by B-actin detection (cell signaling; 1:5000) and
anti-mouse secondary antibody (GE Healthcare; 1:20,000).
Western blots were repeated at least three times, and
band intensities were assessed using Image J.

Expression analysis

Total RNA was extracted from cells or tissue samples
using the NucleoSpin RNA Kit (Macherey-Nagel). First
strand cDNA synthesis was performed using Superscript
II reverse transcriptase (Life Technologies) and 1 pg of
total RNA. cDNA was amplified in a 384-well format
(standard real-time PCR conditions) in duplicates using
Power SYBR Green (Applied Biosystem) on an Applied
Biosystems 7500 Fast Real-Time PCR System. Relative
quantification was calculated using the 272" method
and S18 as endogenous control. The absence of non-
specific amplification products was confirmed by agarose
gel electrophoresis and generation of melting curves
using the Applied Biosystems software. Oligonucleotides
had an amplification efficiency of = 90% (Additional file 1:
Table S2). In case of KIBRA expression analysis follow-
ing 5-azacitidine/trichostatin A treatment, standard PCR
with hRP27 loading control was used.

Identification of CpG islands and SP1 binding sites

The KIBRA promoter regions Pla and P1b were ana-
lyzed using the CpG Island Searcher version 10/29/04
(http://cpgislands.usc.edu/) [50] with the following set-
tings. Selected lower limits %GC = 55%, CpGeps/
CpGexp = 0.65, length > 200 bp, and distance = 100 bp.
Identified CpG islands were analyzed for SP1 consen-
sus sites by computer-aided analyses using AliBaba2.1
[50, 51], a position weight matrix algorithm based on
the TRANSFAC database of eukaryotic transcription
factors (TRANSFAC 7). Results were validated using
PROMO 3.0.2 [51, 52].

Statistical analysis

The magnitude of change in KIBRA expression between
control and ccRCC samples was expressed as standardized
effect sizes (ES), calculated from means and SD (Cohen’s
d). Power calculations were performed using G*Power
3.1.9.2 [52, 53]. Methylation data for CpGs or “CCGG”-
motifs were treated as dichotomous (methylated/
unmethylated, Fig. 2a). Comparison between ccRCC
samples and controls was performed using two-sided
Chi-square test or Mann-Whitney U test, where ap-
propriate. p values were calculated by unpaired, two-
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tailed Student’s ¢ test or one-way ANOVA, where ap-
propriate. Data are given as mean + SD. p values < 0.05
were considered significant.

Additional file

Additional file 1: Table S1. Clinicopathological characteristics of the
study cohort. Table S2 Sequences and positions of oligonucleotides used
in this study. Figure S1 KIBRA CpG islands were detected using “CpG Island
searcher.” Two CpG islands were detected: CpG Il with 205 bp and CpG |
with 764 bp. Parameter settings: %GC = 55%, CpGopy/CPGeyp = 0.65,
lengths > 200 bp, distance = 100 bp. Position of KIBRA promoter regions
P1b and P1a is indicated according to TSS1a (NM_015238). Figure S2
Hematoxylin and eosin staining from adjacent benign tissue (Ctrl; I/1) and
ccRCC tissue (lll/IV) used for the analysis (DOCX 3044 kb)
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