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Abstract

Background: The epithelial-to-mesenchymal transition (EMT) enables epithelial cancer cells to acquire mesenchymal
features and contributes to metastasis and resistance to treatment. This process involves epigenetic reprogramming for
gene expression. We explored global histone modifications during TGF-β1-induced EMT in two non-small cell lung
cancer (NSCLC) cell lines and tested different epigenetic treatment to modulate or partially reverse EMT.

Results: Loss of classical epithelial markers and gain of mesenchymal markers were verified in A549 and H358 cell lines
during TGF-β1-induced EMT. In addition, we noticed increased expression of the axonal guidance protein semaphorin
3C (SEMA3C) and PD-L1 (programmed death-ligand 1) involved in the inhibition of the immune system, suggesting
that both SEMA3C and PD-L1 could be the new markers of TGF-β1-induced EMT. H3K79me3 and H2BK120me1
were decreased in A549 and H358 cell lines after a 48-h TGF-β1 treatment, as well as H2BK120ac in A549 cells.
However, decreased H3K79me3 was not associated with expression of the histone methyltransferase DOT1L.
Furthermore, H3K79me3 was decreased in tumors compared in normal tissues and not associated with cell
proliferation. Associations of histone deacetylase inhibitor (SAHA) with DOT1L inhibitors (EPZ5676 or SGC0946)
or BET bromodomain inhibitor (PFI-1) were efficient to partially reverse TGF-β1 effects by decreasing expression of
PD-L1, SEMA3C, and its receptor neuropilin-2 (NRP2) and by increasing epithelial markers such as E-cadherin.

Conclusion: Histone methylation was modified during EMT, and combination of epigenetic compounds with
conventional or targeted chemotherapy might contribute to reduce metastasis and to enhance clinical responses.
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Background
The epithelial-to-mesenchymal transition (EMT) is a
highly dynamic and reversible mechanism by which
epithelial cells can convert into a mesenchymal pheno-
type, allowing a loss of cellular adhesion, cellular polarity,
and an improvement in migratory and invasive properties.
This process occurs during embryonic development,
wound healing, and metastatic expansion [1–3]. It also
plays a major role in resistance to cancer treatment
[4, 5]. A major inducer of EMT is TGF-β1, along
with cytokines and growth factors secreted by the

tumor microenvironment. Switch in gene expression
during EMT is characterized by repression of epithelial
genes and induction of mesenchymal genes.
The induction of EMT is associated with reprogram-

ming of the epigenome characterized by chromatin re-
modeling, changes in DNA methylation, post-translational
histone modifications or insertion of histone variants, and
modifications of non-coding RNA expression [2, 6, 7].
The basic unit of chromatin, the nucleosome, is formed
by 180–200 bp of DNA wrapped around a histone pro-
tein complex, composed by an octamer of two copies of
each histone H2A, H2B, H3, and H4, and fixed by histone
H1 [8]. Each histone can be affected by post-translational
modifications (PTMs), including acetylation, methylation,
phosphorylation, ubiquitination or sumoylation, that define
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a complex “histone code.” PTMs are regulated by histone-
modifying enzymes which add or erase these modifications.
They are recognized and read by protein partners to con-
trol the accessibility of the transcriptional machinery to
nearby genes [9]. All these processes can be considered as
epigenetic-based therapeutic strategy to treat cancer [10].
Lung carcinomas cause one fifth of cancer deaths world-

wide [11]. Large-scale genomic studies have characterized
frequent modifications affecting epigenetic mechanisms
[12–14]. Recurrent mutations of epigenetic modifying
genes affect the SWI/SNF chromatin remodeling compo-
nents (ARID1a and BRG1) and the H3K36 methyltransfer-
ase SETD2 in about 20% of lung adenocarcinomas [15, 16].
The H3K79 methyltransferase DOT1L mutations are less
frequent and are described in 3% of lung adenocarcin-
omas [17]. In squamous lung cancers, mutations of the
H3K4 methyltransferase MLL2 are described in 20%
[18]. Abnormal expression of epigenetic enzymes includes
overexpression of EZH2 (enhancer of zeste homolog 2),
the catalytic subunit of the PRC2 repressive complex that
methylates H3K27, associated with tumor progression and
poor prognosis in lung cancer [19–22]. Abnormal epigen-
etic marks are noticed in lung cancer, mainly DNA methy-
lation, histone acetylation, and methylation for the most
studied marks [14]. DNA methylation and miRNAs have
emerged as potential biomarkers in body fluids for lung
cancer [13, 23].
During EMT, the transcription factors SNAIL and

ZEB1 recruit several epigenetic players, including
histone methyltransferases, the lysine demethylase LSD1,
HATs (histone acetyltransferases) and HDACs (histone
deacetylases), sirtuins, and BRG1 [2]. We reported a
global decrease in H3K27 acetylation in a ZEB1-induced
EMT lung cancer cell model and suggested that ZEB1
would recruit EZH2 [24]. EMT is also associated with
repression of the miR-200 family. However, EMT-related
epigenetic reprogramming is still poorly understood in
lung tumors.
In the present study, we focused on epigenetic modifi-

cations during TGF-β1-induced EMT in non-small cell
lung cancer (NSCLC) cells and tested different epigen-
etic treatment to modulate or partially reverse EMT.

Methods
Cell lines, inhibitors, and antibodies
NSCLC cell lines, A549, and NCI-H358 (hereafter
H358) were obtained from ATCC in 2014. The cells
were grown in RPMI-1640 medium with 10% fetal bo-
vine serum (FBS) and antibiotics-antimycotics (#15240-
062, Invitrogen, Carlsbad, CA, USA), at 37 °C and 5%
CO2, and controlled every month for mycoplasma con-
tamination. Recombinant human TGF-β1 was from
R&D Systems (Minneapolis, MN, USA). The inhibitors
EPZ5676, SGC0946, PFI-1, and SAHA were purchased

from Cayman (Ann Arbor, Michigan, USA). The anti-
bodies are listed in Additional file 1.

RNA extraction and quantification by real-time
quantitative PCR
Total RNA was extracted using the RNeasy Mini kit
(Qiagen, Hilden, Germany) following the manufacturer’s
instructions. RNA quality was controlled by electrophor-
esis on 0.8% agarose gel. Five hundred nanograms of
total RNA was reverse-transcribed using the iScript
Reverse Transcription Kit (Biorad, Hercules, CA, USA).
Real-time quantitative PCR (qPCR) was performed
using SsoAdvanced Universal SYBR Green Supermix
(Bio-Rad) on a CFX384 system (Bio-Rad). Data were
analyzed using the Bio-Rad CFX Manager software and
normalized to GAPDH messenger RNA (mRNA) level
using the 2−ΔCq method. The primer sequences are
listed in Additional file 2.

Protein detection by immunoblotting
Cells were directly lysed in Laemmli loading buffer and
sonicated. Whole-cell extracts were separated on SDS-
PAGE gels (4–15% acrylamide gradient, #4568084, Bio-
Rad) and transferred to 0.2 μm nitrocellulose membrane
(#1704159, Bio-Rad) with the Trans-Blot Turbo Transfer
System (Bio-Rad) for 7 min. The membranes were
blocked with 5% BSA in PBS 0.05% Tween (PBS-T) for
90 min. They were then incubated with primary anti-
bodies at the indicated dilutions (Additional file 1) in 5%
BSA in PBS-T, at 4 °C overnight. Removal of excess
primary antibodies was carried out by washing the mem-
branes in PBS-T (3 × 5 min each). Secondary antibodies
were incubated with the membranes in 5% BSA-PBS-T
for 1 h at room temperature. The membranes were
washed in PBS-T (3 × 5 min each) before exposition to
Clarity Western ECL substrate (#1705060, Bio-Rad). Blot
images were acquired with the ChemiDoc MP System
(Bio-Rad) and quantified with the Image Lab software
(Bio-Rad). Protein normalization was carried out with
anti-actin or anti-total H3 histone staining.

Immunofluorescence
Cells grown on 8-well Ibidi plate (Martinsried, Germany)
were fixed for 15 min with 4% paraformaldehyde. After
rinsing with PBS (3 × 5 min), the cells were perme-
abilized for 20 min with 0.2% Triton X-100 in PBS. After
rinsing (3 × 5 min with PBS), blocking was performed
with 3% normal chicken serum (#ab7477, Abcam,
Cambrigde, UK) in PBS during 1 h. Primary and secondary
antibodies were sequentially applied for 60 min at room
temperature in 3% serum in PBS at the indicated dilutions
(Additional file 1). DRAQ5 at 1:250 dilution (Thermo
Scientific, Rockford, IL, USA) was applied with the
secondary antibody for DNA staining. Stained slides
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were rinsed in PBS and mounted in Dako fluorescent
media (Santa Clara, CA, USA). Images were captured with
a confocal microscope (Olympus FluoView FV1000) at
×60 immersion oil objective.

Flow cytometry
5 × 105 cells were requested per condition and were
diluted at 5 × 106 cells/ml in PBS 2% FBS. Near-IR stain-
ing (#L10119, Thermo Fisher, Waltham, MA, USA) was
performed during 20 min at 4 °C to detect dead cells.
The cells were washed once in PBS 2% FBS and stained
for 1 h at 4 °C with PD-L1 antibody or BB515 isotype
control at the indicated dilutions (Additional file 1).
BB515 IgG1 isotype control is used as a negative control
and binds specifically to KLH antigen which is not
expressed in human cells. Flow cytometry analyses were
conducted on a BD FACSVerse flow cytometer (BD
Biosciences, San Jose, CA, USA). Data were analyzed
using the FlowJo software (Tree Star, Ashland, OR, USA).

Cancer tissue microarray (TMA) and
immunohistochemistry
Three commercial formalin-fixed, paraffin-embedded
TMA slides were obtained from USBiomax (Rockville,
MD, USA). LC121a is a lung cancer TMA (120 samples),
MC6163 a multi-tissue TMA (616 samples) that includes
normal and cancer tissues, and BCN962 a combined
multiple normal and cancer tissue microarray (96
samples), with 17 types of common organs. Both TMAs
LC121a and MC613 contain 110 and 48 lung cancer
tissues, respectively, with evaluation of TNM disease
stages. TMA slides were deparaffinized by incubations
(2 × 3 min) in Histosol solution (National Diagnostics,
Inc., Charlotte, NC, USA) and rehydrated by sequential
immersions in 100% ethanol (2 × 1 min) and 70% etha-
nol (1 min). After washing 2 min in water, the slides
were incubated for 2 min in a pressure cooker with the
antigen unmasking solution (10 mM citrate buffer,
pH = 6) and left for cooling for additional 20 min in the
de-pressurized cooker. After washing 5 min in TBS-
Tween (Dako Wash Buffer #S3006, Glostrup, Denmark),
endogenous peroxidases were inhibited with 3% H2O2-
PBS during 5 min at room temperature. Following washing
in TBS-Tween (1 × 5 min), the tissues were permeabilized
with 0.2% Triton in PBS for 20 min. Blocking was
performed with 3% BSA-PBS during 20 min. Both TMAs
LC121a and MC613 were incubated for 1 h at room
temperature in a wet chamber with rabbit anti-H3K79me3
primary antibody (1:200; #pAb-068-050, Diagenode,
Denville, NJ, USA,). For BCN962 slides, rabbit anti-
H3K79me3 primary antibody was incubated for 1 h at
room temperature or with mouse anti-Ki67 primary
antibody (1:100; #M7240, Dako) in Emerald diluent
(#936b-08, Cell Marque, Rocklin, CA, USA) overnight

at 4 °C. Following washing in TBS-Tween (1 × 5 min),
the slides were incubated for 30 min with the HRP-
labeled polymer conjugated with secondary antibodies
(#K4065, EnVision® + Dual Link System-HRP kit,
Dako). Slides were washed 5 min in TBS-Tween and
further incubated in 3,3-diaminobenzidine (DAB) for
5 min. After washing in H2O, tissues were incubated in
hematoxylin for 2 min. TMA slides were dehydrated by
sequential immersions in 70% ethanol (1 min) and 100%
ethanol (2 × 1 min) and finally mounted using mount
medium (#10046430011, Leica, Wetzlar, Germany). For
TMAs LC121a and MC613, each sample was scored by
multiplying the percentage of positive (0 to 100%) cells in
the tumor compartment by the average level of staining
intensity (0 to 3). For TMA BCN962, Ki67 expression was
determined by the percentage of positive (0 to 100%)
epithelial cells in the tumor compartment and H3K79me3
expression was analyzed by the level of staining (0 to 3)
for epithelial cells only.

Statistical analysis
Data were summarized by median and range for quanti-
tative variables, percentage, and confidence intervals
when appropriate for qualitative variables. Percentage of
positive cells staining intensity and expression score
distributions in tumor, stroma, and normal tissues were
compared using Wilcoxon rank-sum test and the
Kruskal-Wallis test. Relationship between co-staining
status and qualitative parameters (histology, nodes) was
analyzed by Fisher’s exact test or chi-square as appropriate.
Correlations between score expression and other quantita-
tive parameters were determined with the Spearman rank
correlation method. Potential relationships with baseline
characteristics were also explored with the use of non-
parametric test, as appropriate.

Results
TGF-β1 exposure induces EMT in NSCLC cell lines
A549 and H358 NSCLC cell lines were selected for
EMT induction by TGF-β1 because of their previous
characterization in a ZEB1-induced EMT model [25].
We first verified target gene expression over time during a
72-h period to validate our cellular models. As expected,
we could verify the more epithelial status of H358 cells
compared to that of A549 cells. Upon TGF-β1 treatment,
the progressive loss of the classical epithelial marker like
E-cadherin was noticed in addition to the gain of the mes-
enchymal markers N-cadherin and vimentin (Fig. 1a, b).
Expression of other epithelial markers ST14, ESPR1,
EpCAM, and Rab25 were also decreased like in the ZEB1-
induced EMT model [24, 25]. ZEB1, one of the transcrip-
tion factors involved in EMT induction, was increased as
expected (Fig. 1a). Since EMT is often partial and NSCLC
cell lines display intermediate/hybrid states with mixed
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Fig. 1 TGF-β1 induces EMT in NSCLC cell lines. Expression of epithelial and mesenchymal markers was determined by mRNA and protein analysis
of A549 (white bars) and H358 (black bars) cells cultured with TGF-β1 (10 ng/ml) for the indicated time (h). a mRNA expression was measured by
RT-qPCR and normalized to GAPDH mRNA level. The graph corresponds to the mean ± SD of two independent experiments with PCR in duplicate.
*p < 0.5, **p < 0.01, ***p < 0.001 by a two-way ANOVA test. b Protein expression was determined by immunoblotting of the A549 and H358 total cell
lysates. Actin was used as a loading control. The apparent molecular weights (kDa) are indicated on the right of the panel
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epithelial and mesenchymal characteristics [26], we
checked the expression of additional genes coding for
the guidance proteins, semaphorin 3C (SEMA3C) and
semaphorin 3F (SEMA3F), and one of their common
receptors, neuropilin-2 (NRP2), because of their involve-
ment in lung cancer progression and EMT [27, 28]. In
both cell lines, SEMA3F expression did not change (result
not shown), but SEMA3C and NRP2 were increased
(Fig. 1a) suggesting a more aggressive phenotype upon
TGF-β1 treatment. From these collected data, a 48-h
TGF-β1 treatment was chosen for EMT induction for
further analysis.

TGF-β1-induced EMT increases PD-L1 expression in H358
cells
For a better characterization of TGF-β1-induced EMT,
we analyzed the programmed death-ligand 1 (PD-L1)
expression in A549 and H358 cells. PD-L1 plays a crit-
ical role by associating programmed death 1 receptor
(PD-1) on tumor-infiltrating T cells thus inhibiting the
immune response. Indeed, in 1070 surgically resected
NSCLC specimens, PD-L1 was expressed in 44% of
them and strong PD-L1 staining correlated with poor
prognostic [29]. Interestingly, EMT is associated with
an inflammatory tumor microenvironment in lung
adenocarcinoma [30].
Untreated H358 cells were found positive for PD-L1,

whereas PD-L1 was not detectable in A549 cells previ-
ously described as a negative control in several studies
[30, 31] (Fig. 2a, b). After a 48-h TGF-β1 treatment,
PD-L1 was still not detected in A549 cells but was
increased at the mRNA and protein levels in H358 cells
(Fig. 2a, b). Immunofluorescence confirmed increased
membranous PD-L1 staining (Fig. 2c), and a 60% increase
in intensity was estimated by flow cytometry (Fig. 2d).
Therefore, H358 cells would become more aggressive
upon TGF-β1 treatment.

H3K79 methylation is decreased in TGF-β1-induced EMT
We investigated global histone modifications during
EMT induction in both A549 and H358 cell lines. Of
interest, untreated A549 and H358 cells present differ-
ences for some of the tested histone marks, such as
H3K9me1, -me2, H3K36me1, -me2, H3K79me1, -me2,
-me3, and H2BK120ac. Whereas most global histone
marks did not change, up to 72-h TGF-β1 treatment,
some of them including H3K79me3 and H2BK120me1,
decreased in both cell lines (Fig. 3a). Of note, A549 cells
have a higher basal level of H3K79me1, -me2, and -me3
than H358 cells. Immunocytochemistry confirmed
H3K79me3 decrease in A549 cells after a 48-h treatment,
but variation of H3K79me3 in H358 cells was difficult to
estimate because of the low basal level (Fig. 3b). The
different methylation states of H3K79 are generated in a

distributive manner by the histone methyltransferase
DOT1L [32], and the di-methylation of H3K79 is activated
by ubiquitination of H2BK120 [33], suggesting that
H2BK120ub1 may associate with DOT1L to promote
H3K79 methylation [34]. However, H2BK120ub1 level was
not modified in A549 neither in H358 cells during EMT
induction, but H2BK120me1 was decreased (Fig. 3a).
H2BK120ac was also decreased in A549 cells. This
result suggests that H2BK120ub1 global level may not
be directly involved in the reduction of H3K79me3 but
that other modifications like acetylation and methyla-
tion of H2BK120 could be.
Next, we investigated DOT1L expression. After a 48-h

treatment, DOT1L expression was decreased at the
mRNA and protein levels in both cell lines (Fig. 4a, b).
Of note and surprisingly, H358 cells express more
DOT1L than A549 cells but H3K79me3 is less, suggesting
a complex mechanism for H3K79 methylation.

Partial inhibition of EMT induction by epigenetic
compounds
Epigenetic compounds were tested to reverse EMT in
untreated cells and to inhibit EMT induced with TGF-
β1 (Fig. 5). Results are summarized in Table 1. First, in
order to evaluate the involvement of H3K79me3 in
TGF-β1-induced EMT, A549 and H358 cells were
treated with DOT1L inhibitors, EPZ5676 and SGC0946,
simultaneously with TGF-β1 (Fig. 5a). The efficacy of
these compounds was verified by H3K79me3 decrease
(Fig. 5c). In absence of TGF-β1, these compounds did
not modify expression of EMT-related genes except for
an increase of ESRP1 with SGC0946 (Fig. 5b). In com-
bination with TGF-β1, both DOT1L inhibitors did not
reverse expression induced by TGF-β1 for the selected
genes except for PD-L1 that was reduced at the protein
level in H358 cells (Fig. 5c).
Histone acetylation is involved in DOT1L activation

through H2B ubiquitination [35] (Fig. 6). Combined
treatments with inhibitors of BET family proteins that
are readers for acetylation, and inhibitors of histone dea-
cetylases, induced anti-cancer effects in mouse models
[36, 37]. For these reasons, we examined the impact of
PFI-1 (a BRD2 and BRD4 inhibitor) and SAHA (a HDAC
inhibitor). On control H358 cells, SAHA increased E-
cadherin, Rab25, and decreased ST14 expression suggest-
ing a partial gain of an epithelial phenotype (Fig. 5b, c).
When added to TGF-β1, SAHA increased E-cadherin,
Rab25, N-cadherin, and PD-L1 expression but decreased
NRP2, SEMA3C, ST14, and ZEB1 expression compared
to the TGF-β1 control.
PFI-1 treatment in H358 control cells, by itself, did not

induce gross modifications but interestingly decreased
PD-L1 and SEMA3C expression. When combined with
TGF-β1, the major effect of PFI-1 was to decrease NRP2,
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PD-L1, SEMA3C, vimentin, and ZEB1 expression (ratio
treated/untreated, 0.15, 0.27, 0.03, 0.58, and 0.26, respect-
ively) to levels similar to control cells. However, expression
of epithelial genes such as ESRP1 and ST14 was decreased.
Next, DOT1L inhibitors or PFI-1 were combined with
SAHA in presence or absence of TGF-β1 treatment. Inter-
estingly, all tested combinations were able to reduce NRP2,
SEMA3C, and ZEB1 in presence of TGF-β1. The combin-
ation between DOT1L inhibitors and SAHA was sufficient
to increase E-cadherin expression in H358 cells (Fig. 5b).
The addition of SAHA to PFI-1 improved the response
compared to PFI-1 alone to increase E-cadherin expression
and to decrease NRP2 expression in control cells. This
combination did not improve the PFI-1 effect in TGF-β1-
treated H358 cells.
In TFG-β1-treated A549 cells, SAHA restored

H3K79me3 and induced epithelial gene expression but

reduced NRP2 and SEMA3C. In combination with
DOT1L inhibitors or PFI-1, NRP2 and ZEB1 expression
was reduced (Additional file 3 a, b).
These results show that each treatment has benefits and

disadvantages to modulate the EMT status or EMT induc-
tion. They suggest that SAHA and both combinations of
either SAHA/DOT1L or SAHA/PFI-1 inhibitors are
potential epigenetic-based therapies to partially reduce or
reverse EMT (Table 1).

H3K79me3 in human normal tissues and cancers
Since H3K79me3 was decreased during EMT in cancer
cell lines suggesting a relation with aggressiveness, we
investigated the presence of H3K79me3 in lung cancers
by immunohistochemistry on two commercial TMAs.
Because of sample quality, some tumors were excluded,
leaving for analysis 17 squamous cell carcinomas, 32
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Fig. 2 TGF-β1-induced EMT increases PD-L1 expression in H358 cells. Cells were treated with TGF-β1 (10 ng/ml) for 48 h. a PD-L1 mRNA expression
was measured by RT-qPCR and normalized to GAPDH mRNA. The graph corresponds to the mean ± SD of three independent experiments.
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large carcinomas, 48 adenocarcinomas, 3 papillary adeno-
carcinomas on TMA LC121a, and 11 squamous cell
carcinomas, 10 large carcinomas, 12 adenocarcinomas,
and 10 small cell carcinomas on TMA MC6163. Scores
were obtained by multiplying the percentage of positive (0
to 100%) cells in the tumor compartment by the average
level of staining intensity (0 to 3) (Fig. 7a). Histology,
tumor grade, and metastatic lymph node did not affect
H3K79me3 scores. However, H3K79me3 intensity was
statistically higher in large cell carcinomas than in adeno-
carcinomas in TMA LC121a (median = 2, range 0–3 ver-
sus median = 1, range 0–3, respectively, p = 0.0149), but
the percentage of stained cells was not significantly
different suggesting more H3K79me3 in large cell
carcinomas. Because of the low number of corresponding
samples, this difference was not found on TMA MC6163.
In addition, a tendency for less staining was observed for
small cell carcinomas. When lung tumors were split into
two groups regarding the presence or absence of meta-
static lymph nodes, scores were not significantly different.
When the multi-tissue TMA BCN962 was stained for

H3K79me3 and Ki67 on two serial slides, both staining

did not show the same repartition in normal tissues
(n = 38) compared to malignant tissues (n = 42).
H3K79me3 staining was lower in tumors compared to
normal tissues (Fig. 7b; p = 9.994 × 10−7), and in tumors,
a negative correlation was found between Ki67 and
H3K79me3 (n = 42, r = −0.52984, p = 0.0003). In
support of these observations, examples of staining are
given for different tumors and normal tissues (Fig. 7c).
Interestingly, in the normal skin, strong Ki67-positive
cells are localized in the basal cell layer, whereas
H3K79me3 staining is faint and extends beyond that
zone. These results suggest that H3K79me3 is decreased
in tumors compared to that in normal tissues and not
associated with cell proliferation.

Discussion
Epigenetics is involved in EMT to repress epithelial gene
expression and to stimulate mesenchymal marker
expression and, as a consequence, contributes to cancer
invasion, metastasis, immune surveillance escape, and
resistance to treatments [6, 7]. In this study using a
model of TGF-β1-induced EMT in two NSCLC cancer
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Fig. 3 TGF-β1-induced EMT promotes histone post-translational modifications. A549 and H358 cells were treated with TGF-β1 (10 ng/ml) for the
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cell lines, we found a decrease in global H3K79me3
staining with a reduced expression of the corresponding
histone methyltransferase DOT1L upon TGF-β1 treat-
ment. Expression of several genes of interest was in-
creased such as PD-L1 involved in the inhibition of
immune checkpoints and guidance molecules like
SEMA3C and its receptor NRP2. We also found that a
co-treatment with DOT1L inhibitors associated with
HDAC or a bromodomain inhibitor was efficient to par-
tially reverse modifications in gene expression induced
by TGF-β1. In addition, in different human tissues and
corresponding tumors, H3K79me3 was generally less in
tumors compared to normal tissues, and an inverse cor-
relation was found between H3K79me3 and Ki67, a
marker of cell proliferation, suggesting that H3K79me3
is not requested for cell proliferation.
Among genes that showed modified expression upon

TGF-β1 treatment, guidance molecules are of particular
interest and represent potential new targets in cancers.
We showed that both the cell surface receptor NRP2
and SEMA3C (one of NRP2 ligands) were overexpressed
during TGF-β1 treatment. NRP2, one of the two mem-
bers of the neuropilin family, plays an essential role in
EMT induction through non-canonical TGF-β1

signaling involving ERK [28]. Neuropilins are pleiotropic
cell surface co-receptors for some secreted members of
class 3 semaphorins (SEMA3) including SEMA3F and
SEMA3C, integrins, and other ligands like VEGF and
growth factors such as TGF-β1 [38]. Neuropilins (NRP1
and NRP2) are overexpressed in several cancers, and
their expressions correlate with increased invasion and
poor prognostic in lung cancer [28, 39]. Recently, it was
demonstrated that NRP2 regulates mTOR signaling [40],
β-catenin signaling [41], endosome maturation, and
EGFR trafficking sustaining cancer development [42].
Therefore, increased NRP2 expression upon TGF-β1
treatment strongly supports a function of NRP2 for
TGF-β1 response in EMT induction. Semaphorins were
initially described as guidance molecules involved in
growth cone migration but were further involved in
developmental and pathologic processes including
cancer [43–46], and SEMA3C is generally described as a
tumor promoting semaphorin [45] Thus, both NRP2
and SEMA3C overexpression might facilitate TGF-β1
signaling and tumorigenesis, and targeting NRP2 and
SEMA3C would be useful to reduce EMT.
We also found a significant overexpression of PD-L1

at the membrane of H358 cells during TGF-β1-induced
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Fig. 4 TGF-β1-induced EMT represses DOT1L in H358 cells. Cells were treated with TGF-β1 (10 ng/ml) for 48 h. a DOT1L mRNA expression was
measured by RT-qPCR and normalized to GAPDH mRNA. The graph corresponds to the mean ± SD of three independent experiments with PCR
in duplicate. **p = 0.0056 by Student’s t test. b DOT1L protein was analyzed by immunoblotting of A549 and H358 total cell lysates. Actin was used
as a loading control. The apparent molecular weights (kDa) are indicated on the right of the panel. This blot is representative of four independent
experiments. c The graph corresponds to the quantification of the intensity of the protein bands for A549 and H358 cell lines with (white bars) or
without TGF-β1 (black bars) treatment after normalization to actin for DOT1L and total histone H3 for H3K79me3. Value 1 corresponds to untreated
cells. Statistical analysis was performed for four independent experiments with the Student’s t test (** corresponds to p < 0.01)
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EMT. PD-L1 (also known as B7-H1 or CD274) is one of
the ligands of PD-1, an immune checkpoint which
prevents T cell activation and limit autoimmunity lead-
ing to self-tolerance [47]. We verified that PD-1 was not
expressed on H358 cells (data not shown), suggesting
absence of autocrine function of PD-L1/PD1 and cell-
intrinsic PD-1 pathway as shown in melanoma cells [48].
PD-L1 is overexpressed in cancer and is involved in

tumor immune escape, leading to cancer development
and metastasis [30, 49, 50]. It was associated with poor
clinical outcomes in several types of cancer, including
NSCLC [29, 51–53]. By an integrated analysis of three in-
dependent large datasets, PD-L1 was associated with lung
adenocarcinomas displaying a “mesenchymal” phenotype
[30]. Indeed, a molecular link was found between PD-L1
and EMT where PD-L1 is negatively regulated by miR-
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Fig. 5 Partial reversion of TGF-β1-induced EMT by epigenetic inhibitors in H358 cells. a Protocol: Cells were treated simultaneously with TGF-β1
(10 ng/ml), EPZ5676 (1 μM), SGC0946 (5 μM), or PFI-1 (5 μM) for 48 h and with SAHA (5 μM) for the last 12 h. b mRNA expression was measured
by RT-qPCR and normalized to GAPDH mRNA for control cells (white bars) and TGF-β1 treated cells (black bars). The graph corresponds to the
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200, and this inhibition is relieved by ZEB1, an EMT acti-
vator induced by TGF-β1 [54]. PD-L1 upregulation would
be a consequence of EMT induction. Therefore, com-
pounds that partially reverse EMT would target PD-L1 as
well and reduce tumor progression and metastasis by
restoring the immune response. In fact, pembrolizumab

and nivolumab targeting PD-1 were recently approved for
NSCLC to prevent PD-L1 binding [55].
Histone methylation is a well-balanced mechanism

guided by histone methyltransferases and demethylases.
Disruptor of telomeric silencing 1-like (DOT1L) is a
histone methyltransferase for H3K79, and its recruitment
is ubiquitously coupled with transcription. Strong similar-
ities were noticed between H3K79 and H3K4 methylation
patterns, and H3K79me3, although present at very low
levels, peaks just behind the transcriptional start site and
gradually decreases on the gene body [56, 57]. However,
the role of DOT1L in gene expression is still controversial,
but reports of H3K79me3 association with gene repres-
sion might be linked to technical issues raised by the anti-
body quality and absence of SDS during chromatin
preparation [56]. DOT1L is also involved in chromosome
integrity and heterochromatin formation. DOT1L is well-
known to be associated with pathological functions where
interactors recruit DOT1L to specific gene regions, like in
MLL-rearranged leukemias which present abnormal
H3K79 methylation pattern at HOX loci [58–61]. In
breast cancers, DOT1L is associated with poorer survival
and aggressiveness, and DOT1L can cooperate with
c-MYC and histone acetyltransferases to activate EMT
and enhance cancer stem cell-like properties [62]. In lung
adenocarcinomas, DOT1L has been recently described to
be mutated in 3% of tumors, suggesting abnormal
H3K79me in a subset of samples [17]. In contrast to
breast cancers, we found a decrease of global H3K79me3
in TFG-β1-induced EMT in NSCLC cells. We suggest that
H3K79me3 decrease is a mark of TGF-β1 treatment and

Table 1 Epigenetic treatments in H358 cells

H358 cells Epithelial genes Mesenchymal genes

E-cadh EpCAM ESRP1 Rab25 ST14 N-cadh NRP2 PD-L1 SEMA3C Vim ZEB1

Without TGF-β1 SAHA 2.51 1.70 0.0053 1.25 1.33 2.35

EPZ5676 0.69 0.675

SGC0946 1.66 1.19

PFI-1 0.73 0.56 0.65 0.85 0.26 0.28

SAHA + EPZ5676 3.01 0.24 1.52 0.33 1.40 0.20

SAHA + SGC0946 2.02 0.24 1.33 0.29 0.31

SAHA + PFI-1 1.25 0.25 0.51 0.0038 0.13 0.45 0.14

With TGF-β1 SAHA 3.90 3.36 0.0002 1.34 0.30 2.32 0.17 0.84 0.45

EPZ5676 0.0004 1.21

SGC0946 0.0016 0.86 1.43

PFI-1 0.18 0.21 0.71 0.15 0.27 0.03 0.58 0.26

SAHA + EPZ5676 2.83 3.00 0.0001 1.15 0.27 2.40 0.17 0.82 0.51

SAHA + SGC0946 3.74 4.42 0.27 1.25 0.32 1.91 0.18 0.82 0.39

SAHA + PFI-1 3.71 0.71 0.10 0.37 0.15 0.59 0.45

Statistical significant results from Fig. 5 are summarized for variation of gene expression upon different treatments in absence or presence of TGF-β1, with the
ratio of RT-qPCR values of treated cells/corresponding untreated control cells. Values above 1 (italics) indicate increased expression, and values under 1 indicate
decreased expression
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can be inhibited by PFI-1 and EPZ5676/SGC0946, respectively
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not a general mark of EMT since additional NSCLC cell
lines with a mesenchymal phenotype like H661 and H460
show higher H3K79me3 than the more epithelial H358
cells (Additional file 4). In addition, H3K79me3 level does
not correlate with DOT1L expression (Additional file 4).
Therefore, DOT1L activity and association with specific
partners need to be considered. Also, RE-IIBP expression
and activity should be studied since it was recently identi-
fied as a histone methyltransferase for H3K79 [63]. In
addition, H3K79me3 demethylation could be involved in
H3K79me3 decrease, but no specific demethylase has
been described to our knowledge yet. Cross-talks with
other histone marks should be considered as well. Indeed,
H2B ubiquitination is a prerequisite for DOT1L enzymatic
activity [35]. Although we did not find gross difference of

H2BK120ub level in H358 and A549 cells after TGF-
β1 treatment, H2BK120me1 and HBK120ac were de-
creased suggesting more complex cross-talks between
histone marks.
In lung tumors, H3K79me3 intensity was statistically

higher in large cell carcinomas than in adenocarcinomas.
Would this difference be related to poor differentiation?
The answer cannot be given because of lack of informa-
tion with commercial TMAs about the status of BRG1,
MYC, and EGFR. Of note, loss of function of BRG1 in
about 12% of lung adenocarcinomas was shown to be
associated with poor differentiation with EMT features
and poor survival [64, 65]. Considering that up to one
third or more of large cell carcinomas have alteration of
BRG1 or other SWI/SNF subunits, it seems reasonable
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to consider that large cell carcinomas show poor differ-
entiation. However, to associate DOT1L with poor
differentiation would be in contradiction with the fact
that DOT1L reduced cell reprogramming from a somatic
differentiated state to an undifferentiated pluripotent state
in several models [61]. In addition, we found H3K79me3
decrease in EMT known to generate gain of stem cell
properties in models including immortalized mammary
epithelial cells [66]. Therefore, better characterization of
these large cell carcinomas is requested since, before the
recent 2015 WHO classification [67], they were a hetero-
geneous group of tumors that makes interpretation diffi-
cult with the samples we analyzed.
The presence or absence of metastatic lymph nodes

did not affect H3K79me3 scores in primary tumors.
Interestingly, in a panel of human normal tissues and
cancers, H3K79me3 level seems to be less present in
tumors in comparison to normal tissues and not associ-
ated with cell proliferation. However, in both H358 and
A549 cell lines, cell proliferation is not the cause of
H3K79me3 decrease as it was not affected by TGF-β1
for 48 h.
We tried epigenetic treatments to modulate EMT.

DOT1L inhibitors did not induce EMT as might be
expected if H3K79me3 decrease was one of the causes
of EMT. They were rather not effective on EMT target
genes. Of interest, DOT1L was recently shown to methy-
late non-histone proteins like the androgen receptor
through recruitment of the PRNCR1 long non-coding
RNA for subsequent activation of this receptor in prostate
cancer after looping between enhancer and promoter
sequences [68]. Therefore, complex responses are
expected with DOT1L inhibitors. Targeting selective
histone methyltransferase is a promising approach, and
DOT1L inhibitors are in clinical trials for leukemias
with MLL rearrangements [69].
The best combination to partially reverse TGF-β1-

induced EMT to a more epithelial phenotype was SAHA
(a HDAC inhibitor) associated with a bromodomain in-
hibitor. With this treatment, NRP2, SEMA3C, and PD-L1
expression were reduced. For other classical EMT genes,
the response was gene-specific. More experiments would
be necessary with dose response for each compound alone
or in combination, associated with functional tests for cell
migration and invasion. In addition, this first screening
would be improved by use of a 3D cell culture model.
Several studies highlight the benefits of epigenetic-based
therapeutic strategy in mouse models. Combining the
bromodomain inhibitor JQ1 with the histone deacetylase
inhibitor SAHA in pancreatic cancer inhibits both MYC
activity and inflammatory signals as well as in an estab-
lished adenocarcinoma lung cancer model with KRasG12D

mutation and p53 loss [36]. In a neuroblastoma mouse
model, JQ1 and panabinostat (another HDAC inhibitor)

in combination, synergistically reduced N-MYC protein
and tumor progression [37]. As MYC is often overex-
pressed in tumors including lung cancers and directly
binds PD-L1 promoter [70], these co-treatments are
expected to reduce PD-L1 expression. From a mechanistic
point, bromodomains might be efficient by targeting
BRD4 binding to acetylated H4K5 at proximity to super-
enhancers at highly transcribed genes. Di-methylation of
H3K79 mediated by DOT1L is involved in this process, as
described in MLL leukemia, suggesting an unrecognized
functional interplay between BRD4 and DOT1L [60].

Conclusion
In summary, we described epigenetic changes that decrease
global methylation of H3K79 during TGF-β1-induced
EMT, and we suggest a potential therapy with HDAC in-
hibitors associated to a bromodomain inhibitor to partially
reverse EMT. However, clinical applications need careful
characterization of tumors, and caution must be exerted
with these treatments not to induce MET (mesenchymal-
to-epithelial transition), particularly in cases in which
tumor cells have already disseminated [71, 72].
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