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Abstract

The implication of epigenetic abnormalities in many diseases and the approval of a number of compounds that
modulate specific epigenetic targets in a therapeutically relevant manner in cancer specifically confirms that some
of these targets are druggable by small molecules. Furthermore, a number of compounds are currently in clinical
trials for other diseases including cardiovascular, neurological and metabolic disorders. Despite these advances, the
approved treatments for cancer only extend progression-free survival for a relatively short time and being
associated with significant side effects. The current clinical trials involving the next generation of epigenetic drugs
may address the disadvantages of the currently approved epigenetic drugs.
The identification of chemical starting points of many drugs often makes use of screening in vitro assays against
libraries of synthetic or natural products. These assays can be biochemical (using purified protein) or cell-based
(using for example, genetically modified, cancer cell lines or primary cells) and performed in microtiter plates, thus
enabling a large number of samples to be tested. A considerable number of such assays are available to monitor
epigenetic target activity, and this review provides an overview of drug discovery and chemical biology and
describes assays that monitor activities of histone deacetylase, lysine-specific demethylase, histone
methyltransferase, histone acetyltransferase and bromodomain. It is of critical importance that an appropriate assay
is developed and comprehensively validated for a given drug target prior to screening in order to improve the
probability of the compound progressing in the drug discovery value chain.

Keywords: Assay development, Bromodomain, Chemical biology, Chemical probe, Drug discovery, High
throughput screening, Histone acetyltransferase, Histone deacetylase, Histone methyltransferase, Demethylase

Background
Chemical biology makes use of chemistry to under-
stand biological processes and this overlaps signifi-
cantly with drug discovery, especially when the latter
focusses on small molecules [1]. Chemical biology
could also be considered to have a more basic re-
search focus in that the research is largely directed
towards understanding fundamental biological pro-
cesses with small molecules being used as tools to fa-
cilitate this [2, 3]. This approach is complementary to
molecular biological methods where mutations of resi-
dues in proteins are utilized to determine the roles
they play in biological processes. In many cases, the
small molecules in chemical biology can also serve as
starting points for drug discovery and this is

exemplified by the concept of “chemical probe” [4–8].
The key attributes of a “chemical probe” includes
defined mechanism of action, appropriate selectivity,
often being freely available (both the physical com-
pound and activity data), possessing drug-like proper-
ties and being associated with a reliable structure-
activity relationship (SAR). These attributes are also
relevant for lead compounds, clinical candidate mole-
cules and drugs, but will also have additional attri-
butes such as intellectual property rights, human
bioavailability, and appropriate physicochemical and
pharmaceutical properties.
Drug discovery is a high risk, expensive and lengthy

process, typically lasting 10 years with defined phases
[9]. The pre-clinical stage of drug discovery, sometimes
also referred to the gene-to-candidate phase, can span a
period of 5 years before the compound is suitable for
human clinical trials. During this stage, a target deemed
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worthy of therapeutic intervention is identified and
subsequently a biological reagent (usually purified pro-
tein or cell line) is prepared that contains the target of
interest. In the case of small-molecule drug discovery,
this biological reagent would then be utilized to de-
velop an appropriate assay for monitoring target
activity and screened against libraries of small mole-
cules (hundreds to millions of compounds) [10–12].
Evaluation of the active compounds from the screening
campaign (hits) with freshly synthesized compounds
meeting acceptable purity and integrity in a panel of
relevant assays would ultimately yield a validated hit list
comprising a data package pertaining to the biological
activity [13]. Each validated hit series would then be an-
notated with additional data such as the Lipinski rule of
five [(i) molecular weight less than 500, (ii) logP, a par-
tition coefficient measuring hydrophobicity less than
five, (iii) no more than five hydrogen bond donors and
(iv) no more than 10 hydrogen bond acceptors]. Bear-
ing in mind the high attrition of drug discovery, more
than one of the most promising validated hit series
would be progressed to the hit-to-lead (H2L) phase
[14]. Several iterative rounds of synthesis would enable
the optimisation of the potency of compounds against
the target of interest to the desired criteria for a lead
series (typically in the sub-micromolar range) whilst
retaining an appropriate selectivity profile. Additional
information required when selecting the final lead
series will include demonstrable and acceptable SAR,
off-target selectivity profile, toxicity, physicochemical pro-
file, solubility and stability in aqueous solution and human
plasma, in vivo pharmacokinetics, Absorption, Distribu-
tion, Metabolism and Excretion (ADME) properties, pat-
entability and competitor activity. Further significant
optimisation of a compound within the lead series would
result in the generation of a pre-clinical candidate com-
pound and, upon approval by the relevant regulatory orga-
nizations, can enter human clinical trials [9].
In the post-Human Genome Project era [15], target-

based drug discovery accelerated considerably and is
fittingly illustrated by the kinase target class [16]. A
consequence of target-based drug discovery has been
the multitude of assays being available for most target
classes and the remainder of this article focusses on
general concepts of assay development with a specific
focus on screening compatible assays for epigenetics
targets, and Table 1 provides a summary of the as-
says. Many of the epigenetic assays reported in the
literature and referred to herein make use of com-
mercial extensively validated kits. Where possible, ori-
ginal references are cited that would enable an
understanding of the rationale for the development of
epigenetic assays and their utilization in a variety of
research activities.

Assay development, high throughput and high
content screening in pre-clinical drug discovery
Assays that are screened against libraries of compounds
to identify chemical starting points in the early stages of
drug discovery can be classified as being biochemical or
cell-based in nature. The exact assay that is utilized in a
screen is decided upon a case-by-case basis after taking
into account a number of factors such as provision of
reagents, throughput, cost, and many others that have
been discussed extensively in the literature [17]. The
biochemical target-based (reductionist) approach was
largely adopted in the post-Human Genome Project era
where specific genes were identified and cloned and the
corresponding proteins expressed in sufficient quantity
with acceptable activity for screening [18]. This was a
marked shift from earlier cell-based assays where
modulation of specific targets did not occur, but in-
stead relevant cellular phenotypic responses were mea-
sured [19, 20]. Significant effort has been expended to
mimic these physiologically relevant cell-based systems
with a significantly higher throughput [21] and ad-
vances have been made using a variety of these and
subsequently deployed in cancer drug discovery in par-
ticular [22–24] as well as being expanded to areas
such as predictive toxicology [25].
For any given protein target class, a variety of fully

validated screening compatible assay kits are com-
mercially available. These offer the potential to re-
duce cycle times significantly for hit identification
and beyond. Alternatively, it may be possible to ex-
ploit specific commercial reagents to build de novo
assays and this isrelevant when investigating newly
identified proteins and their substrates. Where ap-
propriate, schematic representations of assays are
provided (Figs. 1, 2, 3, and 4). The ultimate decision as
to which assay to use in a screening campaign is usually
considered on a case-by-case basis when initiating a drug
discovery project since all assays have specific advantages
and disadvantages. For example, in the case of the protein
kinases, biochemical assays are often utilized and more
than 20 of such assays are commercially available [26, 27]
whereas in the case of G-protein-coupled receptors, cell-
based assays are more commonly employed [28–32]. It is
prudent to develop a panel of assays with different readout
modes, as these are suitable for the hit validation stage thus
allowing confirmation as to whether the activities of com-
pounds translate to more than one assay format thereby
adding confidence that they are not assay artefacts [33–
36]. This is important as it is now known that assays that
make use of specific tagged proteins in the AlphaScreen™
assay format often yield specific interfering compounds as
false positive hits [37, 38]. Assay formats that have en-
hanced the capabilities relative to phenotypic assays in-
clude label-free impedance-based [39, 40] dynamic mass
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Table 1 Screening compatible epigenetic assays

Enzyme Assay format Key features of the assay References

Histone deacetylase
(HDAC)

Chemiluminescent (AlphaLISA®) • Assay reported in literature and commercial
validated assay kit
• Substrate: histone proteins
•Detection: H3-K9(Ac) or H3-K27(Ac)
• High sensitivity
• High throughput functional assay

122–124

Chromatin immunoprecipitation • Assay reported in literature using specific
commercial reagents
•Detection: Ac-H3
• High sensitivity
• Low throughput assay

125

Colorimetric (Color de Lys®) • Commercial validated assay kit
• Substrate: peptide containing ε-acetylated lysine
•Detection: deacetylated peptide via coupled assay
• Low sensitivity
• Low/Medium throughput functional assay
• Prone to optical interference with compounds

126

Fluorometric (Fluor de Lys®) • Assay reported in literature and commercial validated
assay kit
• Substrate: peptide containing ε-acetylated lysine
•Detection: deacetylated peptide via coupled assay
•Medium/High sensitivity
•Medium/High throughput functional assay

127, 128

Luminescence (HDAC-Glo™ I/II) • Assay reported in literature and commercial validated
assay kit
• Substrate: peptide containing ε-acetylated lysine
•Detection: deacetylated peptide via coupled assay
• High sensitivity
•Medium/High throughput functional assay

131, 132

TR-FRET (LANCE® Ultra) • Uses specific commercial reagents
• Substrate: biotinylated Histone H3-K27(Ac) or Histone
H3-K9(Ac) peptide
•Detection: H3-K9(Ac) or H3-K27(Ac)
• High sensitivity
• High throughput functional assay

133

TR-FRET (LanthaScreen™) • Assay reported in literature and commercial validated
assay kit
• Ligand: Alexa Fluor® 647-labelled HDAC inhibitor as a tracer
•Detection: displacement of Alexa Fluor® 647-labelled
HDAC inhibitor
• High sensitivity
• High throughput binding assay

134

Demethylase (LSD and Jumonji
C domain-containing
histone demethylase)

Colorimetric • Assay reported in literature using specific
commercial reagents
• Substrates: Histone H3-K4 peptide
•Detection: H2O2 or H3-K4 via coupled assay
• Low sensitivity
• Low throughput functional assay
• Prone to optical interference with compounds

139–142

Colorimetric (Epigenase™) • Commercial validated assay kit
• Substrates: Histone H3-K4(Me2) or dimethylated
Histone H3-K4 peptide
•Detection: H2O2 via coupled assay
• Low sensitivity
• Low throughput functional assay
• Requires wash steps
• Prone to optical interference with compounds

143

Fluorescence polarization • Assay reported in literature using methylstatfluor tracer
• Ligand: methylstatfluor tracer
•Detection: displacement of methylstatfluor tracer
• High sensitivity
• High throughput binding assay

144–145

Fluorometric • Commercial validated assay kit 146–147
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Table 1 Screening compatible epigenetic assays (Continued)

• Substrate: Histone H3-K4(Me2) peptide
•Detection: H2O2 via coupled assay
• Low sensitivity
• Low throughput functional assay
• Requires wash steps
• Prone to optical interference with compounds

Fluorometric • Commercial validated assay kit
• Substrate: Histone H3-K4(Me2) protein
•Detection: formaldehyde via coupled assay
• Low sensitivity
• Low throughput functional assay
• Requires wash steps
• Prone to optical interference with compounds

148–149

High content screening • Assay reported in literature using specific
commercial reagents
• Substrate: Histone H3-K27(Me)3 peptide
•Detection: H3-K27(Me)3
•Medium sensitivity
•Medium throughput functional assay

150

Mass spectrometry • Assay reported in literature using specific
commercial reagents
• Substrate: dimethylated peptides
•Detection: demethylated products
•Medium/High sensitivity
• Low throughput functional assay
• No optical interference from compounds

151, 152

Radioactive • Assay reported in literature using specific
commercial reagents
• Substrate: 3H-labelled methylated histone
•Detection: 3H-formaldehyde via coupled
functional assay
• No optical interference from compounds
• Radioactive waste

153, 154

TR-FRET (LANCE® Ultra) • Commercial validated assay kit
• Substrate: biotinylated Histone H3-K4(Me) peptide
•Detection: H3-K4
• High sensitivity
• High throughput functional assay

155

Histone methyltransferase (HMT) Chemiluminescent (AlphaLISA®) • Commercial validated assay kit
• Substrate: Histone H3-K79(Me2) protein
•Detection: H3-K79(Me2)
• High sensitivity
• High throughput functional assay

161

Fluorescence polarization • Assay reported in literature using specific
commercial reagents
• Substrate: protein or peptide
•Detection: displacement of labelled-AMP in
coupled assay
• High sensitivity
• High throughput binding assay

162

Fluorometric • Assay reported in literature using specific
commercial reagents
• Substrate: Histone H3 peptide
•Detection: homocysteine via coupled assay
• High sensitivity
• High throughput functional assay

163–165

High content screening • Assay reported in literature using specific
commercial reagents
• Substrate: Histone H3-K27(Me)3
•Detection: H3-K27(Me)3
•Medium sensitivity
•Medium throughput functional assay

166

Luminescence • Assay reported in literature using specific
commercial reagents

167
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Table 1 Screening compatible epigenetic assays (Continued)

• Substrate: protein or peptide
•Detection: complex coupled assay
• High sensitivity
• High throughput functional assay

Radiometric • Assay reported in literature using specific
commercial reagents
• Substrate: biotinylated Histone H3-K9 peptide
•Detection: 3H-incorporated into peptide
• No optical interference from compounds
• Radioactive waste

168–170

Histone acetyltransferase (HAT) Colorimetric • Commercial validated assay kit
• Substrate: proprietary peptide
•Detection: NADH via coupled assay
• Low sensitivity
• Low/Medium throughput functional assay
• Prone to optical interference with compounds

174

ELISA • Commercial validated assay kit
• Substrate: histone
•Detection: H3-K4(Ac) via coupled assay
• Low/Medium sensitivity
• Requires wash steps
•Medium throughput functional assay

175

Fluorometric • Assay reported in literature using specific
commercial reagents
• Substrate: Histone H3 or Histone H4 peptide
•Detection: CoA-SH via coupled assay
• High sensitivity
• High throughput functional assay
• Prone to optical interference with compounds

176

Fluorometric • Commercial validated assay kit
• Substrate: Histone protein
•Detection: CoA-SH via coupled assay
• High sensitivity
• High throughput functional assay

177

Microfluidic mobility shift • Assay reported in literature using specific
commercial reagents
• Substrate: fluorolabelled Histone H3 or Histone
H4 peptide
•Detection: charge difference of substrate/product
• High sensitivity
•Medium throughput functional assay
• No optical interference from compounds

178

Radiometric • Assay reported in literature using specific
commercial reagents
• Substrate: biotinylated Histone H4 peptide
or histone protein
•Detection: 3H-incorporated into peptide or histone
• High sensitivity
• Low throughput functional assay
• No optical interference from compounds
• Radioactive waste

179–181

TR-FRET(LANCE® Ultra) • Commercial validated assay kit
• Substrate: biotinylated Histone H3-K9 peptide
•Detection: H3-K9(Ac)
• High sensitivity
• High throughput binding assay

182

Bromodomain Chemiluminescent (AlphaScreen™) • Assay reported in literature using specific
commercial reagents
• Substrate: biotinylated Histone H4-K5(Ac)
•Detection: presence of BRD4/peptide complex
• High sensitivity
• High throughput binding assay

188, 189

Differential Scanning Fluorometry
(BromoMELT™)

• Assay reported in literature and commercial
validated assay kit

190, 191
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redistribution [41, 42] and multiplex assays [43, 44], and
these have been successfully applied in screening against
small-molecule libraries. More recent state-of-the-art
screening compatible assays use three-dimensional spher-
oids that offer the potential to represent the microenviron-
ment of cells in the body [45].
The pre-requisites for high throughput screening (HTS)

are access to a suitable assay as briefly described above
and a suitable compound library. Compound libraries are
usually stored in pure DMSO at concentrations between
1 mM and 10 mM as this will allow for a range of final
assay concentrations of compound whilst retaining <1%
DMSO (v/v) in the final assay. The extent of automation
when embarking upon an HTS campaign will depend
upon the numbers of compounds screened and it would
be reasonable to screen a compound library composed of
a few thousand compounds manually in miniaturized

formats (e.g. 384- or 1536-well microtiter plates). How-
ever, where >5000 compounds are screened (in 384-well
microtiter plates), it would be prudent to use some degree
of automation such as stand-alone reagent dispensers or a
robotic screening system [46–49]. One way to minimize
the consumption of reagents when screening very large
numbers of compounds is to miniaturize and parallelize
an assay into 1536-well microtiter plates [50]. However,
such miniaturization requires the addition of very small
volumes of compound stock solutions and technologies
such as the contactless acoustic dispenser from Labcyte
Inc. makes this possible [51].
High content screening (HCS) is now an established

technique that is routinely utilized in chemical biology
and drug discovery and has made a significant impact
upon understanding the output of phenotypic screening.
This is a cell-based approach that can offer a multi-

Table 1 Screening compatible epigenetic assays (Continued)

• Substrate: BRD4
•Detection: Tm of BRD4/SYPRO Orange complex
• Low/Medium sensitivity
•Medium throughput binding assay
• No optical interference from compounds

Fluorescence polarization • Assay reported in literature using specific
commercial reagents
• Substrate: fluorescent BODIPY labelled tracer
•Detection: BRD4/BODIPY labelled tracer complex
•Medium sensitivity
•Medium throughput binding assay

190

TR-FRET • Commercial validated assay kit
• Substrate: biotinylated peptide
•Detection: BRD4/biotinylated peptide complex
• High sensitivity
• High throughput binding assay

192

Streptavidin Donor 
beads

Histone H3-K9(Ac) or 
Histone H3-K27(Ac)

Biotinylated-anti-H3 antibody

Acceptor beads conjugated to 
anti-H3-K9(Ac) or H3-K27(Ac)

antibody

680 nm 615 nm

Fig. 1 AlphaLISA® histone deacetylate assay that detects Histone H3-K9(Ac) or Histone H3-K27(Ac). The acetylated histones are detected using a
biotinylated anti-H3 antibody and AlphaLISA®-acceptor beads conjugated specific to the acetylated lysine. Streptavidin-donor beads then capture
the biotinylated antibody, bringing the acceptor and donor beads into proximity. Upon laser irradiation of the donor beads at 680 nm, short-lived
singlet oxygen molecules produced by the donor beads can reach the acceptor beads in proximity to generate an amplified chemiluminescent
signal at 615 nm
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a b

Fig. 2 a Colorimetric coupled histone deacetylate assay that makes use of a chromogenic peptide substrate (proprietary Color de Lys® Substrate)
containing a ε-acetylated lysine residue. When an HDAC enzyme acts upon the substrate and the sidechain of a ε-acetylated lysine residue is
deacetylated, it becomes susceptible to further degradation by an enzyme in the developer reagent (proprietary Color de Lys® Developer). The
action of the enzyme within the developer reagent results in the release of a chromophore detected by measuring the absorbance of the
reaction at 405 nm. b Fluorometric coupled histone deacetylate assay that makes use of a fluorogenic peptide substrate (proprietary Fluor de Lys®
Substrate) containing a ε-acetylated lysine residue. When an HDAC enzyme acts upon the substrate and the sidechain of a ε-acetylated lysine
residue is deacetylated, it becomes susceptible to further degradation by an enzyme in the developer reagent (proprietary Fluor de Lys®
Developer) resulting in the release of 7-amino-4-methylcoumarin fluorophore which undergoes excitation at 360 nm and emits at 460 nm

HDAC

Developer

luciferase
“glow-type” luminescence

Acetylated peptide substrate Deacetylated peptide

NH3
+

Fig. 3 Luminescence coupled histone deacetylate assay that makes use of specific amino-luciferin labelled ε-acetylated lysine peptide substrates
for HDAC Class I/II enzymes. When the substrate undergoes deacetylation by the HDAC enzyme, the product becomes susceptible to the
Developer reagent and results in the release of amino-luciferin. This amino-luciferin is the substrate for a luciferase enzyme (also in the
Developer reagent) and yields a glow-type luminescence
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parameter readout detecting simultaneously a multitude
of cellular changes that are subsequently attributed to
specific targets [52–56]. This approach is particularly
relevant in epigenetics as the discovery of Romidepsin
and Vorinostat as anti-cancer drugs originates from
phenotypic assays [57].

General concepts underlying the common
deployed screening compatible assays Amplified
Luminescent Proximity Homogeneous (AlphaLISA®

and AlphaScreen®) assays
These are proximity-based assays that have successfully
been used to study the activity of a wide range of targets
[58–61]. The technology requires two bead types,
termed donor beads and acceptor beads with the former
containing the photosensitizer phthalocyanine, which
converts ambient oxygen to an excited and reactive
singlet oxygen upon illumination at 680 nm. This react-
ive singlet oxygen can diffuse approximately 200 nm in
solution and has a half-life of 4 μs. If an acceptor bead is
within that distance, energy is transferred from the
singlet oxygen to thioxene derivatives within the ac-
ceptor bead, resulting in light production at 520–
620 nm (AlphaScreen®) or at 615 nm (AlphaLISA®) [62].
These assays do not require wash steps unlike in a
standard ELISA, see Fig. 1.

Colorimetric assays
These rely upon the difference in the electronic absorp-
tion spectrum of the substrate and product of a reac-
tion. Chromogenic substrates are composed of organic

molecules that contain a conjugated system, i.e. a deloca-
lized π-bond system which is usually attributed to alter-
nating single and double bonds. When chromophores
absorb ultraviolet (UV) and visible radiation, their elec-
trons undergo excitation from their ground state to
excited state and the wavelength of UV or visible light
(approximately 200–800 nm) absorbed depends largely on
the extent of conjugation, such that the greater the degree
of conjugation within the chromophore, the longer the
wavelength of light will be absorbed [63, 64]. In some
cases, both the substrate and product will absorb light and
it will be necessary to monitor the formation of product
where the absorption of the substrate does not change.
Additionally, the optimal wavelength at which product
formation can be detected should be determined after
collecting the absorption of pure samples of substrate and
product. When the natural substrate is itself chromogenic,
this offers the potential to monitor the activity of an
enzyme without the need for a synthetic chromogenic
substrate. Thus obviating the effects of steric hindrance by
an artificial chromophore in the molecule that can inter-
fere with binding within the active centre of the enzyme
and potentially confound the identification of substrate
competitive compounds. Despite the successful use of
colorimetric assays in screening, they are no longer the
preferred option and have largely been replaced by alter-
native assay formats such as fluorescence-based methods
[65, 66]. This has been driven by a number of reasons
such as colorimetric assays being relatively insensitive,
often requiring substantial concentrations of product
(typically low micromolar) to be generated for adequate

Biotinylated Histone 
H3-K9(Ac) or histone 
H3-K27(Ac) peptide 

substrate

streptavidin-ULight™-Acceptor

Europium chelate Donor (W1024-Eu) linked to 
an anti-H3-K27(Ac) or anti-H3-K9(Ac) antibody

340 nm

665 nm

NH3
+

HDAC

streptavidin-ULight™-Acceptor

615 nm

Fig. 4 Time-resolved fluorescence resonance energy transfer histone deacetylase assay. A signal is generated when the deacetylated peptides are
captured by the Europium-labelled antibody donor and streptavidin-ULight™-acceptor thus bringing the Europium-donor and ULight™-acceptor
molecules into close proximity. Upon irradiation at 340 nm, the energy from the Europium-donor is transferred to the ULight™-acceptor, which, in
turn, generates a signal at 665 nm
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detection. Colorimetric assays are also particularly prone
to optical interference due to coloured compounds which
are commonly found in small-molecule libraries. These
optically interfering compounds are likely to result in
many of these being identified as apparent hits in a small-
molecule screening campaign but subsequently shown not
to be genuine modulators of the activity of the target
protein [34, 37, 38, 67–69]. These false positives need to
be identified and removed prior to the progression of
compounds for drug discovery purposes. One strategy to
reduce the number of apparent hits being overrepresented
with optically interfering compounds is to determine the
activity of the target protein in the presence of compound
in kinetic mode; however, this will reduce the throughput
of the assay [70].

Differential scanning fluorimetry assays
This technique makes use of dyes that are fluorescent
when present in a non-polar environment such as hydro-
phobic sites of unfolded proteins relative to aqueous
solution (in the case of unfolded proteins) where their
fluorescence is quenched [71]. When low Mr ligands bind
and stabilize proteins, the temperature at which this com-
plex unfolds will be raised and this can be quantified from
a fluorescence–temperature plot, with the midpoint of the
protein unfolding transition defined as the Tm (melting
temperature), reflecting the potency of the low Mr ligand
towards the protein [72–75].

Enzyme-linked immunosorbent assay (ELISA)
This technique is used in a variety of industries including
diagnostics and quality-control checks [76]. In most cases
an ELISA involves an antigen being immobilized to a sur-
face that is capable of capturing a molecule that resembles
the antigen. Subsequent to a series of wash steps to remove
non-specifically bound proteins, a secondary antibody is ap-
plied that is linked to an enzyme and the enzyme substrate
is added that yields a signal, usually colorimetric or fluoro-
metric [77–79]. The major drawback of ELISA from a
screening perspective is their non-homogenous nature and
the requirement for wash steps [80].

Fluorescence polarization assays
This technique relies upon a change in the hydro-
dynamic radius of a fluorescent entity (when bound to a
protein and free in solution) that alters its hydrodynamic
radius [81–83]. Most of these assays are based on an
indirect measurement of the size change of a protein
and fluorescently labelled ligand. A requirement for this
technique is the easy conjugation of a fluorophore to a
relevant molecular entity. Binding of this ligand would
result in a relatively high fluorescence polarization sig-
nal. Its displacement from the target by a competitor

molecule would lead to a decrease in the fluorescence
polarization signal [84, 85].

Fluorescence intensity assays
These have been used extensively in drug discovery and
offer a number of advantages over colorimetric assays
such as being significantly more sensitive and less prone
to optical interference [86]. There are a large number of
fluorophores available that cover most of the electromag-
netic spectrum. As a result it is possible to design and
synthesize molecules that contain these fluorophores in
order to enable them to be employed as tools to develop
assays for the investigation of difficult drug targets
[87, 88]. Fluorescein has been widely used as a fluor-
ophore in assays but others are available that are associ-
ated with reduced compound-mediated interference [89].

High content screening assays
These make use of a microscope-based method to
image cells that can categorize multiple features when
using appropriate fluorescent dyes. The image analysis
requires algorithms to allow their categorization, espe-
cially after exposure to compounds [90, 91]. These
assays can be enhanced when working with primary
cells and three-diensional cultures that are more
physiologically relevant [92].

Luminescence assays
These use enzymes such as luciferases, and the comple-
mentary luciferin photon-emitting substrates [93, 94].
The most widely used enzymes are firefly luciferase,
Renilla luciferase, and aequorin [95–97]. In the case of
firefly luciferase-based assays, beetle luciferin and ATP
are combined to form luciferyl-AMP (an enzyme-bound
intermediate). This reacts with O2 to create oxyluciferin
in a high-energy state and a subsequent energy transi-
tion to the ground state yielding light.

Mass spectrometry assays
This has been a longstanding technique and used as a
secondary assay due to its relatively low throughput, or
for screening modest libraries of compounds [98, 99]. It
is a label-free approach as it relies upon the separation
and subsequent quantification of typically a substrate
and product that has undergone modification that the
mass spectrometer is capable of detecting [100]. The
current instrument for high throughput mass spectrom-
etry is the Agilent RapidFire that has been used to
screen a range of targets with improved quality of the
identified hit compounds [101–103].

Microfluidic mobility shift assays
This electrophoretic technique requires a charge differ-
ence to exist between substrate and product and has

Gul Clinical Epigenetics  (2017) 9:41 Page 9 of 19



been most successfully used to investigate the kinase
target class [104]. Although these assays have a low
throughput, the major advantage they offer is to over-
come compound-mediated optical interference, as it is
separated during the electrophoretic separation of
substrate and product [105]. The assay requires a fluo-
rescently labelled substrate that can be used to detect
both the product and any residual substrate [106].

Radioactive assays
These assays make use of radioisotopes such as 3H, 14C,
33P, 35S and 125I. Filter-binding assays have historically
been extensively adopted to monitor the activity of a
wide range of targets [107, 108]. In the case of the
neurotransmitter targets, these assays are considered to
be the gold standard assay format as they are label-free,
highly sensitive and are not prone to interference in a
manner that the other optical methods are susceptible
[109]. An advancement to these assays is the no-wash
scintillation proximity assay (SPA) which makes use of
beads embedded with scintillant that can bind the target
of interest and give a signal [110–112].

Time-resolved-Förster resonance energy transfer assays
This is a proximity-based assay that makes use of
lanthanide chelate complexes with a long-lived lumines-
cence in comparison with conventional fluorophores.
Therefore, enabling the short-lived background interfer-
ences that are predominantly compound mediated to be
removed [113]. Typically, a TR-FRET signal is generated
when a molecule coupled to the Europium-labelled
partner (donor) is brought into close proximity to an
acceptor molecule, e.g. Allophycocyanin (APC). Upon
irradiation at 340 nm, the energy from the Europium-
donor is transferred to the acceptor which in turn gener-
ates a signal at 665 nm, Fig. 4 [114].

The histone deacetylase (HDAC) target class and
relevant screening compatible assays
The HDAC family of enzymes remove an acetyl group
from acetylated lysine residues in appropriate substrates
(both histone and non-histone based) [115, 116]. This
protein target class has been implicated in cancer
[117, 118], cardiovascular [119], inflammatory and in-
fectious diseases [120] and neurodegeneration [121].

HDAC AlphaLISA® assays
A commercial assay kit is available that detects changes
in the levels of Histone H3-acetylated lysine 9 (H3-
K9(Ac)) and Histone H3-K27(Ac) in cellular systems
[122–124]. The changes in the levels of acetylated
histones is performed with histones extracted from cells,
followed by addition of a biotinylated anti-H3 antibody
and AlphaLISA®-acceptor beads conjugated specific to

the acetylated lysine. Streptavidin-donor beads then cap-
ture the biotinylated antibody, bringing the acceptor and
donor beads into proximity. Upon laser irradiation of
the donor beads at 680 nm, short-lived singlet oxygen
molecules produced by the donor beads can reach the
acceptor beads in proximity to generate an amplified
chemiluminescent signal at 615 nm (Fig. 1). Due to the
nature of the assay, any changes in the observed signal
may be due to reasons other than HDAC inhibition;
therefore, care needs to be taken when interpreting the
data. As this assay format is essentially proximity based,
it can be employed to monitor the modification of a var-
iety of molecules such as appropriately labelled peptide
and protein substrates (e.g. biotin, FLAG, GST, His) that
undergo acetylation, demethylation, methylation as well
as phosphorylation (in the case of kinases) when using
an antibody against a specific modulation. A chromatin
immunoprecipitation (ChIP) assay has also been re-
ported to extract and quantify Ac-H3 from a cellular
system [125].

HDAC colorimetric assay
In contrast to the above, a commercial HDAC-specific
coupled assay kit is available that makes use of a
chromogenic peptide substrate (proprietary Color de Lys®
Substrate) containing a ε-acetylated lysine residue [126].
When an HDAC enzyme acts upon the substrate and
the sidechain of a ε-acetylated lysine residue is deacety-
lated, it becomes susceptible to further degradation by
an enzyme in the developer reagent (proprietary Color
de Lys® Developer). The action of the enzyme within the
developer reagent results in the release of a chro-
mophore detected by measuring the absorbance of the
reaction at 405 nm (Fig. 2a). Since this is a colorimetric-
based assay, it is generally of low sensitivity and prone
to optical interference.

HDAC fluorometric assays
This is a specific commercial HDAC coupled assay kit
but significantly more sensitive that the colorimetric
version described above. It is based upon a similar
principle to the colorimetric but it involves the replace-
ment of the chromogenic group with one that is fluoro-
genic [127]. The peptide substrate (proprietary Fluor de
Lys® Substrate) once undergone deacetylation by HDAC
enzyme is acted upon by the developer reagent (propri-
etary Fluor de Lys® Developer) resulting in the release of
7-amino-4-methylcoumarin fluorophore which under-
goes excitation at 360 nm and emits at 460 nm (Fig. 2b).
Fluorogenic assays offer significant advantages over
colorimetric assays, as they are more sensitive and less
prone to optical interference from compounds and have
been utilized extensively by researchers to evaluate
HDAC inhibitors [128–130].
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HDAC luminescence assays
This is another commercial coupled assay kit simi-
lar to those described above (colorimetric and fluo-
rometric) but makes use of specific amino-luciferin
labelled ε-acetylated lysine peptide substrates for
HDAC Class I/II enzymes (Promega Corp. HDAC-
Glo™ I/II Assays and Screening Systems) [131].
When the substrate undergoes deacetylation by the
HDAC enzyme, the product becomes susceptible to
the developer reagent and results in the release of
amino-luciferin. This amino-luciferin is the substrate
for a luciferase enzyme (also in the developer re-
agent) and yields a glow-type luminescence (Fig. 3).
This assay has been validated and used to screen a
natural product library [132].

HDAC TR-FRET assay
This is a commercial assay kit (LANCE® Ultra TR-
FRET) that uses a proprietary Europium chelate donor
(W1024-Eu) linked to an anti-H3-K27(Ac) or anti-H3-
K9(Ac) antibody, together with streptavidin-ULight™-ac-
ceptor. The available substrates for this are biotinylated
Histone H3-K9(Ac) and Histone H3-K27(Ac) peptides.
A TR-FRET signal is generated when the unmodified
peptides are captured by the Europium-labelled anti-
body donor and streptavidin-ULight™ acceptor that
brings the Europium-donor and ULight™-acceptor
molecules into close proximity. Upon irradiation at
340 nm, the energy from the Europium-donor is trans-
ferred to the ULight™-acceptor, which in turn generates
a signal at 665 nm (Fig. 4) [133].
A similar assay has been reported that is based on

measuring the binding affinity of inhibitors rather than
enzyme activity. As catalytically functional protein is not
required, there is no requirement for a substrate and
instead an Alexa Fluor® 647-labelled HDAC inhibitor is
used as a tracer (acceptor in the TR-FRET assay). This
can bind with specific HDAC enzymes tagged with GST
in the presence of Europium anti-GST tag antibody
(donor in the TR-FRET assay) and if the tracer is dis-
placed by an appropriate compound, a decrease in signal
would be observed [134].

The demethylase target class and relevant
screening compatible assays
The demethylase family of enzymes are responsible
for the demethylation of lysine and arginine side
chains in appropriate substrates (both histone and
non-histone based) [135]. Specific examples of pro-
teins in this class include lysine-specific demethylase
(LSD) and the Jumonji C domain-containing histone
demethylase (JHDM). This protein target class has
been implicated in cancer [136], diabetes [137] and
cardiovascular disease [138].

LSD colorimetric assay
In this assay, the activity of human LSD1 makes use of
dimethylated Histone H3-K4 peptide. This is a coupled
assay in which the oxidative demethylation reaction
catalysed by LSD1 results in the production of hydrogen
peroxide (H2O2) [139–141]. This, in the presence of 3,5-
dichloro-2-hydroxybenzenesulfonic acid and horseradish
peroxidase (HRP), results in an absorbance change at
515 nm [142].
A commercial coupled assay kit is also available

(Epigenase™ LSD1 Demethylase Activity/Inhibition Assay
Kit) that makes use of a chromogenic peptide substrate.
In the assay, microtiter plates coated with Histone H3-
K4(Me2) LSD1 substrate are used, after which addition
of LSD1 results in the removal of substrate methyl
groups. After a wash step, the Histone H3-K4 demethy-
lated product recognition takes place using a specific
antibody and subsequently the colorimetric signal gener-
ated at 450 nm after addition of a proprietary detection
mix (making use of the H2O2 or formaldehyde released
as the by-product of LSD1 enzymatic reaction) [143].

Jumonji C domain-containing histone demethylase
fluorescence polarization assay
The crystal structure of histone demethylases have used
in a structure-based drug design exercise to develop a
substrate-derived inhibitor for Jumonji C domain-
containing histone demethylase, termed methylstat
[144]. This compound was shown to be active in vitro
against isolated protein in a mass spectrometry (meas-
uring H3-K9(Me3)) and in a cell-based HCS assay
(measuring H3-K9(Me3)) using immunostaining with
an anti-H3-K9(Me3) antibody. Modification of this
compound with a fluorescent label has led to methyl-
statfluor, which has successfully been employed as a
tracer in fluorescence polarization binding assay to
monitor JHDM 1A activity [145].

LSD fluorometric assay
This commercial assay kit works in a similar manner to
the colorimetric kit described above but being fluores-
cence based. The assay is based on the multistep enzym-
atic reaction in which LSD1 first produces H2O2 during
the demethylation of an Histone H3-K4(Me2) peptide. In
the presence of HRP, H2O2 reacts with 10-acetyl-3,7-
dihydroxyphenoxazine (also called Amplex Red) that
results in the formation of Resorufin that can be quanti-
fied by fluorescence readout at excitation at 530 nm and
emits at 590 nm [146]. A similar commercial kit is also
available with an identical protocol but containing a
proprietary Fluoro-Developer solution [147].
As an alternative, this commercial assay kit detects the

formaldehyde released from the reaction of LSD1 when
using an Histone H3-K4(Me2) protein. The formaldehyde
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released as the by-product of LSD1 reaction reacts with
the proprietary detection reagent to generate a fluorescent
signal with excitation at 410 nm and an emission at
480 nm [148]. Although the detecting reagent in the kit is
proprietary, formaldehyde can be quantitated as the fluor-
escent condensation product 3,5,-diacetyl-1,4dihydroluti-
dine (DDL) which is formed with acetyl-acetone and
ammonia in the Hantzsch reaction [149].

LSD high content screening assay
This approach has been used to monitor the changes in
H3-K27(Me3) and H3-K4(Me3) due to demethylase activ-
ity quantified in cell-based system using specific anti-H3-
K27(Me3) and anti-H3-K4(Me3) antibodies. This approach
was complemented with an in vitro assay using isolated
lysine demethylase 6B (KDM6B) and chromatin immuno-
precipitation (ChIP) assays using the same antibodies
[150]. This panel of assays could be used to screen
compounds in a low throughput manner and collectively
they could provide information as to whether or not the
compounds are LSD inhibitors.

LSD mass spectrometry assay
This label-free approach has been used to measure
LSD1 activity when using an Histone H3-K4(Me2)
peptide substrate. The detection of demethylated product
(H3-K4(Me)) was quantitatively determined by HPLC-MS
[151]. As this is a low throughput assay, a relatively low
number of compounds were screened.
This technique has also been used to monitor LSD2

activity using an Histone H3-K4(Me2) peptide substrate.
The demethylation efficiency of LSD2 was estimated by
mass spectrometry on the basis of detection of the prod-
uct H3-K4(Me) peptide [152].

LSD radioactive assay
This assay measures the release of radioactive formal-
dehyde from 3H-labelled methylated histone substrates
when acted upon by LSD1 [153]. The radioactive
formaldehyde is captured and separated from residual
substrate and this assay is very sensitive and com-
patible for use with tissue and cell lysates [153]. How-
ever, it is limited by the method of radioactive
substrate preparation and the formaldehyde detection
method which requires the conversion of formalde-
hyde to DDL [154].

LSD TR-FRET assay
This is a commercial assay kit (LANCE® Ultra TR-
FRET) that works upon the same principle as shown
above for the analogous assay for HDAC enzyme. In this
case, the assay makes use of a biotinylated Histone H3-
K4(Me) peptide substrate, with the unmodified peptide
being captured by an Europium-labelled antibody as

donor and ULight™-streptavidin that binds the peptide
substrate [155].
The detection of H3-K27(Me3) in cell-based assay

system has also been reported and the findings were fur-
ther confirmed using alternative assay formats, namely
AlphaLISA® and Western blot [156, 157].

The histone methyltransferase (HMT) target class
and relevant screening compatible assays
Histone methyltransferases (HMTs) enzymes catalyse
the transfer of methyl groups to histone proteins and
consequently, this can control or regulate DNA methyla-
tion through chromatin-dependent transcription repres-
sion or activation. Histone methylation serves in both
epigenetic gene activation and silencing, thereby making
it important to measure the activity or inhibition of
HMTs and are implicated in cancer [158], HIV [159]
and cardiovascular disease [160].

HMT AlphaLISA® assay
This is a commercial assay kit that detects changes in
the levels of Histone H3-K79(Me2) protein [161]. The
changes in the levels of Histone H3-K79(Me2) were
performed by addition of anti-Histone H3 (C-ter-
minal) AlphaLISA® acceptor beads and biotinylated
anti-dimethyl-H3-K79(Me2) antibody and streptavidin-
donor beads.

HMT fluorescence polarization assay
This is a generic methyltransferase assay that detects S-
adenosylhomocysteine (SAH) product formation. The
assay uses a highly specific immunodetection of nucleo-
tide reaction products with the fluorescence polarization
readout. This method requires an antibody that specific-
ally binds SAH in the presence of excess S-adenosyl-L-
methionine (SAM) and can differentiate on the basis of
a single methyl group [162]. This assay has the advan-
tage of being compatible with other enzymes of the
same target class.

HMT fluorometric assay
A coupled assay that relies upon the determination of
SAM-dependent methyltransferase acting upon a H3
peptide. The SAH that is hydrolyzed by the coupling
enzyme SAH hydrolase to homocysteine and adenosine.
The free sulfhydryl group on a homocysteine molecule
reacts with the maleimido form of the fluorophore,
Thioglo1 forming a highly fluorescent conjugate with
excitation at 382 nm and emission at 513 nm [163] and
this method has been patented [164]. An alternative
to Thioglo1 is 7-diethylamino-3-(4-maleimidophenyl)-
4-methylcoumarin (CPM) which has been used to
determine the activity of a number of methyltransfer-
ase enzymes [165].
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HMT high content screening assay
An ultra-high throughput screening assay (1536 wells)
has been reported for determining the changes in H3-
K27(Me3) in HeLa cells [166]. The assay quantifies the
reduction in total H3-K27(Me3) using a specific anti-
body. The use of this assay in conjunction with a target-
based assay for Enhancer of zeste homolog 2 (EZH2)
histone-lysine N-methyltransferase enzyme enabled the
assignment of any cellular activity to this specific target.

HMT luminescence assay
This assay has been reported for histone methyltransfer-
ases in which the enzymes catalyse the transfer of a
methyl group from SAM to a lysine amino group in a
histone substrate resulting in the formation of SAH. The
assay is novel in that the quantification of enzyme activ-
ity takes place via three coupled steps [167] and there-
fore is undesirable from a screening perspective.

HMT radiometric assay
The activity of protein arginine methyltransferase 1 and
5 have been reported to make use of biotinylated pep-
tides, 3H-SAM and streptavidin-coated SPA beads in a
homogenous format that do not require any wash steps.
Incorporation of radioactivity into the biotinylated pep-
tides immobilized onto the SPA beads would lead to an
increase in signal [168]. An analogous assay for Neuros-
pora crassa Dim-H3-K9 methyltransferase that involves
wash steps has also been reported which uses streptavi-
din microtiter plates coated with biotintinylated-H3K9
peptide substrate. Subsequently, the enzyme and 3H-
SAM are added resulting in the transfer of the methyl
groups to the target peptide. This brings the radioactive
methyl group and scintillator in close proximity and an
increase in signal [169]. This assay has also been applied
to most other human methyltransferases [170].

Histone acetyltransferase (HAT) assays
Histone acetyltransferase (HAT) enzymes catalyse the
transfer of acetyl group from acetyl-CoA to histone pro-
teins and are implicated in cancer [171], cardiovascular
disease [172] and neurodegenerative disorders [173].

Colorimetric assay
This is a commercial assay kit in which acetylation of a
proprietary peptide substrate by all HAT enzymes
releasing CoA-SH, which then serves as an essential
coenzyme for producing NADH. The detection of NADH
takes place spectrophotometrically at 440 nm upon it
reacting with a soluble tetrazolium dye [174].

ELISA
This is also a commercial assay kit to detect the presence
of Histone H3-K4(Ac). In this assay, histone substrates are

captured using Histone H3-coated antibody, followed
by incubation with HAT enzymes allowing generation
of product. Subsequent addition of a modification-
specific primary antibody, anti-H3-K4(Ac) and sec-
ondary antibody coupled to HRP and a proprietary
developing solution results in an increase in absorb-
ance at 450 nm [175].

Fluorometric assay
An assay for lysine acetyltransferase Rtt109 that upon
transferring an acetyl group from acetyl-CoA to specific
histone-lysine residues of its substrate results in the gen-
eration of CoA. The free thiol group of CoA reacts with
the sulfhydryl-sensitive probe CPM to form a fluorescent
adduct that is detected [176].
Another commercial assay kit that uses Histone H3

and Histone H4 N-terminal peptides as substrates. The
HAT enzyme catalyses the transfer of acetyl groups from
acetyl-CoA to the histone peptide thereby generating the
acetylated peptide and CoA-SH. After stopping the reac-
tion and addition of a developing solution, it reacts with
the free sulfhydryl groups on the CoA-SH to give a
fluorescent readout [177].

Microfluidic mobility shift assay
This makes use of fluorescently labelled peptide sub-
strates (derived from Histone H3 and Histone H4).
Upon modification of the peptides, the substrate and
product have a difference in charge and microfluidic
electrophoresis allows their separation and quantifica-
tion [178]. This assay was used to profile known and
novel modulators of lysine acetyltransferase enzymes.

Radiometric assay
In this assay, a synthetic biotinylated Histone H4-
derived peptide acts as an HAT substrate [179, 180]. The
enzyme acts upon [14C]acetyl-CoA and generates a
radiolabelled peptide which is retained on strep-
tavidin beads and subsequently counted in a liquid
scintillation counter.
This assay makes use of radiolabelled [3H]-acetyl-CoA

that is coated onto microtiter plates. Upon acetylation of
lysine-rich Histone from calf thymus, the reaction is
stopped and the signal counted using a scintillation
counter [181].

TR-FRET assay
This is a commercial assay kit that measures acetylation
of biotinylated Histone H3K9 peptide. Upon acetylation
of the peptide, it is captured by an Europium-labelled
anti-H3-K9(Ac) antibody and ULight®-streptavidin which
bring the Europium-donor and ULight™-acceptor mole-
cules into close proximity and thus a TR-FRET signal is
generated [182].
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The bromodomain target class and relevant screening
compatible assays
Bromodomains are protein modules that bind to acetylated
lysine residues and hence facilitate protein–protein inte-
ractions. Bromodomain-mediated interactions have key
roles in transcriptional regulation and their dysfunction is
implicated in a large number of diseases including cancer
[183–185], atherosclerosis [186] and diabetes [187].

AlphaScreen® assay
This is an assay reporting the detection of BRD4 bind-
ing to Histone H4-K5(Ac) [188]. A biotinylated Histone
H4-K5(Ac) substrate binds GST-bromodomain-containing
protein 4 (GST-BRD4) and this complex binds a streptavi-
din-donor and glutathione-acceptor enabling them to
come into close proximity, thereby yielding a signal.
In addition, interactions between His-BRD4 and bi-

otinylated Histone H4-K4(Ac) have been reported that
made use of streptavidin-donor beads and Ni-acceptor
beads to enable the formation of the detection sand-
wich [189].

Differential scanning fluorimetry assay
An assay has been reported that makes use of unlabelled
BRD4 and SYPRO Orange Protein Gel Stain as a fluor-
escent probe [190]. It involved heat-induced protein de-
naturation which exposes hydrophobic surfaces that
interact with SYPRO Orange, thereby increasing its
fluorescence. The fluorescence gradually increases with
increasing temperature and this data yields a melting
temperature (Tm) that is represented by an inflection
point on the curve. Interactions between the protein and
a ligand increases protein stability, leading to an increase
in Tm and used to predict the Kd of compounds that
were tested. This is also available commercially as the
BromoMELT™ kit [191].

Fluorescence polarization assay
A fluorescence polarization assay has been reported that
makes use of a fluorescent BODIPY labelled tracer
(BODIPY-BI2536) binding to BRD4 [190]. When the
BRD4/BODIPY-BI2536 complex is in the presence of a
compound that can displace the tracer from BRD4, a re-
duction in signal is observed. This assay was validated
using a number of reference compounds.

TR-FRET assay
This is a commercial assay kit that allows the
characterization of BRD4/peptide interaction. The donor
consists of BRD4 bromodomain 1 peptide labelled with
Europium chelate. A biotinylated peptide containing the
target acetylated lysine serves as the ligand for BRD4
bromodomain 1. APC-labelled avidin can bind with high
affinity to the peptide substrate via the biotin moiety

and serves as the acceptor in the assay [192] and any
compound that displaces the complex will result in a
decrease in signal.

Conclusions
The body of evidence implicating epigenetic proteins in
regulating biological processes and their dysfunction
being the cause of various diseases is continuously
increasing [119, 193]. This has led to significant drug
discovery research efforts and the Food and Drug
Administration (FDA) approval of a number of drugs
and an even larger number of compounds being evalu-
ated in clinical trials [119, 194, 195]. This trajectory of
epigenetic drug discovery research is similar to that for
the kinase protein target class after they were discovered
and it is anticipated that many of the lessons learnt will
apply to the epigenetic targets. For example, despite the
initial concerns that selective kinase drugs may not be
achievable due to their common ATP binding sites,
Lapatinib has been shown to be a highly selective recep-
tor tyrosine kinase inhibitor and has been approved for
clinical use [196]. Another important example of a
kinase inhibitor is Palbociclib which is an oral, re-
versible, selective, small-molecule inhibitor of cyclin-
dependent kinase (CDK) 4 and CDK6 for the treatment
of cancer. Early drug discovery efforts for the CDKs did
not yield selective inhibitors and as a consequence they
were considered as being intractable for inhibition by
small molecules [197]. The research efforts in the kinase
area have also led to the development of powerful assay
methodologies to monitor their activity and currently
more than 25 kinase assay formats are available [26,
198].
An additional therapeutic approach is to use combi-

nations of drugs, e.g. kinase and epigenetic drugs
[199, 200]. However, these may be associated with
side effects and the possible origins of some of these
for epigenetic drugs such as panobinostat have been
elucidated using thermal proteome profiling [201].
This approach made use of a cellular thermal shift
assay in conjunction with mass spectrometry-based
proteomics. In this assay, HepG2 cells were incubated
with panobinostat and subsequently those targets that
were bound to the compound were identified. The
bound proteins included HDAC targets as well as
phenylalanine hydroxylase. The loss of function due
to phenylalanine hydroxylase inhibition would be ex-
pected to increase phenylalanine levels in plasma and
eventually decrease tyrosine levels. This could explain
the symptoms mimicking hypothyroidism, a common
panobinostat side effect.
It is anticipated that the next generation of epigenetic

drugs will have reduced toxicity and improved efficacy
as these are the major causes of attrition in drug
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discovery in the clinic [202, 203]. In order to identify the
toxicity and efficacy problems early in the drug discovery
workflow, there is an urgent need to establish more
predictive and physiologically relevant assays such as
those that use three-dimensional organoid cultures to
study human disease processes [53, 204–206]. It can be
difficult to interpret the screening output from such
assays as the observations are likely to originate from
compounds modulating a variety of cellular processes.
This ambiguity can be reduced significantly with the
cellular thermal shift assay (CETSA) that enables target
engagement by compounds to be studied [207]. Other
assay techniques that are now being used more com-
monly include advanced mass spectrometry [208–210]
and when applied in conjunction with advanced image
analysis of clinical samples, exquisite detail of cellular
processes can be deciphered as shown in the case of the
in situ detection of topoisomerase [211].
This review provides details of the current status of

the assays that are available to monitor the activity of
epigenetic targets. Since there are a number of assays
that can be developed for any given target, it is prudent
to develop a panel of assays as these can be used to
confirm the observations across different readouts. This
is illustrated methodically for the lysine demethylases
that make use of target-based assays, crystallography and
cell-based assays and should serve as a template for
epigenetic drug discovery research [212].
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