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Epigenome-wide association of myocardial
infarction with DNA methylation sites at
loci related to cardiovascular disease
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Abstract

Background: Development of cardiovascular disease (CVD), including coronary artery disease, arrhythmia, and
ischemic stroke, depends on environmental and genetic factors. To investigate the epigenetic basis of myocardial
infarction (MI), we performed an epigenome-wide association study for this condition in elderly Japanese subjects.
A total of 192 case subjects with MI and 192 control subjects were recruited from hospital attendees and the
general population, respectively. Genome-wide DNA methylation (DNAm) profiles for DNA isolated from whole
blood were obtained by analysis with an Infinium HumanMethylation450 BeadChip. The relation of DNAm
sites found to be significantly associated with MI to nearby single nucleotide polymorphisms (SNPs) previously
shown to be associated with CVD was assessed in the control group.

Findings: Three DNAm sites (cg06642177, cg07786668, cg17218495) showed genome-wide significant associations
with MI (p = 4.33 × 10−8, 3.96 × 10−10, and 3.77 × 10−8, respectively). Two of these sites (cg07786668, cg17218495) still
showed such associations after adjustment for classical risk factors of MI (p = 1.04 × 10−7 and 6.60 × 10−8, respectively).
The DNAm sites cg07786668 and cg17218495 are located in ZFHX3 (zinc finger homeobox 3) and SMARCA4
(SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4) genes,
respectively. SNPs in ZFHX3 or SMARCA4 that were previously found to be associated with CVD were not
significantly associated with these DNAm sites in our control subjects.

Conclusions: We identified two DNAm sites—cg07786668 in ZFHX3 and cg17218495 in SMARCA4— that are
independently and significantly associated with MI. Our results suggest that the development of MI might be
influenced by changes in DNAm at these sites via a pathway that differs from that affected by CVD-associated SNPs in
these genes.
The Kita-Nagoya Genomic Epidemiology (KING) study, which was the source of control samples in the present study,
was registered in ClinicalTrials.gov (NCT00262691) on 6 December 2005.
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Background
Cardiovascular disease (CVD) is the leading cause of
mortality worldwide [1], with diabetes mellitus, hyper-
cholesterolemia, smoking, hypertension, obesity, and
physical inactivity being the primary risk factors for
CVD [2]. The prevalence of CVD and its primary risk
factors is increasing more rapidly in Asia than in Western
countries [3]. Risk factors for CVD also include nonmodi-
fiable characteristics such as age, male sex, ethnicity, and
family history [4]. An increased understanding of the
pathogenesis of CVD would be expected to help mitigate
further increases in its incidence.
Genetic factors have been found to contribute to the

development of CVD. Genome-wide association studies
(GWASs) for CVD—including coronary artery disease
(CAD) [5], arrhythmia [6, 7], and ischemic stroke [8]—have
revealed many associated susceptibility genes and single
nucleotide polymorphisms (SNPs). We have previously
performed a candidate gene study [9], a GWAS [10], and a
genome-wide linkage study [11] for myocardial infarction
(MI) and thereby identified susceptibility genes for this
condition. Although many SNPs associated with CVD
susceptibility have been identified to date, the mechanisms
by which these polymorphisms contribute to disease
development have remained unclear. Furthermore, such
SNPs account for only a small proportion of the herit-
ability of CVD—that is, the portion of phenotypic vari-
ance in a population that is attributable to additive
genetic factors. For example, a study of >10,000 Swedes
showed that only 10.6% of the additive genetic variance
of CAD was explained by 104 CAD-associated SNPs
from the largest meta-analysis of this condition per-
formed to date [5]. Improvement in the ability to pre-
dict future CVD will thus likely require the exploration
of genetic biomarkers other than SNPs.
Recent progress in epigenetic epidemiology has allowed

investigations of the relations among genomic coding,
modifiable exposures, and manifestations of disease
phenotype. DNA methylation (DNAm), a major type of
epigenetic modification, is potentially an important mech-
anism underlying these relations [12]. DNAm plays a role
in the regulation of gene expression, and DNAm status is
affected by the environment [13], with variation in such
status having been associated with age [14] and smoking
[15]. Gender and ethnicity also contribute to DNAm sta-
tus [16]. Given that differential DNAm might explain dif-
ferences in disease susceptibility or phenotype, DNAm
has the potential to serve as a novel genetic biomarker of
exposure or of disease risk or progression [17, 18].
Epigenome-wide association studies (EWASs) that

explore DNAm sites associated with phenotypes have re-
cently revealed that DNAm status at some such sites in
blood samples is associated with risk factors for CVD such
as body mass index (BMI) [19], blood lipid levels [20],

plasma resistin concentration [21], and type 2 diabetes
[22]. Some studies have also found DNAm status in blood
samples to be associated with CVD itself [23]. Given that
DNAm and CVD are both affected by many factors such
as age, sex, and ethnicity, however, it is difficult to identify
DNAm sites that are associated with CVD independently
of such factors. Further studies in which case and control
subjects are matched in age and comprise a single sex and
ethnicity are needed in order to elucidate the relation of
DNAm to CVD.
We have now measured genome-wide DNAm status

for DNA samples prepared from whole blood of patients
with MI attending hospitals in Japan [9–11] and of the
elderly Japanese participants of the Kita-Nagoya Genomic
Epidemiology (KING) study [24–26] and thereby per-
formed an EWAS for MI in Japanese men. With our con-
trol subjects, we then assessed the relation of DNAm sites
identified in our study to nearby SNPs previously found to
be associated with CVD in GWASs.

Methods
Study subjects
We performed a cross-sectional case-control study to
examine the association of DNAm status at various sites
with MI. A total of 192 male cases and 192 male con-
trols were enrolled. All subjects were ≥55 years old, and
the two groups were matched in age (within 5 years).
The 192 men with MI were randomly selected from
individuals previously recruited through participating
hospitals in Japan [9–11]. The diagnosis of MI was based
on typical electrocardiographic changes and increased
serum activities of enzymes including creatine kinase, as-
partate aminotransferase, and lactate dehydrogenase; it
was confirmed by the presence of a wall motion abnor-
mality on left ventriculography and attendant stenosis in
any of the major coronary arteries. The 192 controls
were nondiabetic men randomly selected from partici-
pants of the ongoing KING study (ClinicalTrials.gov
identifier, NCT00262691) [24–26] and whose data were
used in a previous study [21]. The control subjects had
no history of CAD or other CVD. Subjects with a sys-
tolic blood pressure of ≥140 mmHg or a diastolic blood
pressure of ≥90 mmHg, or those who were currently
taking antihypertensive medication were categorized as
having hypertension. Hyperlipidemia was defined as a
serum concentration of total cholesterol of ≥5.68 mmol/L
or the taking of lipid-lowering drugs. Diabetes was defined
as a fasting plasma glucose concentration of ≥7.0 mmol/L,
a hemoglobin A1c level (measured according to the Japan
Diabetes Society method) of ≥6.5%, or current treatment
for diabetes. The characteristics of the subjects are
shown in Table 1. Venous blood was collected from
subjects in the fasted condition into tubes containing
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EDTA, and genomic DNA was isolated with the use of
a kit (Qiagen, Chatsworth, CA).

DNAm analysis
Genomic DNA was processed with the use of an EZ-96
DNA Methylation Kit (Zymo Research, Orange, CA),
which combines bisulfite conversion and DNA cleanup
in a 96-well plate. Genome-wide DNAm profiles were
obtained for case and control subjects at the same time
by analysis with an Infinium HumanMethylation450
BeadChip (Illumina, San Diego, CA). For the EWAS
analysis, we applied a recently developed correction
method to reduce technical bias in the DNAm array data
[27, 28]. Marker intensities were normalized by quantile
normalization. DNAm level was quantified as a β value.
One sample from the control group was excluded from
further analysis because the DNAm profile was not de-
tected as a result of mixing with air bubbles during
sample loading, whereas a sample from the case group
was excluded because of mismatched sex based on the
DNAm profile. We performed principal component ana-
lysis to quantify latent structure in the data, including
batch effects. We estimated the cell type composition
for each sample with the estimateCellCounts function
[29] in minfi of the R package. These estimated parameters
were used in the association analysis as covariates. For each
sample, probes with a detection p value of ≥1 × 10−16 were
assigned not-detected status, and DNAm level with not-
detected status was set to a missing value. Each sample had
<10% of all probes with not-detected status. We removed
nonautosomal probes as well as probes with a not-detected
status in ≥2% of the samples. We further excluded probes
previously found to be cross-reactive (≥47 bases) [30].
Probes containing SNPs have been found to influence
the assessment of DNAm status with the Infinium
HumanMethylation450 array [31], and an effect of
CpG SNPs on DNAm has also been reported [32].

We therefore filtered out probes that contain SNPs
with a minor allele frequency (MAF) of >0.01 based
on 1000 Genomes ASN [30] in order to reduce the
frequency of false positives. Finally, 191 case subjects
and 191 control subjects as well as 348,595 DNAm
sites remained for the EWAS analysis.

Genotyping of ZFHX3 and SMARCA4 SNPs
All blood-derived DNA samples evaluated for DNAm
status in the control group were also genotyped with the
use of an Illumina HumanOmniExpress-12 BeadChip [21].
The data were subjected to quality control procedures, by
which SNPs with a call rate of <0.98, a MAF of <0.01, or a
Hardy-Weinberg equilibrium p value of <1 × 10−6 were
filtered out. Of the ZFHX3 (zinc finger homeobox 3)
SNPs that passed quality control, three polymorphisms
(rs7193343, rs2106261, rs879324) were previously
found to be associated with CVD [6–8] and so were
subjected to further analysis. None of the SMARCA4
(SWI/SNF-related, matrix-associated, actin-dependent
regulator of chromatin, subfamily a, member 4) SNPs
that passed quality control had previously been found
to be associated with CVD, but rs3786725 was shown
to be in strong linkage disequilibrium with rs1122608
(r2 = 0.956, calculated from Asian samples of the 1000
Genomes Project phase I), which was reported to be
associated with CVD [33], and so was subjected to
further analysis.

Statistical analysis
History of diseases and other clinical variables were
compared between the case and control groups with
Student’s t test or Fisher’s exact test. The association of
DNAm status at each DNAm site with MI was assessed
with a general linear model (GLM); the dependent vari-
able was DNAm status at each site, and the independent
variables included MI label (case = 1, control = 0) and
covariates. We applied two types of model to assess the
association of DNAm at each site with MI. The covari-
ates in model 1 comprised age, the first 30 principal
component scores calculated from Infinium 450K assay
control probes, the first five principal component scores
calculated from the residuals after adjustment for tech-
nical and biological factors, and the cell type composition
of samples. The covariates in model 2 included those of
model 1 as well as BMI, smoking status (noncurrent
smoker = 0, current smoker = 1), and history (0 = no his-
tory, 1 = positive history) of diabetes, hypertension, and
hyperlipidemia. We corrected the association results for
the genomic control inflation factor. The relation between
DNAm status at two DNAm sites was assessed with
Pearson’s correlation coefficient.
To test the association of DNAm status at each

DNAm site with each SNP in the control group, we

Table 1 Characteristics of the study subjects

Characteristic Controls Cases p

(n = 192) (n = 192)

Male, n (%) 192 (100%) 192 (100%) 1.000

Age (years) 65.8 ± 6.0 65.9 ± 6.4 0.915

BMI (kg/m2) 23.1 ± 2.5 23.9 ± 2.7 0.001*

Current smoker, n (%) 43 (22.4%) 83 (43.2%) 2.01 × 10−5*

Hypertension, n (%) 106 (55.2%) 113 (58.9%) 0.536

Diabetes mellitus, n (%) 0 (0%) 77 (40.1%) 8.82 × 10−28*

Hyperlipidemia, n (%) 75 (39.1%) 106 (55.2%) 0.002*

ST segment elevation
myocardial infarction, n (%)

192 (100%)

Continuous data are means ± SD. Differences in characteristics between case
and control groups were evaluated by Student’s t test or Fisher’s exact test
*Significance (p < 0.05)
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adopted a GLM with adjustment for covariates used in
model 1; the dependent variable was DNAm status at
each site, and independent variables included the geno-
type of each SNP and the covariates used in model 1.
We coded genotypes as 0, 1, or 2 on the basis of the
number of minor alleles.
For the EWAS analysis, the significance level α was de-

termined by dividing 0.05 by the number of DNAm sites
for Bonferroni correction (α = 0.05/348,595 = 1.43 × 10−7).
A p value of <0.05 was considered nominally significant.
All statistical analysis was performed with the R project
(version 3.3.0, http://www.r-project.org/).

Results
Characteristics of the study subjects
The baseline characteristics of the study subjects are
shown in Table 1. Mean ± SD values of age in the case
and control groups were 65.9 ± 6.4 and 65.8 ± 6.0 years,
respectively. BMI as well as the frequency of current
smokers, diabetes mellitus, and hyperlipidemia were sig-
nificantly higher in the case group than in the control
group.

Association analysis for DNAm status and MI
We performed genome-wide DNAm profiling for whole-
blood DNA from 192 case and 192 control subjects.
After initial processing, 191 case and 191 control sub-
jects as well as 348,595 DNAm sites remained for subse-
quent analysis. We initially performed an association
analysis for DNAm status at each site and MI with

model 1. Weak inflation in low p values was observed
(λ = 1.04). We therefore corrected the association results
for the genomic control inflation factor. Three DNAm
sites (cg07786668, cg17218495, cg06642177) achieved a
genome-wide significance level (Fig. 1 and Table 2).
These sites were also detected as outliers in a quantile-
quantile (Q-Q) plot of −log10(p) for the 348,595 tests of
association between DNAm status and MI (Fig. 2). Re-
gional plots of the flanking regions of the three DNAm
sites are shown in Fig. 3. The sites are located within
CpG islands of ZFHX3, SMARCA4, and SGK1 (serum/
glucocorticoid-regulated kinase 1), respectively. The
regional plot of cg07786668 contains another DNAm
site, cg00614832, that showed a nominally significant
association with MI (p = 4.48 × 10−7). The methylation
status of these two DNAm sites showed a significant
positive correlation (r = 0.395, p = 1.01 × 10−15).
We also evaluated the relation of the three DNAm

sites cg07786668, cg17218495, and cg06642177 to MI
with model 2, which adjusts for covariates including
other risk factors. Two of the three sites, cg07786668
and cg17218495, again showed a genome-wide signifi-
cant association with MI (Table 2).
We explored potential functional annotations in the

ENCODE database for the genomic regions surrounding
the DNAm sites cg07786668, cg17218495, and
cg06642177 with the use of RegulomeDB [34]. The Reg-
ulomeDB score for each of these sites was 2b with tran-
scription factor binding site, any motif; DNase footprint;
and DNase peak.
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Fig. 1 Manhattan plot for EWAS analysis of DNAm and MI. The horizontal line represents the genome-wide significance level (α = 1.43 × 10−7).
The p values were corrected for genomic control
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Association analysis of DNAm status and SNPs
We next performed an association analysis with control
subjects for DNAm status at the ZFHX3 DNAm sites
cg07786668 and cg00614832 and the SMARCA4 DNAm
site cg17218495 and for SNPs in ZFHX3 and SMARCA4
that were previously found to be associated with CVD.
No significant association between these SNPs and the
corresponding DNAm sites was detected (Table 3).

Discussion
We have here performed an EWAS for MI in aged Japanese
men with the use of the Infinium HumanMethylation450
array. Our analysis of 191 case and 191 control sub-
jects detected genome-wide significant associations of
MI with three DNAm sites (cg07786668, cg17218495,
cg06642177). Several EWASs have recently revealed
that age, sex, and ethnicity are strongly associated
with the methylation status of many DNAm sites in
blood samples [16, 35–37]. Such background associa-
tions can hinder the performance of EWASs for other
phenotypes. Our study subjects were recruited from

only Japanese men, and the cases and controls were
matched in age (within 5 years). The results of our
study are therefore expected to be more reliable than
those of studies with less homogeneous subject popu-
lations. Recent EWASs have also revealed that DNAm
status at some DNAm sites in blood samples is asso-
ciated with classical risk factors for CVD such as
BMI [19], blood lipid levels [20], and type 2 diabetes
[22]. In our study, two DNAm sites, cg07786668 and
cg17218495, remained significantly associated with MI
at the genome-wide level after adjustment for these
classical risk factors of CVD, suggesting that these
two sites contribute independently to the presence of
MI. The three DNAm sites identified in our study are
located in CpG islands within the noncoding regions
of ZFHX3, SMARCA4, and SGK1. Furthermore, Regu-
lomeDB scores for each of these DNAm sites were 2b
with transcription factor binding site, any motif;
DNase footprint; and DNase peak. These scores indi-
cate that the DNAm sites are located in regulatory
regions of the corresponding genes.
The DNAm site cg07786668 showed the most signifi-

cant association with MI in model 1. The DNAm status
of sites cg07786668 and cg00614832 was positively cor-
related, possibly reflecting a common biological process
in case subjects with MI. These DNAm sites are located
in ZFHX3, which encodes the transcription factor
ZFHX3 and is widely expressed, with its expression hav-
ing been detected in all 16 tissues covered by the Body
Map 2.0 project [38]. ZFHX3 has also been shown to be
associated with susceptibility to several CVD-related
phenotypes. GWASs have thus identified associations
between SNPs in this gene and atrial fibrillation [6, 7]
and cardioembolic stroke [7, 8]. Our results now provide
further evidence that ZFHX3 is a susceptibility gene for
CVD. Recent findings suggest that a disease might be in-
fluenced by disease-associated SNPs via changes in
DNAm near the SNPs [21, 39]. However, no significant
association was apparent in our control subjects between
DNAm status at cg07786668 or cg00614832 and ZFHX3
SNPs (rs7193343, rs2106261, rs879324) that had
previously been associated with CVD. These DNAm
sites may therefore contribute to the development of MI

Table 2 Association analysis for MI and genome-wide significant DNAm sites

DNAm site Chr Position (bp) Nearest gene Relation to
CpG island

Model 1 Model 2

Effect ± SE p Effect ± SE p

cg06642177 6 134,496,341 SGK1 CpG island 0.023 ± 0.004 4.33 × 10−8* 0.022 ± 0.004 7.47 × 10−7

cg07786668 16 73,092,391 ZFHX3 CpG island 0.018 ± 0.003 3.96 × 10−10* 0.016 ± 0.003 1.04 × 10−7*

cg17218495 19 11,071,743 SMARCA4 CpG island 0.015 ± 0.003 3.77 × 10−8* 0.015 ± 0.003 6.60 × 10−8*

The Effect and p values were calculated with a GLM, with the Effect values representing change in β value per change from control to case. The p values were
corrected for genomic control
Chr chromosome
*Genome-wide significance (p < 1.43 × 10−7)
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via a biological pathway different from that affected by
the SNPs.
We also found that DNAm site cg17218495 located in

SMARCA4 showed a genome-wide significant associ-
ation with MI. SMARCA4 encodes the catalytic subunit
of the SWI/SNF chromatin-remodeling complex and in-
fluences transcriptional regulation by disrupting histone-
DNA contacts in an ATP-dependent manner [40]. Over-
expression or knockdown of SMARCA4 was recently
shown to affect inhibition of vascular smooth muscle
cell proliferation by hydrogen sulfide [41]. SMARCA4
has also been shown to be associated with susceptibility

to CVD. Previous GWASs thus identified associations of
the SNP rs1122608 in this gene with early-onset MI [33]
and CAD [42, 43]. However, we did not detect a signifi-
cant association of DNAm status at cg17218495 with the
SMARCA4 SNP rs3786725, which is in strong linkage
disequilibrium with rs1122608, in our control subjects.
This DNAm site may thus also contribute to the devel-
opment of MI via a pathway different from that affected
by rs1122608.
The DNAm site cg06642177 located in SGK1 showed

a genome-wide significant association with MI in model
1. Candidate gene studies revealed that the SGK1 SNPs
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rs1057293 and rs1743966 were both associated with
hypertension [44] and ischemic stroke [45]. In our study,
however, this DNAm site did not show a genome-wide
significant association with MI in model 2, which adjusts
for classical risk factors of MI.
DNAm status in blood samples has also been found to

be associated with CVD itself [23], and two EWASs for
MI were recently performed [46, 47]. Rask-Andersen et
al. thus performed an EWAS for a history of MI in a
population cohort from northern Sweden [47]. They
found that 211 DNAm sites in 196 genes were associated
with a history of MI, with 42 of these genes having pre-
viously been shown to be related to CVD, cardiac func-
tion, cardiogenesis, or recovery from ischemic injury.
The DNAm sites cg07786668 and cg17218495 identified
in our study were not included among the 211 DNAm
sites of this previous EWAS. However, the results of the
two studies are consistent in that DNAm sites located
around genes associated with susceptibility to CVD were
found to be associated with MI. In particular, Rask-
Andersen et al. found that the DNAm site cg05896042
located near SMARCA4 was associated with a history of
MI and was not significantly associated with rs1122608
located near this gene. In our study, the DNAm site
cg05896042 was not significantly associated with MI
(p = 0.231 in model 1). The two studies thus indicate
that DNAm sites located around SMARCA4 are re-
lated to MI, but they differ with regard to the specific
DNAm sites, possibly reflecting differences in other
factors such as ethnicity. Guarrera et al. performed an
EWAS for MI in an Italian population in a case-
control setting [46]. They focused on differentially
methylated regions that comprise clusters of DNAm
sites located around genes, and they found that such
regions within ZBTB12 and long interspersed nuclear
element–1 were associated with MI. Global alterations
at DNAm sites following MI have previously been
demonstrated [48]. Rask-Andersen et al. also detected

some degree of inflation in low p values (λ = 1.44) [47],
and we observed weak inflation in p values (λ = 1.04).
There are several limitations to the present study: (i)

The study was exploratory in nature and our findings
were not validated in replication cohorts. Future studies
will therefore be necessary to validate our findings in in-
dependent cohorts. (ii) The EWAS was performed with
the Infinium HumanMethylation450 array, with the con-
sequence that not all DNAm sites in the human genome
were inspected. Further insight into the association of
DNAm sites with MI will require fine-mapping analysis
with bisulfite sequencing. (iii) The study is cross-
sectional in nature and therefore does not establish a
cause-and-effect relation between DNAm level at
DNAm sites and MI. Future studies are thus necessary
to evaluate such relations in prospective cohorts. (iv)
We studied only male subjects, with the result that
our findings will require confirmation in female sub-
jects. (v) We measured DNAm in whole-blood cells as
a surrogate for heart tissue. Given that DNAm status
at specific sites may be tissue dependent, our findings
may not reflect MI-associated changes in DNAm in
heart tissue.

Conclusions
We have revealed genome-wide significant associa-
tions of MI with DNAm status at three DNAm
sites—cg07786668 in ZFHX3, cg17218495 in
SMARCA4, and cg06642177 in SGK1—in blood sam-
ples, with ZFHX3 and SMARCA4 having previously
been identified as susceptibility genes for CVD. Al-
though SNPs located in these genes have been found
to be associated with CVD, DNAm status at the
DNAm sites identified here was not associated with
these SNPs. Our results thus suggest the possibility
that these DNAm sites are independently related to
the development of MI.

Table 3 Association analysis for SNPs and DNAm sites located in ZFHX3 and SMARCA4 for the control group

SNP Chromosome Position (bp) Strand Allele (minor/major) MAF (%) DNAm site Effect ± SE p

ZFHX3

rs7193343 16 73,029,160 + C/T 40.4 cg07786668 −0.0011 ± 0.0011 0.307

cg00614832 0.0004 ± 0.0013 0.755

rs2106261 16 73,051,620 + T/C 33.1 cg07786668 −0.0016 ± 0.0011 0.176

cg00614832 0.0004 ± 0.0014 0.774

rs879324 16 73,068,678 + A/G 38.3 cg07786668 −0.0015 ± 0.0011 0.186

cg00614832 0.0005 ± 0.0014 0.718

SMARCA4

rs3786725a 19 11,166,827 + A/G 11.2 cg17218495 0.0008 ± 0.0011 0.461

The Effect and p values were calculated with a GLM. The Effect value represents the change in β-value per minor allele copy for the SNP
aThis SNP is in linkage disequilibrium with rs1122608 in SMARCA4 (r2 = 0.956 based on Asian samples of the 1000 Genomes Project phase I)
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