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Abstract

Background: Intrauterine exposure to gestational diabetes mellitus (GDM) confers a lifelong increased risk for
metabolic and other complex disorders to the offspring. GDM-induced epigenetic modifications modulating gene
regulation and persisting into later life are generally assumed to mediate these elevated disease susceptibilities. To
identify candidate genes for fetal programming, we compared genome-wide methylation patterns of fetal cord
bloods (FCBs) from GDM and control pregnancies.

Methods and results: Using Illumina’s 450K methylation arrays and following correction for multiple testing, 65 CpG
sites (52 associated with genes) displayed significant methylation differences between GDM and control samples. Four
candidate genes, ATP5A1, MFAP4, PRKCH, and SLC17A4, from our methylation screen and one, HIF3A, from the literature
were validated by bisulfite pyrosequencing. The effects remained significant after adjustment for the confounding
factors maternal BMI, gestational week, and fetal sex in a multivariate regression model. In general, GDM effects on FCB
methylation were more pronounced in women with insulin-dependent GDM who had a more severe metabolic
phenotype than women with dietetically treated GDM.

Conclusions: Our study supports an association between maternal GDM and the epigenetic status of the exposed
offspring. Consistent with a multifactorial disease model, the observed FCB methylation changes are of small effect size
but affect multiple genes/loci. The identified genes are primary candidates for transmitting GDM effects to the next
generation. They also may provide useful biomarkers for the diagnosis, prognosis, and treatment of adverse prenatal
exposures.

Keywords: DNA methylation, Fetal cord blood, Fetal programming, Gestational diabetes mellitus, Insulin treatment

Background
The “developmental origins of health and disease
(DOHAD)” or Barker hypothesis associates adverse
environmental exposures in the periconceptional and/
or intrauterine period with lifelong increased morbid-
ity for metabolic, cardiovascular, and other complex
diseases [1, 2]. A large number of studies provided con-
vincing evidence that both fetomaternal under- and over-
nutrition negatively influence the metabolic phenotype of
the exposed individuals in later life [3, 4]. The prevalence of

obesity and of women developing gestational diabetes mel-
litus (GDM) is increasing worldwide [5, 6]. Depending on
ethnicity and diagnostic criteria, GDM affects 2 to >10% of
all pregnancies.
Changes in lifestyle (overnutrition and physical inactivity)

and genetic risk factors [7, 8] alone cannot explain the
current GDM epidemics. GDM develops during pregnancy
(usually in late second trimester) when the maternal insulin
production can no longer cope with increasing adiposity
and insulin resistance (due to increased placental lactogen,
estrogen, and prolactin) [9, 10]. It results in fetal overnutri-
tion (with glucose, amino acids, lipids, and fatty acids) and
fetal hyperinsulinism, which may cause medical problems
(macrosomia, organomegaly, and neonatal hypoglycemia)
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in the perinatal period. In addition, the adverse intrauterine
environment may lead to persistent developmental malpro-
gramming of the metabolism [11]. The offspring of GDM
mothers have increased risks of developing obesity, type 2
diabetes, and cardiovasular disease [12–15]. Moreover,
GDM exposure has been associated with autism spectrum
disorder and long-term neuropsychiatric morbidity [16].
Studies of Pima Indian siblings discordant for exposure to
GDM indicate that in addition to shared risk alleles, the in-
creased lifelong disease risk is at least partially mediated by
the hyperglycemic intrauterine environment [17]. The most
likely mechanisms for translating the effects of intrauterine
GDM exposure into disease susceptibility is epigenetic dys-
regulation of metabolic, cardiovascular, and neuroendocrine
pathways [18–20].
Epigenetic mechanisms control gene expression patterns

without altering the DNA sequence. The most thoroughly
studied epigenetic modification is DNA methylation, more
precisely methylation of cytosine carbon 5 at cytosine phos-
phate guanine (CpG) dinucleotides. DNA methylation pat-
terns are transmitted to daughter cells during somatic cell
division and perhaps also from one generation to the next.
Promoter methylation during development, differentiation,
or disease processes leads to an inactive chromatin struc-
ture and gene silencing. In contrast, gene body methylation
is usually associated with active genes [21–23]. One import-
ant hallmark of DNA methylation patterns is their enor-
mous plasticity during development and in response to
environmental factors [24, 25]. Epigenetic modifications are
primary candidates for mediating the persistent effects of
an adverse intrauterine environment on the metabolism of
the exposed individual.
Mass spectrometry revealed an increased global DNA

methylation in placenta of GDM mothers [26]. Candidate
gene studies have identified a number of differentially
methylated genes in fetal tissues of babies from GDM
mothers, including the fat-cell hormones leptin (LEP) and
adiponectin (ADIPOQ), which are involved in regulation
of energy metabolism and body weight [27, 28], the ATP-
binding cassette transporter ABCA1, a major regulator of
cellular cholesterol [29], the glucose transporters SLC2A1/
GLUT1 and SLC2A3/GLUT3 [30], and the imprinted gene
MEST, which plays a role in adipositas development [31].
In addition, there are already several genome-wide methy-
lation studies in the offspring of GDM mothers [32–36],
which have led to the identification of functional networks
(various metabolic disease pathways and processes, cell
growth and death regulation, endocytosis, inflammatory
response, MAPK signaling, MODY, NOTCH signaling,
type 2 diabetes) which are epigenetically programmed
through GDM exposure. It is interesting to note that des-
pite comparable sample sizes and study design, the num-
ber of identified loci with genome-wide significance
ranged from none [32] to over thousand [35] and there is

limited overlap between the identified genes and path-
ways. The GDM-susceptible genes that have been discov-
ered so far may represent only the tip of the iceberg and
also need to be replicated in independent studies. Here,
we performed a 450K methylation array screen on cord
bloods from GDM mothers and matched controls. To
minimize the effects of confounding factors, all study
subjects (the vast majority of them Caucasians) were re-
cruited from a single obstetric clinic. Unlike other studies,
diabetes during pregnancy was very well controlled. We
distinguished between insulin-treated GDM (I-GDM) and
dietetically treated GDM (D-GDM), assuming that I-
GDM represents a more severe phenotype and more ad-
verse fetal exposure.

Methods
Study subjects and DNA samples
Umbilical cord bloods from newborns (singletons) of
105 mothers with I-GDM, 88 with D-GDM, and 120
controls without GDM were collected by obstetricians at
the Municipal Clinics, Moenchengladbach, Germany.
Blood samples were immediately frozen at −80 °C until
further use. Genomic DNA was isolated with the Flexi-
Gene DNA kit (Qiagen, Hilden, Germany) and bisulfite
conversion performed with the EpiTect Fast 96 kit
(Qiagen).
GDM was diagnosed between gestational weeks 24

and 27 by an elevated fasting (for 8-12 h) plasma glucose
(>5.1 mmol/l) and a pathological oral glucose tolerance
test (>10 mmol/l at 1 h and/or >8.5 mmol/l at 2 h after
drinking a solution with 75-g glucose). Following diag-
nosis, women received dietary counselling by a diabetol-
ogist. According to the recommendations of the German
Society of Gynecology and Obstetrics (DGGG) and the
American Diabetes Association (ADA), they were put on
a diet consisting of approximately 45% carbohydrate,
30–35% fat, and up to 20% protein. Protein intake was
limited to approximately 0.8 g/kg body weight. The pa-
tients were not allowed to fast. If dietary treatment did
not decrease glucose (<5.1 mmol/l after fasting,
<7.8 mmol/l at 1 h, and <6.7 mmol/l at 2 h after meals)
and HbA1C levels (<6%), patients were treated with the
basis bolus insulin and rarely insulin pump therapy.

Microarray analysis
Two independent methylation array data sets (NCBI
GEO accession no. GSE88929) were generated. Data set
A represents 20 I-GDM and 18 control samples and data
set B 24 I-GDM, 24 D-GDM, and 46 control samples
(Table 1). After bisulfite conversion, the 38 samples of data
set A and the 94 samples of data set B were whole-genome
amplified, enzymatically fragmented, and hybridized to 4
and 8 Illumina HumanMethylation450 BeadChips, respect-
ively, according to the manufacturer’s protocol (Illumina,
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Table 1 Clinical parameters of analyzed cohorts and subgroups

Array cohort A Controls D-GDM I-GDM p value

Sample size (n) 18 20

Gestational week 39.1 ± 0.9 39.2 ± 1.3 0.346

Preterm birth (n) 0 1 1

Maternal BMI (kg/m2) 25.2 ± 3.1 26.3 ± 3.5 0.303

Maternal height (cm) 164.4 ± 6.7 167.9 ± 7.6 0.141

Weight before pregnancy (kg) 69.8 ± 10.8 75.8 ± 12.9 0.133

Weight before birth (kg) 82.0 ± 11.3 88.6 ± 13.3 0.118

HbA1c (%) n.d. 5.8 ± 0.6 n.d.

Diabetes before pregnancya 0 1 TDM1, 1 TDM2 0.488

Maternal age (years) 29.6 ± 2.8 31.0 ± 4.6 0.259

Parityb 7 PP, 6 BP, 5 MP 5 PP, 13 BP, 2 MP 0.965

Spontaneous abortion rate 0.50 ± 0.71 0.15 ± 0.37 0.186

Nicotine consumptionc n.d. 17 NS, 3 S n.d.

Maternal comorbitidiesd 0 2 T 0.488

Mode of birthe 12 UVB, 6 CS 15 UVB, 2 VVB, 3 CS 0.239

Sex of child 8 ♂, 10 ♀ 11 ♂, 9 ♀ 0.746

Birth weight (g) 3283.6 ± 420.7 3673.3 ± 515.9 0.016

Weight for gestational agef 18 AGA 18 AGA, 2 LGA 0.613

Placenta weight (g) 509.4 ± 105.8 566.2 ± 127.0 0.372

Blood pH 7.32 ± 0.05 7.28 ± 0.06 0.019

Array cohort B Controls D-GDM I-GDM p value

Sample size (n) 46 24 24

Gestational week 39.5 ± 1.4 39.1 ± 1.3 38.7 ± 1.5 0.024

Preterm birth (n) 2 1 1 1

Maternal BMI (kg/m2) 25.3 ± 6.4 25.1 ± 4.1 29.9 ± 7.3 0.018

Maternal height (cm) 166.3 ± 9.4 165.3 ± 6.4 165.9 ± 5.9 0.581

Weight before pregnancy (kg) 71.7 ± 17.9 69.0 ± 10.8 83.6 ± 20.6 0.034

Weight before birth (kg) 86.0 ± 7.7 80.2 ± 10.6 96.7 ± 20.4 0.009

HbA1c (%) n.d. 5.5 ± 0.4 5.9 ± 0.6 0.020

Diabetes before pregnancya 0 0 3 TDM1, 1 TDM2 0.007

Maternal age (years) 30.3 ± 5.8 31.7 ± 6.1 31.3 ± 4.6 0.526

Parityb 28 PP, 10 BP, 8 MP 13 PP, 9 BP, 2 MP 13 PP, 9 BP, 2 MP 0.491

Spontaneous abortion rate 0.46 ± 0.98 0.29 ± 1.04 0.25 ± 0.61 0.370

Nicotine consumptionc 41 NS, 5 S 23 NS, 1 S 22 NS, 2 S 0.637

Maternal comorbitidiesd 1 H, 1 T 1 P 1 H 1

Mode of birthe 34 UVB, 3 VVB, 9 CS 14 UVB, 1 VVB, 9 CS 18 UVB, 5 CS 0.262

Sex of child 22 ♂, 24 ♀ 12 ♂, 12 ♀ 12 ♂, 12 ♀ 0.978

Birth weight (g) 3391.2 ± 575.9 3396.9 ± 558.4 3465 ± 478.4 0.960

Weight for gestational agef 2 SGA, 44 AGA 23 AGA, 1 LGA 23 AGA, 1 LGA 0.183

Placenta weight (g) n.d 538.4 ± 111.0 552.1 ± 128.0 0.900

Blood pH 7.29 ± 0.10 7.30 ± 0.06 7.26 ± 0.10 0.368

Pyrosequencing cohort Controls D-GDM I-GDM p value

Sample size (n) 56 64 61

Gestational week 39.5 ± 1.4 39.0 ± 1.4 38.8 ± 1.4 0.007
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San Diego, CA, USA). The arrays were scanned with an
Illumina iScan. Microarray data were exported as idat files
and analyzed using the statistical software package R (ver-
sion 3.2.2) and the BioConductor platform (version 3.2).
Preprocessing has been performed using the infrastructure
implemented in the minfi [37] and watermelon [38] pack-
ages. First, sites with low signal quality (beadcount <3 and
detection p value >0.05) were filtered and sites overlapping
known SNPs removed. Furthermore, probes on the sex
chromosomes were excluded, leaving a total number of
452,932 probes (cohort A) and 455,307 probes (cohort B),
respectively, for subsequent analyses (out of >485,000
CpGs on the chip covering 99% of RefSeq genes with pro-
moter, first exon, gene body, 5′ and 3′ UTRs and 96% of
CpG islands). Intensity values were normalized using the
dasen method as implemented in the watermelon package
[38]. To account for potential probe-type effects, an intra-
sample normalization procedure (BMIQ) has been applied
which corrects for the bias of type 2 probes. Differential
methylation analysis has been performed using the mo-
derated T test model based on β values as implemented in
the limma package [39]. All p values have been corrected
for multiple testing using the Benjamini-Hochberg
method [40].

Bisulfite pyrosequencing
The PyroMark Assay Design 2.0 software (Biotage, Upp-
sala, Sweden) was used for design of PCR and sequen-
cing primers (Additional file 1: Table S1). Assays were
established using the EpiTect PCR Control DNA set
(Qiagen) with 0, 25, 50, 75, and 100% methylation. PCR
reactions were performed in a total volume of 25 μl
using the FastStart Taq DNA polymerase system (Roche
Diagnostics, Mannheim, Germany). The 25 μl reaction
consisted of 2.5 μl 10× PCR buffer, 20 mM MgCl2, 1.0 μl
dNTP (10 mM) mix, 10 pmol of forward and reverse
primer, 1 IU of FastStart polymerase, 1 μl (approximately
100 ng) bisulfite converted template DNA, and 18.3 μl
PCR-grade water. For SLC17A4, 2.0 μl template DNA
and 17.3 μl water were used.
To reduce technical noise (batch effects), bisulfite conver-

sion and PCR (of D-GDM, I-GDM, and control samples)
were performed simultaneously in 96-well microtiter plates.
Pyrosequencing was performed on a PyroMark Q96 MD
system (Qiagen) using the PyroMark Gold Q96 CDT re-
agent kit (Qiagen), 10 pmol of sequencing primer, and Pyro
Q-CpG software (Qiagen). In our experience, the average
methylation difference between technical replicates (includ-
ing bisulfite conversion, PCR, and pyrosequencing) is

Table 1 Clinical parameters of analyzed cohorts and subgroups (Continued)

Preterm birth (n) 3 3 3 1

Maternal BMI (kg/m2) 25.2 ± 5.9 25.7 ± 5.0 31.5 ± 8.1 <0.001

Maternal height (cm) 166.6 ± 9.1 165.4 ± 6.2 166.6 ± 6.5 0.294

Weight before pregnancy (kg) 71.8 ± 16.4 71.1 ± 14.6 89.3 ± 23.4 <0.001

Weight before birth (kg) 85.8 ± 16.5 84.2 ± 15.2 101.2 ± 24.0 <0.001

HbA1c (%) n.d. 5.5 ± 0.3 5.8 ± 0.4 <0.001

Diabetes before pregnancya 0 0 5 TDM1, 3 TDM2 <0.001

Maternal age (years) 30.4 ± 5.8 31.3 ± 6.1 32.2 ± 5.3 0.243

Parityb 33 PP, 13 BP, 10 MP 35 PP, 22 BP, 7 MP 25 PP, 23 BP, 12 MP 0.203

Spontaneous abortion rate 0.52 ± 1.13 0.31 ± 0.77 0.27 ± 0.55 0.846

Nicotine consumptionc 47 NS, 9 S 57 NS, 7 S 55 NS, 7 S 0.549

Maternal comorbitidiesd 1 H, 2 T 1 H, 2 P, 1 T 3 H, 1 T 1

Mode of birthe 42 UVB, 3 VVB, 11 CS 35 UVB, 1 VVB, 23 CS 43 UVB, 4 VVB, 17 CS 0.273

Sex of child 29 ♂, 27 ♀ 25 ♂, 38 ♀ 34 ♂, 26 ♀ 0.152

Birth weight (g) 3332.2 ± 550.9 3311.6 ± 504.1 3540.0 ± 473.3 0.051

Weight for gestational agef 3 SGA, 53 AGA 63 AGA, 1 LGA 56 AGA, 2 LGA 0.064

Placenta weight (g) n.d. 517.8 ± 99.3 556.3 ± 127.1 0.155

Blood pH 7.29 ± 0.09 7.30 ± 0.06 7.28 ± 0.08 0.593

n.d. no data
aTDM1 = type 1 diabetes mellitus, TDM2 = type 2 diabetes mellitus
bPP = primiparous, BP = biparous, MP = multiparous
cNS = non-smoker, S = smoker
dH = hypertension, P = preeclampsia, T = thyroid dysfunction
eCS = Cesarean section, UVB = unassisted vaginal birth, VVB = ventouse-assisted vaginal birth
fSGA = small for gestational age (<3th percentile), AGA = appropriate for gestational age (3rd–97th percentile), LGA = large for gestational age (>97th percentile)
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approximately 1–2 percentage points. Artificially methyl-
ated and unmethylated DNA standards (Qiagen) were in-
cluded as controls in each pyrosequencing run.

Statistical testing
Statistical analyses were performed with the statistical
software package R (version 3.2.2) and IBM SPSS Statis-
tics 23. The DNA methylation levels at each individual
CpG site and the mean of all CpGs for the targeted re-
gion were compared between groups using the Mann-
Whitney U test. To adjust for potential confounding fac-
tors, multivariate linear regression models have been
used for the analysis of the pyrosequencing data. Poten-
tial confounders have been selected based on known and
observed factors potentially influencing DNA methyla-
tion. The regression coefficients of the final model were
adjusted for maternal BMI, gestational age, and fetal sex.

Results
Methylation array screens
Our genome-wide study of DNA methylation patterns
was based on fetal cord bloods (FCBs) from pregnancies
with D-GDM, I-GDM, and without GDM. Clinical pa-
rameters of the different cohorts and subgroups are pre-
sented in Table 1. The vast majority (>90%) of study
subjects were of middle European descent with the
remaining few percent from South-Eastern Europe and
Turkey. Array cohort A consisted of 20 FCB samples
from mothers with I-GDM and 18 controls. Samples
were carefully matched for gestational week, fetal sex,
maternal BMI, and age. The independent array cohort B
consisted of 24 samples from mothers with D-GDM, 24
with I-GDM, and 48 controls. Due to the larger sample
size, it was not possible to match for all relevant clinical
parameters. Maternal BMI and gestational age differed
between groups. In general, women with GDM were
managed very well during pregnancy, displaying average
HbA1c levels <6%. Only a few women in each group
presented with comorbidities such as hypertension, pre-
eclampsia, or thyroid dysfunction. Ten to 17% of women
with I-GDM but none with D-GDM group suffered from
type 1 or 2 diabetes before pregnancy (Table 1). There
were only few preterm births (before 37th week of gesta-
tion) and small or large for gestational age (SGA, LGA)
babies, respectively. Since white blood counts were not
available, the relative proportion of different cell types in
the FCBs was estimated from genome-wide methylation
profiles using statistical methods [41]. None of the two
analyzed cohorts showed a significant difference in cell com-
position between GDM and control samples (Additional file
2: Figure S1).
Samples of cohort A were hybridized to 4 and cohort

B to 8 Illumina HumanMethylation450 BeadChips. We
did not find significant differences in global (array CpG)

methylation between control, D-GDM, and I-GDM sam-
ples in cohort A (p = 0.87) and B (p = 0.94), respectively.
Since methylation levels differ markedly between CpG
island (CGI)-related sites and the remaining genome, we
performed separate analyses for the array GpG subsets
in CGIs, north/south shelfs and shores, and open sea
(Additional file 3: Table S2). Although there were no sig-
nificant between-group differences, it is noteworthy that
in cohort B, mean methylation of all targeted CpG sub-
sets was 0.3–1.1 percentage points lower in both the D-
GDM and I-GDM groups, compared to controls.
In cohort A, none of the analyzed 452,932 CpGs showed

a significant between-group methylation difference after
correction for multiple testing. However, the p value dis-
tribution (histogram) displayed an accumulation of p
values in the low significance range, indicating the pres-
ence of a weak signal in the data set. In cohort B, 11,195
of 455,307 analyzed CpGs exhibited a significant (FDR-ad-
justed p < 0.05) methylation difference between I-GDM
and controls and none between D-GDM and controls.
Comparative analysis of data sets A and B revealed high
concordance (R = 0.999, p < 2.2E−16) of single CpG
methylation values. Both data sets showed a significant
correlation of methylation differences (R = 0.126; p < 2.2E
−16) and T values (R = 0.078; p < 2.2E−16) between I-
GDM and control samples, consistent with the presence
of a shared signal. To extract robust signals, the p values
of both analyses were combined using order statistics of
two uniformly distributed random variables. The first-
order statistics revealed 1564 and the more robust
second-order statistics 65 significant CpG sites, 52 of
which are associated with genes (Table 2). The lack of sig-
nificant signals in the D-GDM samples may be due to the
lower sample size or the less severe metabolic phenotype.
Since earlier studies reported a correlation between pla-

cental ADIPOQ methylation and maternal blood glucose
concentration [28], we analyzed the association of HbA1c
levels with array CpG methylation in both GDM sub-
groups (Hb1Ac values were not available for controls).
However, neither cohort A nor B displayed any significant
sites after multiple testing correction. In addition, we
tested the anthropometric surrogate parameters birth
weight and gestational age for their association with DNA
methylation. In cohort A, none of the analyzed array CpG
sites reached genome-wide significance. In cohort B, there
were no significant CpG sites for birth weight after mul-
tiple testing correction. A small number (823 of 455,307,
0.2%) of CpGs showed a significant association between
gestational age and DNA methylation.

Validation of candidate genes by bisulfite
pyrosequencing
Four candidate genes from our methylation array screen,
ATP5A1, MFAP4, PRKCH, and SLC17A4, were analyzed
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Table 2 Array CpGs with significant methylation differences in GDM cord bloods

Array CpG Gene Chromosomal locationa βb data set A βb data set B Adjusted p value

cg02943336 CARD11 Chr7: 2,959,067 1.08% 1.33% 0.022

cg11449134 CpG island Chr19: 51,897,791 −0.63% −0.63% 0.028

cg26001655 KIAA1530 Chr4: 1,356,770 1.20% 1.25% 0.028

cg11010397 AMPH Chr7: 38,671,977 −1.37% −1.81% 0.028

cg22865713 SLC17A4 Chr6: 25,779,897 −2.71% −3.38% 0.028

cg01993865 DSTN Chr20: 17,550,690 −0.60% −0.78% 0.028

cg18906596 ANKFY1 Chr17: 4,151,473 −2.73% −2.29% 0.028

cg05697697 XPNPEP1 Chr10: 111,683,345 0.66% 0.62% 0.028

cg07431064 CBX7 Chr22: 39,529,217 0.95% 1.12% 0.028

cg03345925 ZC3H3 Chr8: 144,599,347 3.39% 3.83% 0.028

cg06945690 ZNF167 Chr3: 44,621,374 2.09% 2.69% 0.031

cg10576992 SEC24D Chr4: 119,662,530 −2.73% −2.83% 0.031

cg26281025 HK3 Chr5: 176,308,046 1.04% 1.38% 0.031

cg08732684 ATF6B Chr6: 32,095,128 1.79% 2.20% 0.035

cg23376861 ATP5A1 Chr18: 43,678,713 −3.45% −4.32% 0.035

cg21143899 UCK2 Chr1: 165,866,296 1.42% 1.53% 0.035

cg02683621 North shore Chr7: 150,100,820 1.15% 1.59% 0.035

cg17921080 Open sea Chr14: 86,478,932 −1.85% −2.36% 0.035

cg07689396 PRKAR1B Chr7: 633,050 1.62% 1.42% 0.035

cg08077807 PRKCH Chr14: 62,001,072 −2.23% −2.53% 0.037

cg19143209 CpG island Chr9: 19,789,287 −2.43% −2.74% 0.039

cg15737302 North shelf Chr11: 118,302,063 −1.90% −1.85% 0.039

cg19169154 MFAP4 Chr17: 19,287,978 1.81% 3.21% 0.039

cg07018980 GAK Chr4: 895,604 1.04% 1.67% 0.040

cg10288510 CpG island Chr1: 214,158,727 −1.59% −0.89% 0.040

cg13153307 SEC16A Chr9: 139,368,749 1.89% 1.55% 0.040

cg10778517 MAD1L1 Chr7: 2,252,773 0.93% 1.18% 0.040

cg08440349 ATP2C2 Chr16: 84,486,704 1.57% 1.33% 0.040

cg01203331 NOP56; SNORD56, 57, 86 Chr20: 2,636,597 1.12% 1.49% 0.040

cg18502630 PTGDS Chr9: 139,871,955 1.44% 1.35% 0.040

cg03246914 TUBB1 Chr20: 57,596,113 −3.22% −3.05% 0.040

cg26706238 ABCG5; ABCG8 Chr2: 44,066,206 1.35% 1.27% 0.040

cg11703745 TMCC2 Chr1: 205,199,293 1.62% 1.87% 0.040

cg19830000 NELL2 Chr12: 45,270,312 −0.50% −0.48% 0.041

cg01205011 ZNF76 Chr6: 35,262,113 −2.28% −2.44% 0.041

cg01955962 CpG island Chr15: 73,089,536 −0.54% −0.64% 0.041

cg25871543 XAB2 Chr19: 7,686,181 0.91% 1.41% 0.041

cg13984931 North shelf Chr1: 162,788,667 −2.47% −2.10% 0.041

cg13706613 INPP5E Chr9: 139,324,927 1.36% 1.10% 0.041

cg03540894 North shelf Chr12: 133,611,606 −2.46% −2.84% 0.044

cg01968402 North shore Chr6: 137,817,775 0.71% 0.58% 0.044

cg26406256 HERC3; NAP1L5 Chr4: 89,619,393 1.51% 1.83% 0.046

cg04078644 North shelf Chr3: 155,458,975 −1.36% −1.69% 0.046

cg08542429 AGPAT1 Chr6: 32,139,120 1.49% 1.42% 0.046
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by bisulfite pyrosequencing in 61 I-GDM, 64 D-GDM,
and 56 control samples, including some (mainly control)
samples that had been on the array. These genes were
selected, because they exhibited between-group methyla-
tion differences >2% in both array data sets and were as-
sociated with common complications of diabetes in the
literature [42–48]. It is noteworthy that maternal BMI,
weight before pregnancy and birth, respectively, were
significantly higher and the gestational age significantly
lower in the I-GDM group, compared to D-GDM and
controls (Table 1). HbAC1 levels were also significantly
higher in I-GDM than in D-GDM women, but the ma-
jority of samples were still in the normal range. Eight of
61 (13%) women with I-GDM had diabetes before preg-
nancy. Thus, metabolic disturbances appear to be more
pronounced in women requiring insulin treatment.
The pyrosequencing assay for ATP5A1 targeted two

CpG sites in the promoter region. The array CpG (CpG2
of the pyrosequencing assay) displayed a significant
methylation difference (β = −2%; p = 0.014) between
GDM and control samples. When comparing I-GDM
versus controls, CpG1 and the mean of both CpGs were
significantly (p = 0.001 and 0.007) different between
groups. The comparison of D-GDM versus controls did
not reveal significant results. Similarly, four CpGs were

analyzed in the MFAP4 promoter-flanking region;
however, neither individual CpG nor mean methylation
differed between GDM and control group. The only
significant difference was observed for CpG4 between I-
GDM and control samples (β = -0.4%; p = 0.048). The
PRKCH assay targeted three CpGs in an enhancer re-
gion. Each individual CpG (CpG3 being the array
CpG) and their mean methylation were significantly
hypomethylated (β = −1.1 to −1.9%; p < 0.005) in
GDM samples, compared with controls. The same
was true (p < 0.001) when comparing I-GDM samples
versus controls. A weaker effect was seen for CpG1
(p = 0.034), CpG2 (p = 0.003), and mean methylation
of all CpGs (p = 0.015) in D-GDM versus controls.
Three CpGs were analyzed in SLC17A4. Consistent with
the methylation screen, the array CpG (CpG3 of the pyro-
sequencing assay) was hypomethylated (β =-0.8% to
-2.0%) in GDM, I-GDM, and D-GDM samples, but the re-
sults were not significant. Surprisingly, CpG2, which is
141 bp upstream of CpG3, was significantly (p < 0.001)
hypermethylated (β = 4.4–5.2%) in GDM, I-GDM, and D-
GDM, compared with controls (Fig. 1). Thus, the methyla-
tion difference between CpG2 and CpG3 was 4.5–6.5 per-
centage points (p < 0.001) higher in the GDM, I-GDM,
and D-GDM groups than in controls.

Table 2 Array CpGs with significant methylation differences in GDM cord bloods (Continued)

cg04514868 MTA1 Chr14: 105,931,040 0.92% 1.08% 0.046

cg05536286 ST8SIA2 Chr15: 92,972,514 −1.13% −1.22% 0.046

cg08443019 OVCA2; DPH1 Chr17: 1,946,299 1.59% 1.41% 0.046

cg24119500 BAI3 Chr6: 69,420,780 −1.93% −1.77% 0.046

cg00273340 CCDC88B Chr 11: 64,112,444 1.22% 1.45% 0.046

cg00730857 WHSC2 Chr4: 1,994,281 0.89% 0.90% 0.046

cg12841566 MADD Chr11: 47,296,317 1.29% 0.94% 0.046

cg14088574 VPS52 Chr6: 33,234,976 1.17% 1.34% 0.046

cg25927444 TTC7A Chr2: 47,236,103 −2.23% −1.91% 0.046

cg09244071 CUX1 Chr7: 101,768,746 1.00% 1.38% 0.046

cg27509867 Open sea Chr8: 129,165,585 1.15% 1.42% 0.046

cg26828643 FAM38A Chr16: 88,802,820 1.46% 1.51% 0.048

cg22606873 PRDM16 Chr1: 3,144,679 −1.27% −1.21% 0.048

cg16126178 AKT1 Chr14: 105,239,857 1.11% 1.35% 0.048

cg16221240 CpG island Chr2: 130,970,934 −3.16% −2.49% 0.049

cg03280063 GAK Chr4: 893,186 1.22% 1.58% 0.049

cg00063535 TPCN1 Chr12: 113,729,491 1.35% 1.75% 0.049

cg08144943 PPM1M Chr3: 52,280,702 2.09% 1.91% 0.049

cg17881203 WDR18 Chr19: 990,398 0.82% 1.40% 0.049

cg20935025 NFKBIA Chr14: 35,874,013 1.94% 2.70% 0.049

cg14597908 GNAS Chr20: 57,414,960 1.79% 1.35% 0.049
aAccording to the annotation provided by Illumina
bPositive β difference indicates hypermethylation and negative β hypomethylation in the GDM group
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Previously, HIF3A methylation in adult blood was
positively correlated with BMI [49] and adipose tissue
dysfunction [50]. Although it was not among the top
candidate genes in our methylation screen, HIF3A was
also analyzed by bisulfite pyrosequencing, targeting 11
CpGs in the HIF3A promoter (array CpGs 6, 8, and 11).
Mean methylation of all 11 CpGs was significantly
higher between GDM and controls (β = 1.3%; p = 0.001),
I-GDM and controls (β = 1.5%; p = 0.005), and D-GDM
and controls (β = 1.2%; p = 0.002). At the individual CpG
level, nine of 11 CpGs were significantly hypermethy-
lated in GDM and six of 11 in I-GDM and D-GDM
samples, respectively. CpGs 3, 4, 5, 10, and 11 were sig-
nificant in all three between-group comparisons, CpG 2
and 8 in none of the comparisons.
After adjusting for the potential confounding factors ma-

ternal BMI, gestational week, and fetal sex in our mu-
ltivariate regression analysis (Additional file 4: Table S3),
GDM was associated with significant FCB methylation
changes of CpG2 (β = −2.2%; p = 0.02) in ATP5A1, of CpG4
(β = −0.4%; p = 0.04) in MFAP4, of CpG1 (β = −1.1%; p =
0.03), CpG2 (β = −1.9%; p = 0.003), and CpG3 (β = −1.2%; p
= 0.05) in PRKCH, of CpG2 (β = 5.3%; p < 0.001) in
SLC17A4, and of CpG5 (β = 1.7%; p = 0.03), CpG6 (β =
3.1%; p = 0.03), CpG10 (β = 3.7%; p = 0.01), and CpG11 (β
= 3.7%; p = 0.03) in HIF3A. Mean methylation of all CpGs
in the target region was significant for PRCHK (β = −1.4%;
p = 0.008), SLC17A (β = 1.5%; p = 0.03), and HIF3A (β =
2.3%; p = 0.05).

Discussion
The prevalence of GDM and maternal obesity is con-
stantly increasing worldwide and gives rise to a vicious
cycle in which babies exposed to GDM in utero are

more likely to develop metabolic (and other) disorders
later in life [12–16]. The mechanisms increasing the risk
for long-term morbidity in the offspring are still poorly
understood, but epigenetics is thought to be a key player
in this process [18–20]. A growing number of studies in
human postpartum tissues [26–36] have demonstrated
GDM-related changes in the offspring’s DNA methyla-
tion patterns. In the mouse model, there is evidence that
epigenetic changes in the germ cells of offspring from
diabetic/obese mothers may contribute to transgenera-
tional inheritance of a metabolic phenotype [51, 52].
The observed GDM-associated epigenetic changes in

cord blood and/or placenta are small (in the order of a
few percentage points) at the single-gene level but ap-
pear to be widespread. Nevertheless and similar to the
hits of genome-wide association studies (GWAS), des-
pite small effect size, the identified differentially methyl-
ated loci may uncover genes that are essential for fetal
programming of a metabolic phenotype in GDM off-
spring. Considering the enormous variation of DNA
methylation patterns among non-exposed neonates/in-
fants, the measured methylation values in GDM off-
spring are still in the normal range and, thus, their
diagnostic or prognostic value is currently too low for
clinical implementation. Again similar to GWAS, the
development of polygenic risk scores may allow better
predictions of the outcome of adverse intrauterine expo-
sures. When interpreting the functional relevance of epi-
genetic markers, it is important to emphasize that the
epigenomes differ between cell types and tissues. Alter-
ations in cord blood DNA methylation cells do not ne-
cessarily reflect alterations in the organs (pancreatic
islets, fat, liver, skeletal muscle, and hypothalamus) that
play a role in the pathogenesis of GDM. Due to ethical

Fig. 1 Methylation difference in fetal cord blood of GDM versus non-GDM pregnancies. Differences in methylation percentages between GDM
and control FCBs are shown per CpG site for each gene studied (ATP5A1, blue bars; MFAP4, red bars; PRKCH, green bars; SLC17A, mauve bars; HIF3A,
orange bars), adjusted for maternal BMI, gestational week, and fetal sex. Significant sites are indicated by star symbols (*p < 0.05; **p < 0.005)
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and legal restrictions, the target tissues for fetal pro-
gramming of metabolic disease in GDM-exposed off-
spring are not accessible.
Moreover, there are numerous confounding factors on

the maternal and offspring’s side. Differences in ethnicity
(genetic background), comorbidities, diagnostic criteria
for GDM, and treatment during pregnancy may explain
the huge discrepancies in the number of genome-wide
significant hits in conceptually very similar 450K methy-
lation array studies [32, 35]. To the extent possible, we
tried to minimize the effects of ethnicity and comorbiti-
dies. More than 90% of our study participants from a
single big obstetric clinic were Caucasians. Only a few
women in each cohort/subgroup suffered from hyper-
tension, preeclamsia, thyroid dysfunction, or other med-
ical problems. In addition, there were only few preterm
births and babies with SGA or LGA. Typical for the situ-
ation in Germany, diabetes in our GDM cohorts was
very well controlled. Most GDM mothers exhibited
HbA1c values in the normal range (5.5 ± 0.3% in D-
GDM and 5.8 ± 0.4% in I-GDM), which may explain the
relatively low number of differentially methylated CpGs
in exposed offspring, compared to a recent study on
South Asian pregnant women [35]. It seems plausible to
assume that an early diagnosis and optimum treatment
of GDM reduces epigenetic effects due to adverse intra-
uterine exposure. In general, we observed more signifi-
cant effects in I-GDM than in D-GDM. This may be due
to epigenetic effects of insulin itself or, more likely, to a
more severe phenotype in women requiring insulin
treatment. Ten to 17% of women in the analyzed I-
GDM subgroups (but none with D-GDM) have been di-
agnosed with diabetes before pregnancy, consistent with
an adverse environmental exposure of the embryo/fetus
during early development. Maternal BMI and HbA1c
levels were significantly higher in pregnant women with
I-GDM, compared to D-GDM, whereas gestational age
at birth was lower. In addition to maternal BMI and ges-
tational week, fetal sex-dependent endocrine effects may
play an important role in the pathogenesis of GDM [53].
However, following adjustment for the maternal BMI,
gestational week, and fetal sex in a multivariate regres-
sion model, the GDM effect on the methylation patterns
of the four analyzed candidate genes remained signifi-
cant. This argues in favor of the robustness of our ap-
proach and the quality of our array data. In addition,
there were no detectable differences in cell composition
of FCB and control bloods, which could explain the ob-
served effects.
Although the number of GDM and control samples

analyzed here meets current standards for genome-wide
methylation studies, the sample size is still two orders of
magnitude lower than that of recent GWAS for complex
phenotypes. Therefore, existing methylation array data

sets are likely still polluted with false positives and false
negatives. Overall, we identified 65 GDM-associated
CpG methylation changes. The 55 associated genes are
mainly novel and reliable candidates for fetal program-
ming by GDM. In addition, one candidate gene, HIF3A,
from the literature [49, 50] was validated.
ATP5A1 encodes a subunit of mitochondrial ATP syn-

thetase, which prevents oxidative damage by mitochon-
drial superoxide generation. ATP synthetase disruption by
high glucose levels promotes diabetic cardiomyopathy in
mouse models [47]. Genetic mutations in mitochondrial
ATP synthetase cause very severe metabolic disorders,
presenting as early-onset encephalo-cardiomyopathies
[54]. The microfibrillar-associated protein 4 (MFAP4) is
involved in cell adhesion and intercellular interactions and
is highly expressed in blood vessels. Plasma MFAP4 levels
have been associated with various cardiovascular compli-
cations [44] and diabetic neuropathy [55]. PRKCH, which
is hypomethylated in GDM offspring, belongs to the pro-
tein kinase C family that is involved in diverse cellular
signaling pathways. It can promote cellular senescence
through transcriptional upregulation of cell cycle inhibi-
tors p21 and p27 [56]. PRKCH variants have been associ-
ated with early-onset obesity [48] and increased stroke
risk [45, 46]. The epigenetic regulation of the intestinal so-
dium/phosphate cotransporter SLC17A4 by GDM appears
to be complex. The methylation difference between two
neighboring CpGs was increased, one being hypermethy-
lated and one being hypomethylated in GDM samples.
Previously, we have shown that the methylation difference
between neighboring CpGs not only is due to stochastic
fluctuations but also may reflect epigenetic signatures of
tissue, environment, etc. [57]. Transcription factor binding
site searches [58] revealed that the hypomethylated C is im-
portant to create a p53 binding site. It is tempting to specu-
late that the regional DNA methylation profile modulates
access of transcription factors to their binding sites. A com-
mon variant near the SLC17A4 gene has been associated
with measures of atherosclerotic disease [42]. Hypoxia in-
ducible factors (HIFs) are heterodimeric transcription fac-
tors that mediate hypoxia response in various tissues [59].
HIF3A is one of the several isoforms of the α subunit that
can form dimers with the β subunit (ARNT). HIF3A plays
a role in glucose and amino acid metabolism and adipocyte
differentiation [60]. The increased FCB methylation in
GDM offspring is consistent with an increased risk for adi-
positas development [49, 50].

Conclusions
Accumulating evidence suggests that GDM leads to
changes in the epigenome(s) of the exposed offspring.
Since DNA methylation plays a key role in the control
of gene regulation [21–23], it is plausible to assume a
causal relationship between GDM-related methylation
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changes at births and increased disease risks in later life.
Longitudinal studies on well-characterized mother-infant
pairs and larger sample sizes are needed to demonstrate
persistence of the epigenetic alterations into adulthood
and the effect of possible (nutritional, pharmacological,
and behavioral) interventions during pregnancy and
postnatal period (lactation and weaning). On the long
term, only meta-analyses combining genome-wide data
sets generated in different laboratories with different
GDM cohorts will reveal a more complete picture.
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