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Abstract

Background: Excess adiposity in childhood is associated with numerous adverse health outcomes. As this condition is
difficult to treat once present, identification of risk early in life can help inform and implement strategies to prevent the
onset of the condition. We performed an epigenome-wide association study to prospectively investigate the
relationship between cord blood DNA methylation and adiposity measurements in childhood.

Methods: We measured genome-wide DNA methylation from 478 children in cord blood and measured overall and
central adiposity via skinfold caliper measurements in early (range 3.1–3.3 years) and mid-childhood (age range 7.3–8.
3 years) and via dual X-ray absorptiometry (DXA) in mid-childhood. Final models were adjusted for maternal age at
enrollment, pre-pregnancy body mass index, education, folate intake during pregnancy, smoking during pregnancy,
and gestational weight gain, and child sex, race/ethnicity, current age, and cord blood cell composition.

Results: We identified four promoter proximal CpG sites that were associated with adiposity as measured by
subscapular (SS) and triceps (TR) ratio (SS:TR) in early childhood, in the genes KPRP, SCL9A10, MYLK2, and PRLHR. We
additionally identified one gene body CpG site associated with early childhood SS + TR on PPAPDC1A; this site was
nominally associated with SS + TR in mid-childhood. Higher methylation at one promoter proximal CpG site in MMP25
was also associated with SS:TR in mid-childhood. In regional analyses, methylation at an exonal region of GFPT2 was
positively associated with SS:TR in early childhood. Finally, we identified regions of two long, non-coding RNAs which
were associated with SS:TR (LOC100049716) and fat-free mass index (LOC102723493) in mid-childhood.

Conclusion: This analysis identified novel CpG loci associated with adiposity outcomes. However, our results suggest
little consistency across the various adiposity outcomes tested, particularly among the more accurate DXA
measurements of body composition. We recommend using caution when interpreting these associations.
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Background
Nearly one third of American children are overweight or
obese, and this proportion has tripled among adoles-
cents and more than doubled in younger children since
1980 [1, 2]. Obesity and excess adiposity in childhood
and adolescence are associated with adverse metabolic,
orthopedic, cardiovascular, psychological, neurological,
hepatic, pulmonary, and renal outcomes [3–7]. Currently,

screening strategies for obesity and excess adiposity include
tracking children’s body mass index (BMI) at pediatrician
visits. This strategy may miss a proportion of children at
risk for adverse health outcomes as BMI incorporates both
fat and lean mass and does not indicate the distribution of
fat, which has been shown to be a better predictor of meta-
bolic health hazards [8, 9]. While excess adiposity itself is
only a risk factor for future disease development, once
present, it is difficult to treat. Therefore, the identification
of risk early in life can help inform and implement strat-
egies to prevent the onset of abnormal weight gain and the
trajectory towards the development of excess adiposity.
A few studies have examined blood DNA methylation

associations with adiposity- or obesity-related outcomes
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using cross-sectional and candidate gene approaches.
Two cross-sectional studies employing an epigenome-
wide approach in blood leucocytes identified CpG sites
at which DNA methylation was associated with obesity
status and BMI percentile [10, 11]. An additional study
using a prospective, candidate gene approach showed
methylation at chr9:136355885 (hg18) of RXRA mea-
sured in cord blood was associated with fat mass and
percent fat mass at age 9 [12]. Together, these findings
suggest that blood DNA methylation may serve as an
additional screening tool to help identify children at risk
for developing cardiometabolic risk factors in childhood.
Conversely, DNA methylation marks associated with
adiposity might be a consequence rather than a cause as
suggested by recent analyses of large epidemiological
studies [13].
Cord blood DNA methylation offers a unique screen-

ing opportunity as it is established in utero and may me-
diate associations of maternal exposures, such as
maternal smoking and gestational weight gain, with
childhood obesity [14–18]. Few epigenome-wide studies
have prospectively investigated the relationship between
cord blood methylation and adiposity-related measure-
ments in childhood [19]. The purpose of this study was
to examine associations of cord blood DNA methylation
patterns with various measures of adiposity in early and
mid-childhood in the Project Viva cohort. We hypothe-
sized that cord blood DNA methylation could serve as a
predictive biomarker of childhood adiposity.

Methods
Study population
The children for our study were participants in Project
Viva, a pre-birth cohort conducted in eastern Massachu-
setts, USA [20]. Briefly, we recruited pregnant women be-
tween 1999 and 2002 during their first prenatal visit at
Atrius Harvard Vanguard Medial Associates, a large multi-
specialty practice. Eligibility criteria were as follows: fluency
in English, gestational age less than 22 weeks, and singleton
pregnancy. At recruitment, mothers self-reported their
height and pre-pregnancy weight, which we used to calcu-
late pre-pregnancy BMI. We collected maternal diet and
behaviors via validated questionnaires [21]. Additional de-
tails of the cohort are published elsewhere [20]. Of the
2128 mother-infant pairs, DNA methylation was measured
in cord blood from 507 children. Of these, 22 samples were
excluded due to low sample quality leaving 485 samples. A
total of 478 offspring had cord blood DNA methylation
measurements and at least one measure of adiposity in
early or mid-childhood; 460 had complete covariate data
(missing data were not imputed), of which 415 had early
childhood skinfold measurements, 402 had mid-childhood
skinfold measurements, and 319 had mid-childhood dual
X-ray absorptiometry (DXA) measurements.

Adiposity measurements
In early and mid-childhood visits, subscapular (SS) and
triceps (TR) skinfold thicknesses were measured to the
nearest 0.1 mm using Holtain calipers (Holtain Ltd.,
Crosswell, Wales); height was measured to the nearest
0.1 cm using a calibrated stadiometer (Shorr Productions,
Olney, MD), and weight was measured to the nearest
0.1 kg using a calibrated scale (Tanita model TBF-300A,
Tanita Corporation of America, Inc., Arlington Heights,
IL). In mid-childhood, trained research assistants per-
formed whole body DXA scans on the children using a
Hologic model Discovery A (Hologic, Bedford, MA) that
was checked for quality control daily by scanning a stand-
ard synthetic spine to examine measurement drift. Mea-
sures of adiposity were calculated using Hologic software
QDR version 12.6. All scans were examined for position-
ing, movement, and artifacts by a single trained investiga-
tor. The same researcher identified defined body regions
for analyses. Intra-rater reliability on duplicate measure-
ments was high (r = 0.99) [22].
We calculated adiposity outcomes in early and mid-

childhood. For both time points, we combined SS and
TR measurements in two ways: (1) sum of skinfold
thickness (SS + TR) to represent overall adiposity and
(2) ratio of skinfold thickness (SS:TR) to represent cen-
tral adiposity. In mid-childhood, we used DXA measure-
ments to calculate measures of overall adiposity (total
fat mass index (kg/m2), fat-free mass index (kg/m2), and
total percent fat (%)) and central adiposity (truncal fat
mass index (kg/m2)).

Cord blood DNA methylation measurements
Trained medical personnel collected venous umbilical
cord blood samples immediately upon delivery. Samples
were stored at 4 °C and transported to a central location
for processing within 24 h of collection. Buffy coat DNA
was extracted on the day of arrival using the Qiagen
Puregene Kit (Valencia, CA). Extracted DNA aliquots
were stored at − 80 °C until analysis.
We converted DNA with sodium bisulfate using the

EZ DNA Methylation-Gold Kit (Zymo Research, Irving,
CA). We provided samples to Illumina, Inc., for analyses
using the Infinium HumanMethylation450 BeadChip
(Illumina, San Diego, CA) following standard manufac-
turer’s protocols. Raw methylation image files were proc-
essed using the minfi package in R [23]. Correlation
coefficients for individual probes among all technical
replicates ranged from 0.98 to 1. Individual probes were
excluded if they had non-significant p values for detec-
tion in greater than 5% of the samples. We additionally
excluded CpG probes on sex chromosomes. Single-
nucleotide polymorphism (SNP)-associated probes were
removed for SNPs with a minor-allele frequency of ≥ 5%.
Furthermore, we removed previously identified non-
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specific and cross-reactive probes within the array along
with polymorphic CpG loci [24, 25]. Background correc-
tion and dye-bias equalization was performed via the
normal-exponential out-of-band (noob) correction
method [26]. We additionally applied a β-mixture quan-
tile intra sample normalization procedure (BMIQ) to
minimize potential probe-type bias. Finally, ComBat was
used to correct for batch effects from plate and protect
against regressing variability due to covariates [27]. After
quality control, the total number of probes left for ana-
lysis was 372,563.

Statistical analysis
We calculated means and standard deviations (SD) or
median and interquartile ranges for all maternal and
child characteristics to describe the study population
overall and stratified by child sex. Adiposity outcomes
were skewed, and therefore, we log-transformed them.
We elected to include child sex, race/ethnicity, and
current age as a priori covariates in all analyses. We
additionally examined maternal pre-pregnancy BMI, age
at enrollment, parity, education, mean folate and vitamin
B intake during pregnancy, gestational weight gain, ges-
tational diabetes status, smoking during pregnancy, and
mode of delivery as potential confounders. Maternal co-
variates were added to the final models if they were as-
sociated with any of the log-transformed adiposity
outcomes in linear regression models at p < 0.05. Be-
cause cord blood cell composition is related to methyla-
tion, we estimated blood sample cell proportions of CD8
+, CD4+, natural killer cells, monocytes, granulocytes, B
cells, and nucleated red blood cells based on the
Bakulski et al. reference panel [28]. The final models
were adjusted for maternal pre-pregnancy BMI, age at
enrollment, education, mean folate intake during preg-
nancy, smoking during pregnancy, and gestational
weight gain, and child sex, race/ethnicity, current age,
and cord blood cell composition. All analyses were con-
ducted on individuals with complete covariate informa-
tion; we additionally conducted a sensitivity analysis
examining the influence of adjusting for child birth
weight in our epigenome-wide association study
analyses.

Epigenome-wide association study (EWAS)
Single CpG site percent methylation beta values (β) were
converted to M values using a logit transformation [29].
We use M values in statistical analysis to minimize het-
eroscedasticity in regression models allowing for a more
precise and valid measurement of associations. Using
multiple linear regression models, we examined associa-
tions between individual CpG sites in cord blood and
adiposity measurements from both early and mid-
childhood. Statistical significance for genome-wide

associations were adjusted for multiple comparisons
using a false discovery rate (FDR) q < 0.05.

Regional analyses
As previous studies have identified highly correlated
methylation values among neighboring CpG sites [30],
we explored regional genomic associations with adipos-
ity outcomes. We examined the association of childhood
adiposity with differentially methylated regions (DMRs)
in cord blood using the R Bioconductor package Bum-
phunter [31]. Briefly, Bumphunter determines candidate
DMRs based on a resampling procedure while adjusting
for covariates. Minimum number of probes per region
were set at two with a max distance of 1000 base pairs.
Loess smoothing was applied to each genomic cluster.
Results were bootstrapped 1000 times to generate null
candidate regions. Significant testing among DMRs were
adjusted for multiple comparisons using family-wise
error rate (FWER) < 0.05.

Results
Descriptive statistics of the study population are shown
overall and stratified by offspring sex in Table 1.
Mothers had a mean age of 32.1 (SD = 5.3) at enroll-
ment, nearly half (46%) were nulliparous, most were well
educated (66% completed college), and most (68%) had
never smoked in their lifetime. During pregnancy, the
mothers gained an average of 15.5 kg (SD = 5.5) and
only a small proportion smoked (11%). The offspring
were majority white (67%) and approximately half female
(48%).
Figure 1 depicts a matrix showing the correlations

across the log-transformed adiposity outcomes of interest.
Generally, with the exception of total lean mass index, the
DXA measurements obtained in mid-childhood were
strongly correlated with one another. Total fat mass index
was highly correlated with both truncal fat mass index
(Pearson’s r (ρ = 0.98)) and total percent fat (ρ = 0.95).
Additionally, SS + TR measured in mid-childhood was
strongly correlated with total fat mass index (ρ = 0.93),
truncal fat mass index (ρ = 0.92), and total percent fat
(ρ = 0.86). Early childhood SS:TR and SS + TR were mod-
erately correlated with measurements taken in mid-
childhood (ρ = 0.30, ρ = 0.49, respectively).
Figure 2 depicts volcano plots showing the

epigenome-wide associations between cord blood DNA
methylation and adiposity outcomes. Figure 2a shows
that methylation at cg11137145 (β = 0.10, 95% CI 0.06,
0.13, FDR q = 0.02), cg03352173 (β = − 0.07, 95% CI −
0.09, − 0.04, FDR q = 0.03), cg00885918 (β = −0.15, 95%
CI − 0.21, − 0.09, FDR q = 0.03), and cg20624923
(β = 0.22, 95% CI 0.14, 0.31, FDR q = 0.03) met our sig-
nificance threshold for SS:TR measured in early child-
hood. These four CpG sites are located in the promoter
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regions of KPRP (chr1: 152,730,027), SLC9A10 (chr3:
112,013,130), MYLK2 (chr20: 30,406,997), and PRLHR
(chr10: 120,355,428), respectively. Figure 2b shows that

higher methylation at cg09271157 (β = 0.21, 95% CI
0.13, 0.28, FDR q = 0.04) was significantly associated
with greater SS + TR measured in early childhood. This

Table 1 Characteristics of mothers and offspring with cord blood measurements

Total Girls Boys

n = 478 n = 229 n = 249

Mean (SD) or N (%)

Mother

Maternal age at enrollment, years 32.1 (5.3) 32.6 (4.9) 31.6 (5.6)

Nulliparous: N (%)

No 257 (53.8) 123 (53.7) 134 (53.8)

Yes 221 (46.2) 106 (46.3) 115 (46.2)

College graduate: N (%)

No 160 (33.5) 75 (32.8) 85 (34.1)

Yes 318 (66.5) 154 (67.2) 164 (65.9)

Smoking status: N (%)

Never 325 (68.0) 161 (70.3) 164 (65.9)

Former 100 (20.9) 50 (21.8) 50 (20.1)

During pregnancy 53 (11.1) 18 (7.9) 35 (14.1)

Pre-pregnancy BMI, kg/m2 24.8 (5.3) 24.3 (5.0) 25.2 (5.6)

Gestational weight gain, kg 15.5 (5.5) 15.1 (5.3) 15.8 (5.6)

Folate mean, μg 1071 (334) 1097 (313) 1046 (351)

Vitamin B12 mean, μg 10.2 (4.5) 10.3 (4.5) 10.2 (4.6)

Child

Race/ethnicity: N (%)

Black 60 (12.6) 27 (11.8) 33 (13.3)

Hispanic 25 (5.2) 9 (3.9) 16 (6.4)

White 322 (67.4) 162 (70.7) 160 (64.3)

Other 71 (14.9) 31 (13.5) 40 (16.1)

Gestation length, weeks 39.7 (1.6) 39.8 (1.6) 39.6 (1.7)

Early childhood visit

Age, years: median (IQR) 3.2 (3.1–3.3) 3.1 (3.1–3.3) 3.2 (3.1–3.3)

BMI z-score: median (IQR) 0.45 (− 0.26 - 1.10) 0.39 (− 0.23 - 1.08) 0.49 (− 0.29 - 1.11)

Waist circumference, cm: median (IQR) 50.8 (48.6–53.3) 50.6 (48.5–53.4) 51.0 (48.6–53.0)

SS + TR, mm: median (IQR) 16.0 (13.6–18.8) 17.0 (14.4–20.0) 15.2 (13.4–17.8)

SS:TR ratio: median (IQR) 0.61 (0.53–0.72) 0.63 (0.51–0.73) 0.60 (0.54–0.72)

Mid-childhood visit

Age, years: median (IQR) 7.7 (7.3–8.3) 7.6 (7.3–8.2) 7.7 (7.3–8.4)

Waist circumference, cm: median (IQR) 57.7 (54.3–62.1) 57.6 (53.9–62.5) 57.7 (55.0–61.9)

SS + TR, mm: median (IQR) 16.4 (13.2–21.4) 17.8 (14.2–22.8) 15.2 (12.8–19.6)

SS:TR ratio: median (IQR) 0.65 (0.56–0.79) 0.64 (0.55–0.79) 0.66 (0.57–0.78)

DXA total fat mass index, kg/m2: median (IQR) 3.8 (3.1–5.0) 4.2 (3.4–5.5) 3.5 (2.9–4.6)

DXA fat-free mass index, kg/m2: median (IQR) 12.7 (12.0–13.8) 12.4 (11.5–13.3) 13.3 (12.5–14.0)

DXA truncal fat mass index, kg/m2: median (IQR) 1.2 (0.9–1.6) 1.3 (1.0–1.9) 1.0 (0.9–1.5)

DXA total percent fat: median (IQR) 23.0 (19.9–27.6) 25.8 (21.8–29.6) 21.2 (18.6–25.4)

DXA dual X-ray absorptiometry, IQR interquartile range, SS subscapular, TR triceps

Kresovich et al. Clinical Epigenetics  (2017) 9:86 Page 4 of 9



CpG site is located in the gene body of PPAPDC1A
(chr10: 122,217,376). Finally, Fig. 2c shows that higher
methylation of cg14974711 (β = 0.19, 95% CI 0.12, 0.26,
FDR q = 0.02) was significantly associated with greater
SS:TR measured in mid-childhood. This CpG site is lo-
cated in the promoter region of MMP25 (chr16:
3,096,478). No individual CpG sites met genome-wide
significance for mid-childhood SS + TR, or any of the

DXA measurements. In sensitivity analyses, we identified
the same CpG sites with similar associations when
additionally adjusting for child birth weight (Additional
file 1: Table S1). Finally, in order to explore persistence
of these associations across follow-up visits, we examined
the relationships between the identified CpG sites with
the caliper measures (SS + TR and SS:TR) in both early
and mid-childhood (Additional file 1: Table S2); across

Fig. 1 Pearson’s correlation matrix of the log-transformed adiposity outcomes measured in early and mid-childhood

Fig. 2 Volcano plots of the associations between cord blood DNA methylation and early childhood measurements of SS:TR (a), SS + TR (b), and
mid-childhood measurements of SS:TR (c). Significant loci are located above the gray dotted line, representing an FDR cut point of 0.05
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follow-up visits, associations were generally attenuated.
Although no CpG sites showed significance at q < 0.05 at
both follow-up visits, cg09271157 of PPAPDC1A (identified
as associated with SS + TR measured in early childhood)
was nominally associated with SS + TR in mid-childhood
(p = 0.05).
In regional analyses, we identified one region that met

FWER < 0.05 for early childhood adiposity. Figure 3 de-
picts a region of four CpG sites (cg23221052, cg13944838,
cg23248424, and cg02891314) which was positively associ-
ated with SS:TR, indicating that higher methylation levels
at this region was associated with greater central adiposity.
The region is located in exon 14 of GFPT2 (chr5:
179,740,743–179,741,120; FWER = 0.02). Finally, we iden-
tified regions for two long, non-coding RNAs which were
associated with SS:TR (LOC100049716) and fat-free mass
index (LOC102723493) in mid-childhood.

Discussion
In this study, we observed that methylation at individual
cord blood CpG loci from PRLHR, KPRP, SLC9A10,
MYLK2, and PPAPDC1A, as well as an exonal region of
GFPT2, were associated with various measures of adi-
posity in early childhood. We additionally identified an
association between single-site MMP25 methylation and
central adiposity, as well as regional associations be-
tween long, non-coding RNAs with measures of adipos-
ity in mid-childhood. While these results identified
novel loci and regions associated with adiposity out-
comes throughout childhood, our results suggest little
consistency across the various adiposity outcomes tested,

particularly among the more accurate DXA measure-
ments of body composition.
We identified multiple sites in promoter proximal re-

gions associated with the SS:TR measured in early child-
hood, namely PRLHR, KPRP, MYLK2, and SLC9A10.
While there exists no evidence linking KPRP, MYLK2, and
SLC9A10 to adiposity outcomes, our findings for PRLHR
are supported by previous studies. PRLHR encodes a
transmembrane protein for the prolactin-releasing hor-
mone and has previously been associated with body
weight control and obesity [32–37]. This gene is mainly
expressed in the reticular nucleus of the thalamus [38]
and controls metabolic rate and appetite by acting as a re-
ceptor for the stimulation of prolactin release [39]. Ding
et al. [34] identified and validated an association between
promoter methylation of PRLHR and childhood obesity in
a population of Chinese preschool children. While this
previous study was cross-sectional in nature, the prospect-
ive design of our study suggests PRLHR methylation as an
event prior to the development of central adiposity.
Using early childhood measurements, we also identi-

fied a regional association between exon 14 of GFPT2
and SS:TR. GFPT2 encodes a protein that controls the
flux of glucose into the hexosamine pathway. While no
human or animal studies implicate GFPT2 methylation
in the development of excess adiposity, genome-wide as-
sociation studies identified an association between a
SNP (rs2303007) in exon 14 of GFTP2 with development
of type 2 diabetes in Caucasian individuals [40, 41],
although this SNP failed replication in a candidate SNP
study of a Finnish population [42]. Additionally, a SNP

Fig. 3 Chromosomal, genomic, and CpG site locations of identified regional association with SS:TR in early childhood. Highlighted box shows
methylation of exon 14 of GFPT2 was positively associated with SS:TR in early childhood. Four CpG sites (cg23221052, cg13944838, cg23248424,
and cg02891314) showed higher methylation (denoted by positive coefficients) in offspring with greater SS:TR values
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(rs10479469) located approximately 32-kb downstream
of GFPT2 was associated with arm subcutaneous adipose
tissue in HIV-infected men [43]. Our finding adds to the
growing literature linking GFTP2 with adiposity-related
outcomes. The proposed mechanism involves chronically
increased expression of GFPT2 messenger RNA (mRNA)
resulting in increased hexosamine flux. In our study,
we showed higher methylation of the GFPT2 gene
body was associated with greater central adiposity.
While promoter hypermethylation of GFPT2 is associated
with decreased circulating levels of GFPT2 mRNA [44],
the association between GFPT2 gene body methylation
and its expression is unknown, although studies have
found positive associations between gene body methyla-
tion and expression in other genes [45, 46]. These results
suggest a potential link to regulation of adipose tissue
distribution, although more research is needed to support
these findings.
To examine persistence of these associations across

follow-up visits, we examined associations between cord
blood DNA methylation of these identified CpG sites
with caliper measures in mid-childhood and generally
saw an attenuation of the estimates across follow-up
visits. We showed that methylation at birth at
cg09271157 of the gene body of PPAPDC1A was signifi-
cantly associated with SS + TR in early childhood at
q < 0.05 and in mid-childhood at a nominal p < 0.05.
While PPAPDC1A has never been implicated in the de-
velopment of adiposity, it may serve as a predictive bio-
marker of future adiposity-related outcomes.
Regarding our analyses using mid-childhood adiposity

outcomes, we identified an association between MMP25
methylation and central adiposity as represented by
SS:TR measurements. MMP25 encodes a protein in the
membrane-type subfamily of matrix metalloproteinases
which is commonly attached to the plasma membrane in
an inactive state [47]. MMP25 is activated when cleaved
by extracellular proteinases in response to bacterial in-
fection or inflammation and is believed to inactivate the
alpha-1 proteinase inhibitor. Although no previous hu-
man or animal studies have implicated MMP25 in the
development of obesity, decreased levels of circulating
alpha-1 proteinase inhibitor were associated with in-
creased BMI in Chinese men [48]. Future studies are
warranted to better elucidate this pathway or potential
use as a biomarker of obesity risk.
While this study has novel findings, there are a num-

ber of limitations worth mentioning. Most importantly,
this study examined associations between cord blood
DNA methylation and six adiposity measurements taken
in mid-childhood (two of which were additionally
measured in early childhood). While we did correct for
multiple comparisons examining individual CpG sites
and genomic regions within adiposity phenotypes using

FDR and FWER <0.05, we did not account for multiple
testing across outcomes as we consider these indepen-
dent hypotheses. This is particularly important because
the cord blood methylation associations with different
measures of overall adiposity differed greatly, particularly
among the highly correlated DXA measurements. Fur-
thermore, there is little evidence to support the role
of KPRP, MYLK2, SLC9A10, PPAPDC1A, and MMP25
methylation with the development of excess adiposity.
Although importantly, our finding linking PRLHR pro-
moter methylation with SS:TR builds upon the existing
literature implicating this gene in development of excess
adiposity. This study was also likely underpowered for the
number of analyses undertaken due to the low amount of
variability in our examined outcomes. We attempted to
address this issue by adjusting for variables that strongly
predict adiposity (e.g., current child age) in order to
increase estimate precision. One possible explanation
for our lack of consistent findings is that previous
studies that have shown changes in methylation are
often a consequence of adiposity, rather than a cause
of it [13, 49]. The limited number of significant CpG
sites where methylation levels in cord blood are asso-
ciated with adiposity later in childhood suggests that
previous cross-sectional reports of adiposity association
with DNA methylation may be affected by reverse caus-
ation. While we did identify some novel loci associated
with skinfold measurements, additional studies in larger
cohorts will be necessary to add validity to our findings.

Conclusion
This was the first study of which we are aware to use an
epigenome-wide approach to examine the association
between cord blood DNA methylation in the develop-
ment of excess adiposity phenotypes through mid-
childhood using objective measurements. Excess adiposity
is difficult to treat once present; therefore, identification of
biomarkers of risk early in life would be a valuable tool to
help target individuals who would benefit from particular
attention to lifestyle factors to prevent excess weight gain.
While this analysis did identify novel CpG sites and re-
gions of the genome statistically associated with adiposity
outcomes, particularly PRLHR, due to the lack of concor-
dance across similar outcomes, we recommend using cau-
tion when interpreting these associations. Future studies
should continue to examine cord blood DNA methylation
as a predictor of childhood obesity and excess adiposity
but explore this research question in a larger, more repre-
sentative population.

Additional file

Additional file 1: Online supplemental tables. (DOCX 18 kb)
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